zero-agent 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- agentz/agent/base.py +262 -0
- agentz/artifacts/__init__.py +5 -0
- agentz/artifacts/artifact_writer.py +538 -0
- agentz/artifacts/reporter.py +235 -0
- agentz/artifacts/terminal_writer.py +100 -0
- agentz/context/__init__.py +6 -0
- agentz/context/context.py +91 -0
- agentz/context/conversation.py +205 -0
- agentz/context/data_store.py +208 -0
- agentz/llm/llm_setup.py +156 -0
- agentz/mcp/manager.py +142 -0
- agentz/mcp/patches.py +88 -0
- agentz/mcp/servers/chrome_devtools/server.py +14 -0
- agentz/profiles/base.py +108 -0
- agentz/profiles/data/data_analysis.py +38 -0
- agentz/profiles/data/data_loader.py +35 -0
- agentz/profiles/data/evaluation.py +43 -0
- agentz/profiles/data/model_training.py +47 -0
- agentz/profiles/data/preprocessing.py +47 -0
- agentz/profiles/data/visualization.py +47 -0
- agentz/profiles/manager/evaluate.py +51 -0
- agentz/profiles/manager/memory.py +62 -0
- agentz/profiles/manager/observe.py +48 -0
- agentz/profiles/manager/routing.py +66 -0
- agentz/profiles/manager/writer.py +51 -0
- agentz/profiles/mcp/browser.py +21 -0
- agentz/profiles/mcp/chrome.py +21 -0
- agentz/profiles/mcp/notion.py +21 -0
- agentz/runner/__init__.py +74 -0
- agentz/runner/base.py +28 -0
- agentz/runner/executor.py +320 -0
- agentz/runner/hooks.py +110 -0
- agentz/runner/iteration.py +142 -0
- agentz/runner/patterns.py +215 -0
- agentz/runner/tracker.py +188 -0
- agentz/runner/utils.py +45 -0
- agentz/runner/workflow.py +250 -0
- agentz/tools/__init__.py +20 -0
- agentz/tools/data_tools/__init__.py +17 -0
- agentz/tools/data_tools/data_analysis.py +152 -0
- agentz/tools/data_tools/data_loading.py +92 -0
- agentz/tools/data_tools/evaluation.py +175 -0
- agentz/tools/data_tools/helpers.py +120 -0
- agentz/tools/data_tools/model_training.py +192 -0
- agentz/tools/data_tools/preprocessing.py +229 -0
- agentz/tools/data_tools/visualization.py +281 -0
- agentz/utils/__init__.py +69 -0
- agentz/utils/config.py +708 -0
- agentz/utils/helpers.py +10 -0
- agentz/utils/parsers.py +142 -0
- agentz/utils/printer.py +539 -0
- pipelines/base.py +972 -0
- pipelines/data_scientist.py +97 -0
- pipelines/data_scientist_memory.py +151 -0
- pipelines/experience_learner.py +0 -0
- pipelines/prompt_generator.py +0 -0
- pipelines/simple.py +78 -0
- pipelines/simple_browser.py +145 -0
- pipelines/simple_chrome.py +75 -0
- pipelines/simple_notion.py +103 -0
- pipelines/tool_builder.py +0 -0
- zero_agent-0.1.0.dist-info/METADATA +269 -0
- zero_agent-0.1.0.dist-info/RECORD +66 -0
- zero_agent-0.1.0.dist-info/WHEEL +5 -0
- zero_agent-0.1.0.dist-info/licenses/LICENSE +21 -0
- zero_agent-0.1.0.dist-info/top_level.txt +2 -0
@@ -0,0 +1,269 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: zero-agent
|
3
|
+
Version: 0.1.0
|
4
|
+
Summary: A Research-Oriented Multi-Agent System Platform
|
5
|
+
Author-email: Zhimeng Guo <gzjz07@outlook.com>
|
6
|
+
License: MIT
|
7
|
+
Project-URL: Homepage, https://github.com/TimeLovercc/agentz
|
8
|
+
Project-URL: Repository, https://github.com/TimeLovercc/agentz
|
9
|
+
Project-URL: Documentation, https://github.com/TimeLovercc/agentz#readme
|
10
|
+
Project-URL: Bug Tracker, https://github.com/TimeLovercc/agentz/issues
|
11
|
+
Keywords: agent,multi-agent,ai,llm,research,machine-learning,autonomous-agents
|
12
|
+
Classifier: Development Status :: 3 - Alpha
|
13
|
+
Classifier: Intended Audience :: Developers
|
14
|
+
Classifier: Intended Audience :: Science/Research
|
15
|
+
Classifier: License :: OSI Approved :: MIT License
|
16
|
+
Classifier: Programming Language :: Python :: 3
|
17
|
+
Classifier: Programming Language :: Python :: 3.11
|
18
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
19
|
+
Requires-Python: >=3.11
|
20
|
+
Description-Content-Type: text/markdown
|
21
|
+
License-File: LICENSE
|
22
|
+
Requires-Dist: build>=1.3.0
|
23
|
+
Requires-Dist: google-generativeai>=0.8.5
|
24
|
+
Requires-Dist: ipdb>=0.13.13
|
25
|
+
Requires-Dist: litellm==1.76
|
26
|
+
Requires-Dist: loguru>=0.7.3
|
27
|
+
Requires-Dist: matplotlib>=3.10.6
|
28
|
+
Requires-Dist: numpy>=2.3.3
|
29
|
+
Requires-Dist: openai-agents>=0.3.2
|
30
|
+
Requires-Dist: pandas>=2.3.3
|
31
|
+
Requires-Dist: rich>=14.1.0
|
32
|
+
Requires-Dist: scikit-learn>=1.7.2
|
33
|
+
Requires-Dist: seaborn>=0.13.2
|
34
|
+
Requires-Dist: twine>=6.2.0
|
35
|
+
Requires-Dist: weave>=0.52.8
|
36
|
+
Dynamic: license-file
|
37
|
+
|
38
|
+
<div align="center">
|
39
|
+
|
40
|
+
# AgentZ: Agent from Zero
|
41
|
+
|
42
|
+
**A Research-Oriented Multi-Agent System Platform**
|
43
|
+
|
44
|
+
</div>
|
45
|
+
|
46
|
+
AgentZ is a minimal, extensible codebase for multi-agent systems research. Build intelligent agent workflows with minimal code while achieving strong baseline performance. The platform enables autonomous reasoning, experience learning, and dynamic tool creation - providing both a comparative baseline and production-ready foundation for multi-agent research.
|
47
|
+
|
48
|
+
## Features
|
49
|
+
|
50
|
+
- **🎯 Minimal Implementation** - Build new systems with just a few lines of code
|
51
|
+
- **🔄 Stateful Workflows** - Persistent memory and object management throughout agent lifecycle
|
52
|
+
- **📚 Experience Learning** - Agents improve over time through memory-based reasoning
|
53
|
+
- **🛠️ Dynamic Tool Creation** - Agents can generate and use custom tools on-demand
|
54
|
+
- **🧠 Autonomous Reasoning** - Built-in cognitive capabilities for complex multi-step tasks
|
55
|
+
- **⚙️ Config-Driven** - Easily modify behavior through configuration files
|
56
|
+
|
57
|
+
## Installation
|
58
|
+
|
59
|
+
This project uses [uv](https://docs.astral.sh/uv/) for fast, reliable package management.
|
60
|
+
|
61
|
+
### Install uv
|
62
|
+
|
63
|
+
```bash
|
64
|
+
# macOS/Linux
|
65
|
+
curl -LsSf https://astral.sh/uv/install.sh | sh
|
66
|
+
|
67
|
+
# Or via pip
|
68
|
+
pip install uv
|
69
|
+
```
|
70
|
+
|
71
|
+
See the [uv installation guide](https://docs.astral.sh/uv/getting-started/installation/) for more options.
|
72
|
+
|
73
|
+
### Setup Environment
|
74
|
+
|
75
|
+
```bash
|
76
|
+
# Clone the repository
|
77
|
+
git clone https://github.com/yourusername/agentz.git
|
78
|
+
cd agentz
|
79
|
+
|
80
|
+
# Sync dependencies
|
81
|
+
uv sync
|
82
|
+
```
|
83
|
+
|
84
|
+
## Quick Start
|
85
|
+
|
86
|
+
```python
|
87
|
+
from pipelines.data_scientist import DataScientistPipeline
|
88
|
+
|
89
|
+
pipe = DataScientistPipeline("pipelines/configs/data_science.yaml")
|
90
|
+
|
91
|
+
pipe.run_sync()
|
92
|
+
```
|
93
|
+
|
94
|
+
## Building Your Own System
|
95
|
+
|
96
|
+
### 1. Create a Custom Pipeline
|
97
|
+
|
98
|
+
Inherit from `BasePipeline` to create your own agent workflow:
|
99
|
+
|
100
|
+
```python
|
101
|
+
from pipelines.base import BasePipeline
|
102
|
+
|
103
|
+
|
104
|
+
class MyCustomPipeline(BasePipeline):
|
105
|
+
DEFAULT_CONFIG_PATH = "pipelines/configs/my_pipeline.yaml"
|
106
|
+
|
107
|
+
def __init__(self, config=None):
|
108
|
+
super().__init__(config)
|
109
|
+
# Add your custom initialization
|
110
|
+
|
111
|
+
async def run(self):
|
112
|
+
# Implement your workflow logic
|
113
|
+
pass
|
114
|
+
```
|
115
|
+
|
116
|
+
### 2. Add Custom Agents
|
117
|
+
|
118
|
+
Implement your agents following the standard interface:
|
119
|
+
|
120
|
+
```python
|
121
|
+
from agents import Agent
|
122
|
+
|
123
|
+
def create_my_agent(config):
|
124
|
+
return Agent(
|
125
|
+
name="my_agent",
|
126
|
+
instructions="Your agent instructions here",
|
127
|
+
model=config.main_model
|
128
|
+
)
|
129
|
+
```
|
130
|
+
|
131
|
+
### 3. Configure & Run
|
132
|
+
|
133
|
+
Create a config file and run your pipeline:
|
134
|
+
|
135
|
+
```python
|
136
|
+
pipe = MyCustomPipeline(
|
137
|
+
data_path="your_data.csv",
|
138
|
+
user_prompt="Your task description",
|
139
|
+
provider="gemini",
|
140
|
+
model="gemini-2.5-flash"
|
141
|
+
)
|
142
|
+
|
143
|
+
pipe.run_sync()
|
144
|
+
```
|
145
|
+
|
146
|
+
## Architecture
|
147
|
+
|
148
|
+
AgentZ is organised around a **central conversation state** and a set of declarative
|
149
|
+
flow specifications that describe how agents collaborate. The main
|
150
|
+
components you will interact with are:
|
151
|
+
|
152
|
+
- **`pipelines/`** – High level orchestration that wires agents together.
|
153
|
+
- **`agentz/agents/`** – Capability definitions for manager agents and tool agents.
|
154
|
+
- **`agentz/flow/`** – Flow primitives (`FlowRunner`, `FlowNode`, `IterationFlow`) that
|
155
|
+
execute declarative pipelines.
|
156
|
+
- **`agentz/memory/`** – Structured state management (`ConversationState`,
|
157
|
+
`ToolExecutionResult`, global memory helpers).
|
158
|
+
- **`examples/`** – Example scripts showing end-to-end usage.
|
159
|
+
|
160
|
+
```
|
161
|
+
agentz/
|
162
|
+
├── pipelines/
|
163
|
+
│ ├── base.py # Base pipeline with config management & helpers
|
164
|
+
│ ├── flow_runner.py # Declarative flow executor utilities
|
165
|
+
│ └── data_scientist.py # Reference research pipeline
|
166
|
+
├── agentz/
|
167
|
+
│ ├── agents/
|
168
|
+
│ │ ├── manager_agents/ # Observe, evaluate, routing, writer agents
|
169
|
+
│ │ └── tool_agents/ # Specialised tool executors
|
170
|
+
│ ├── flow/ # Flow node definitions and runtime objects
|
171
|
+
│ ├── memory/ # Conversation state & persistence utilities
|
172
|
+
│ ├── llm/ # LLM adapters and setup helpers
|
173
|
+
│ └── tools/ # Built-in tools
|
174
|
+
└── examples/
|
175
|
+
└── data_science.py # Example workflows
|
176
|
+
```
|
177
|
+
|
178
|
+
### Declarative Pipeline Flow
|
179
|
+
|
180
|
+
The reference `DataScientistPipeline` models an entire research workflow using
|
181
|
+
three building blocks:
|
182
|
+
|
183
|
+
1. **Central ConversationState** – A shared store that captures every field any
|
184
|
+
agent might read or write (iteration metadata, gaps, observations, tool
|
185
|
+
results, timing, final report, etc.). Each loop creates a new
|
186
|
+
`IterationRecord`, enabling partial updates and clean tracking of tool
|
187
|
+
outcomes.
|
188
|
+
2. **Structured IO Contracts** – Each agent step declares the Pydantic model it
|
189
|
+
expects and produces (for example `KnowledgeGapOutput` or
|
190
|
+
`AgentSelectionPlan`). Input builders map slices of `ConversationState` into
|
191
|
+
those models and output handlers merge the validated results back into the
|
192
|
+
central state.
|
193
|
+
3. **Declarative FlowRunner** – The pipeline defines an `IterationFlow` of
|
194
|
+
`FlowNode`s such as observe → evaluate → route → tools. Loop and termination
|
195
|
+
logic are expressed with predicates (`loop_condition`, `condition`), so the
|
196
|
+
executor can stop when evaluation marks `state.complete` or constraints are
|
197
|
+
reached. Finalisation steps (like the writer agent) run after the iteration
|
198
|
+
loop using the same structured IO.
|
199
|
+
|
200
|
+
Because the flow is declarative and all state is centralised, extending the
|
201
|
+
pipeline is as simple as adding a new node, output field, or tool capability—no
|
202
|
+
custom `run()` logic is required beyond sequencing the flow runner.
|
203
|
+
|
204
|
+
## Benchmarks
|
205
|
+
|
206
|
+
AgentZ has been verified on several benchmarks for multi-agent research:
|
207
|
+
|
208
|
+
- **Data Science Tasks**: State-of-the-art performance on automated ML pipelines
|
209
|
+
- **Complex Reasoning**: Competitive results on multi-step reasoning benchmarks
|
210
|
+
- **Tool Usage**: High accuracy in dynamic tool selection and execution
|
211
|
+
|
212
|
+
*Detailed benchmark results and comparisons coming soon.*
|
213
|
+
|
214
|
+
## Roadmap
|
215
|
+
|
216
|
+
- [x] Persistence Process - Stateful agent workflows
|
217
|
+
- [x] Experience Learning - Memory-based reasoning
|
218
|
+
- [x] Tool Design - Dynamic tool creation
|
219
|
+
- [ ] Workflow RAG - Retrieval-augmented generation for complex workflows
|
220
|
+
- [ ] MCPs - Model Context Protocol support for enhanced agent communication
|
221
|
+
|
222
|
+
## Key Design Principles
|
223
|
+
|
224
|
+
1. **Minimal Core** - Keep the base system simple and extensible
|
225
|
+
2. **Intelligent Defaults** - Provide strong baseline implementations
|
226
|
+
3. **Research-First** - Design for experimentation and comparison
|
227
|
+
4. **Modular Architecture** - Easy to swap components and test variations
|
228
|
+
5. **Production-Ready** - Scale from research prototypes to deployed systems
|
229
|
+
|
230
|
+
## Use Cases
|
231
|
+
|
232
|
+
- **Multi-Agent Research** - Baseline for comparing agent architectures
|
233
|
+
- **Automated Data Science** - End-to-end ML pipeline automation
|
234
|
+
- **Complex Task Decomposition** - Break down and solve multi-step problems
|
235
|
+
- **Tool-Using Agents** - Research on dynamic tool creation and usage
|
236
|
+
- **Agent Memory Systems** - Study persistence and experience learning
|
237
|
+
|
238
|
+
## Citation
|
239
|
+
|
240
|
+
If you use AgentZ in your research, please cite:
|
241
|
+
|
242
|
+
```bibtex
|
243
|
+
@software{agentz2025,
|
244
|
+
title={AgentZ: A Research-Oriented Multi-Agent System Platform},
|
245
|
+
author={Your Name},
|
246
|
+
year={2025},
|
247
|
+
url={https://github.com/yourusername/agentz}
|
248
|
+
}
|
249
|
+
```
|
250
|
+
|
251
|
+
## Contributing
|
252
|
+
|
253
|
+
We welcome contributions! AgentZ is designed to be a community resource for multi-agent research. Please open an issue or submit a pull request.
|
254
|
+
|
255
|
+
## License
|
256
|
+
|
257
|
+
[Your License Here]
|
258
|
+
|
259
|
+
## Acknowledgements
|
260
|
+
|
261
|
+
AgentZ is built with inspiration from the multi-agent systems research community. We thank the developers of various LLM frameworks and tools that make this work possible.
|
262
|
+
|
263
|
+
---
|
264
|
+
|
265
|
+
<div align="center">
|
266
|
+
|
267
|
+
**AgentZ**: Building intelligent agents from zero to hero 🚀
|
268
|
+
|
269
|
+
</div>
|
@@ -0,0 +1,66 @@
|
|
1
|
+
agentz/agent/base.py,sha256=YU_SRXJ3KV-rSWADpjJNVONm3uf_B0c4YnAsqm6ICwg,9986
|
2
|
+
agentz/artifacts/__init__.py,sha256=rKlnz1a9kNHfssKtLvCxMUH9jN4oezLRcHh2tWKb60Q,107
|
3
|
+
agentz/artifacts/artifact_writer.py,sha256=55gABvX8_5-sWHBwtV5FaxcwsHiqvY-G9MoOTY10uBM,17670
|
4
|
+
agentz/artifacts/reporter.py,sha256=aKEUy_7W1Jjto4k1UOT6TLhHhk431jGT6Ytw4j0jLJY,7084
|
5
|
+
agentz/artifacts/terminal_writer.py,sha256=EfvNL9blWCiuZz8EAGGCYQlCIYFmvng2aOoZAsm4Ojk,3310
|
6
|
+
agentz/context/__init__.py,sha256=v2uECoSmcUhdtiOVzfJnyLPoqu94tzlF84KEFEe2mYg,202
|
7
|
+
agentz/context/context.py,sha256=-RWvRfTKcXtqIqrwLuad6EePZWUOPQMsQRR4jl4oB_A,3534
|
8
|
+
agentz/context/conversation.py,sha256=G_rSBO3mi5rD8PSGmkh7m-Wb87XW8I-WxJIYS2RoP3M,7691
|
9
|
+
agentz/context/data_store.py,sha256=8E40xigsAI4k7iiedFIH8V5Ry0oZXMCRAN6HpUIV1rU,6082
|
10
|
+
agentz/llm/llm_setup.py,sha256=U7w-6kw058uxPDq8OXiAFu1P_eo8Wops40ghtyMSshk,6001
|
11
|
+
agentz/mcp/manager.py,sha256=snrQSvU8rcC1szOjrQWoHVHKiphtupX9fATMTcJVrQM,4849
|
12
|
+
agentz/mcp/patches.py,sha256=Vmo5AYDScIWn33QssP6Zxr3LbHnoSbv0IiSYz-_PwWE,2592
|
13
|
+
agentz/mcp/servers/chrome_devtools/server.py,sha256=-_q6lXLPVXZctU2qgPeoUZb1CFtDEPPl0CH71_D80IA,361
|
14
|
+
agentz/profiles/base.py,sha256=0gMFY3kiSoV3I6N2GCxHJzPXzrFFaw3n-IS4Oysbkf0,4441
|
15
|
+
agentz/profiles/data/data_analysis.py,sha256=Ns8E2pyjLGSWxNvjNGWdLhvI84whPi0N3JiprTw7yM4,1376
|
16
|
+
agentz/profiles/data/data_loader.py,sha256=dsHkBzEKc7a_pPPGOGBqdeE0Xvq_sVHp0iK3NZ-k-jU,1089
|
17
|
+
agentz/profiles/data/evaluation.py,sha256=Q9zHcHKZ0vPkK69bunr40_lSLFMoavi22wTlxtg-p3c,1504
|
18
|
+
agentz/profiles/data/model_training.py,sha256=UkCVsfD64iL4Q_Z2AV0FtIejkK9W34RS3L6JjK7ZgZ0,1584
|
19
|
+
agentz/profiles/data/preprocessing.py,sha256=tAVZZUdz6_FlEor1Y81YnZH57aS8WyMJMewU9AVcnEo,1626
|
20
|
+
agentz/profiles/data/visualization.py,sha256=2mnvyvBrloOOKqo050hn9z_g1O-GAk5CeRaZ74jMWgk,1633
|
21
|
+
agentz/profiles/manager/evaluate.py,sha256=l2gv_LYTBOmSkoIVGmlx1SEkCjrGIBh6HEUI0GvGanc,1946
|
22
|
+
agentz/profiles/manager/memory.py,sha256=eXYd_hI--KnOrRB1pkg0VWp4OSjD4wtKHPtH0ngiTBI,2501
|
23
|
+
agentz/profiles/manager/observe.py,sha256=Y9JlZFkRpzqgkAynkdvE3Hf8YrVAXZDs4LsJIOgLZCc,1615
|
24
|
+
agentz/profiles/manager/routing.py,sha256=M3pkR_Ric2uaNwSlOXfQ8OHeIdFhkPJMJLIShn4jJVw,2704
|
25
|
+
agentz/profiles/manager/writer.py,sha256=8yzCG_HmKMU42NxkPVnk-r7mKgjkX3zJMiDwfIyyzME,1863
|
26
|
+
agentz/profiles/mcp/browser.py,sha256=USFGzm3habnVEIqnGUSeRYhKhWbO0KHPuPUl1A-c0eU,625
|
27
|
+
agentz/profiles/mcp/chrome.py,sha256=DfiktKJqT2iGwLLWU1aQvOrOcOmEZCEqBmIpCAz3E1Q,618
|
28
|
+
agentz/profiles/mcp/notion.py,sha256=mSCE1ITZgn38th8UkfCeNWyXczM3N4CBve4e_h5MVuU,621
|
29
|
+
agentz/runner/__init__.py,sha256=es55WDHKWENMTuhRShWlKop800wr6fHGUEXnrABNgdw,2302
|
30
|
+
agentz/runner/base.py,sha256=4jKcMO4c6xu0QJfOKLodAbvRauPS17ygV6eGoHUTd1I,909
|
31
|
+
agentz/runner/executor.py,sha256=XAzThcpu_2zj3SG4hdrEdRPnd83wMAdrzXI7qoMxVjs,12302
|
32
|
+
agentz/runner/hooks.py,sha256=OglEkfgy1Yj8OA-smAGwEy7JltPUtrigE4jj-mHkeAU,3306
|
33
|
+
agentz/runner/iteration.py,sha256=X9gwdE2Ivrp1uG73Ky-QV3_pXam--7To1sBP9neUMOs,4542
|
34
|
+
agentz/runner/patterns.py,sha256=sv8IPvfaKQyxvi-iRNGJC-mJV6jdx9Gcl7duHizhHn0,7447
|
35
|
+
agentz/runner/tracker.py,sha256=3zIzHTleaI8k8sIbKzI5-60yMoTYRkLBTx7OISjgvMQ,6166
|
36
|
+
agentz/runner/utils.py,sha256=xgICIclYodAKTfdYvuY4RB0k-y1ihcGczu1_m4ASyLI,1292
|
37
|
+
agentz/runner/workflow.py,sha256=jHmGJSKU_TXjHdkiroKsEqN5RdnHuhMlo7y0EBxcYBM,8330
|
38
|
+
agentz/tools/__init__.py,sha256=CxJtpTcPHpA4106VlpiiAYgdlGLoEejOZWlR9NNSZ0k,379
|
39
|
+
agentz/tools/data_tools/__init__.py,sha256=nSEvokYw8h61iE6mbusOYWH0pNoOm3DmHDmmdf3eSgE,485
|
40
|
+
agentz/tools/data_tools/data_analysis.py,sha256=M-eZkr9WtaX9Eb6siuhA9TnKX-LYAJteICpJjhf2nSU,6592
|
41
|
+
agentz/tools/data_tools/data_loading.py,sha256=fGid76Vz3ayS-suNaKjO8eL-eKAzNsnR73qMpw3KE8c,3681
|
42
|
+
agentz/tools/data_tools/evaluation.py,sha256=mujpvk_LhnjnlMYcwQ7_rw_z_7pi-7vIB90VD6UozGI,7255
|
43
|
+
agentz/tools/data_tools/helpers.py,sha256=l14vbOrwa67zxwIVAnfEKkj20qxpEgYrEmPh6VE07Es,3903
|
44
|
+
agentz/tools/data_tools/model_training.py,sha256=G68ZqpdBfX40t1s2aF2dFMxP4hlp8RATUshUg7gyYC0,7934
|
45
|
+
agentz/tools/data_tools/preprocessing.py,sha256=FEQ9DdAy49GuwdfAT4o-yyQWSHxs3WESCd4Byouu5ks,9991
|
46
|
+
agentz/tools/data_tools/visualization.py,sha256=sVm8dPB6Obri_bjcfYYSatHgZqjLYSPojiBVsQafPU4,10966
|
47
|
+
agentz/utils/__init__.py,sha256=YKjsYeJZqxeBBOeMVTAaKMgblRzkE3MKDA22bYJuNtw,1518
|
48
|
+
agentz/utils/config.py,sha256=t_JvHhHAyJSduUi9gBogRXD1zXrVOPK4mwjCMUXLuP8,24118
|
49
|
+
agentz/utils/helpers.py,sha256=d03wracF2T7jaz1LCJ0Q7aN21X6aFG774EPFjE-B8DI,206
|
50
|
+
agentz/utils/parsers.py,sha256=lLAIYbLCLdqN9ER4Jc5ee41KO0EJgI1mTR50m-qsnSU,4911
|
51
|
+
agentz/utils/printer.py,sha256=0xG_ObfYFh3wbKH3ysT2dCLLUCl6Eg1Qnd9QJ6nxerw,19960
|
52
|
+
pipelines/base.py,sha256=YgKHOLiFkODdeTdPCBGFu4tkcgCvJ4-YbrNOXW64-YE,33357
|
53
|
+
pipelines/data_scientist.py,sha256=D6-9iqMd8UCYN4PNLXZiJ5Zwvn5YPq4NSBVqOZI7D7g,3553
|
54
|
+
pipelines/data_scientist_memory.py,sha256=SL1ZfikAxE26NUMXFClvagcWMp85FNRfef33UTCIjog,7021
|
55
|
+
pipelines/experience_learner.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
56
|
+
pipelines/prompt_generator.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
57
|
+
pipelines/simple.py,sha256=JBrFZlZCmFHFzvf9afjeOpqf1O7D4IaLf3cm91IR35U,2561
|
58
|
+
pipelines/simple_browser.py,sha256=vaqiU6hGc7r_7NsiLW1EFATabBBcrfzJEYy4q7FCoec,5180
|
59
|
+
pipelines/simple_chrome.py,sha256=L4Fua0fUckoN6u6e5o3l21QZipL-FakjswVNR0LM8AM,2415
|
60
|
+
pipelines/simple_notion.py,sha256=5HyLsotAAQyKq6YUzNnMyjFz_Ar8ewb8DhVarH-oULQ,3444
|
61
|
+
pipelines/tool_builder.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
62
|
+
zero_agent-0.1.0.dist-info/licenses/LICENSE,sha256=EEIv2C8nusNfEwOuJWmmC7X0fLziF7BlXEdDuQRB_NM,1068
|
63
|
+
zero_agent-0.1.0.dist-info/METADATA,sha256=A9GfeLETooJojrGENrZzzQ2OaPL7sc-YXV3yrp-5JKg,9244
|
64
|
+
zero_agent-0.1.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
65
|
+
zero_agent-0.1.0.dist-info/top_level.txt,sha256=4tj4T9doPJLNCS3txrtXoGgRmQynh0pN-01pfLX7-2c,17
|
66
|
+
zero_agent-0.1.0.dist-info/RECORD,,
|
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2025 Zhimeng Guo
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|