zenml-nightly 0.84.2.dev20250819__py3-none-any.whl → 0.84.2.dev20250821__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
zenml/VERSION CHANGED
@@ -1 +1 @@
1
- 0.84.2.dev20250819
1
+ 0.84.2.dev20250821
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: zenml-nightly
3
- Version: 0.84.2.dev20250819
3
+ Version: 0.84.2.dev20250821
4
4
  Summary: ZenML: Write production-ready ML code.
5
5
  License: Apache-2.0
6
6
  Keywords: machine learning,production,pipeline,mlops,devops
@@ -191,6 +191,9 @@ Description-Content-Type: text/markdown
191
191
 
192
192
  ---
193
193
 
194
+ ZenML is a unified MLOps framework that extends the battle-tested principles you rely on for classical ML to the new world of AI agents. It's one platform to develop, evaluate, and deploy your entire AI portfolio - from decision trees to complex multi-agent systems. By providing a single framework for your entire AI stack, ZenML enables developers across your organization to collaborate more effectively without maintaining separate toolchains for models and agents.
195
+
196
+
194
197
  ## 🚨 The Problem: MLOps Works for Models, But What About AI?
195
198
 
196
199
  ![No MLOps for modern AI](docs/book/.gitbook/assets/readme_problem.png)
@@ -283,6 +286,7 @@ if __name__ == "__main__":
283
286
  ```
284
287
 
285
288
  **🚀 [See the complete working example →](examples/agent_comparison/)**
289
+ Prefer a smaller end-to-end template? Check out the [Minimal Agent Production](examples/minimal_agent_production/) example — a lightweight document analysis service with pipelines, evaluation, and a simple web UI.
286
290
 
287
291
  **The Result:** A clear winner is selected based on data, not opinions. You have full lineage from the test data and agent versions to the final report and deployment decision.
288
292
 
@@ -415,6 +419,7 @@ The MCP (Model Context Protocol) integration transforms your ZenML metadata into
415
419
 
416
420
  The best way to learn about ZenML is through our comprehensive documentation and tutorials:
417
421
 
422
+ - **[Your First AI Pipeline](https://docs.zenml.io/your-first-ai-pipeline)** - Build and evaluate an AI service in minutes
418
423
  - **[Starter Guide](https://docs.zenml.io/user-guides/starter-guide)** - From zero to production in 30 minutes
419
424
  - **[LLMOps Guide](https://docs.zenml.io/user-guides/llmops-guide)** - Specific patterns for LLM applications
420
425
  - **[SDK Reference](https://sdkdocs.zenml.io/)** - Complete SDK reference
@@ -426,10 +431,11 @@ For visual learners, start with this 11-minute introduction:
426
431
  ### 📖 Production Examples
427
432
 
428
433
  1. **[Agent Architecture Comparison](examples/agent_comparison/)** - Compare AI agents with LangGraph workflows, LiteLLM integration, and automatic visualizations via custom materializers
429
- 2. **[E2E Batch Inference](examples/e2e/)** - Complete MLOps pipeline with feature engineering
430
- 3. **[LLM RAG Pipeline](https://github.com/zenml-io/zenml-projects/tree/main/llm-complete-guide)** - Production RAG with evaluation loops
431
- 4. **[Agentic Workflow (Deep Research)](https://github.com/zenml-io/zenml-projects/tree/main/deep_research)** - Orchestrate your agents with ZenML
432
- 5. **[Fine-tuning Pipeline](https://github.com/zenml-io/zenml-projects/tree/main/gamesense)** - Fine-tune and deploy LLMs
434
+ 2. **[Minimal Agent Production](examples/minimal_agent_production/)** - Document analysis service with pipelines, evaluation, and web UI
435
+ 3. **[E2E Batch Inference](examples/e2e/)** - Complete MLOps pipeline with feature engineering
436
+ 4. **[LLM RAG Pipeline](https://github.com/zenml-io/zenml-projects/tree/main/llm-complete-guide)** - Production RAG with evaluation loops
437
+ 5. **[Agentic Workflow (Deep Research)](https://github.com/zenml-io/zenml-projects/tree/main/deep_research)** - Orchestrate your agents with ZenML
438
+ 6. **[Fine-tuning Pipeline](https://github.com/zenml-io/zenml-projects/tree/main/gamesense)** - Fine-tune and deploy LLMs
433
439
 
434
440
  ### 🏢 Deployment Options
435
441
 
@@ -1,5 +1,5 @@
1
1
  zenml/README.md,sha256=827dekbOWAs1BpW7VF1a4d7EbwPbjwccX-2zdXBENZo,1777
2
- zenml/VERSION,sha256=WcPVl4zgCwm1zbExQf9c4sJiAI_ZE9UQraEYW56Gl6I,19
2
+ zenml/VERSION,sha256=BU1fQtpgvlUdd-WqGfLOlV5VSASH_i-rWYm1p9NHdKY,19
3
3
  zenml/__init__.py,sha256=r7JUg2SVDf_dPhS7iU6vudKusEqK4ics7_jFMZhq0o4,2731
4
4
  zenml/actions/__init__.py,sha256=mrt6wPo73iKRxK754_NqsGyJ3buW7RnVeIGXr1xEw8Y,681
5
5
  zenml/actions/base_action.py,sha256=UcaHev6BTuLDwuswnyaPjdA8AgUqB5xPZ-lRtuvf2FU,25553
@@ -1355,8 +1355,8 @@ zenml/zen_stores/secrets_stores/sql_secrets_store.py,sha256=LPFW757WCJLP1S8vrvjs
1355
1355
  zenml/zen_stores/sql_zen_store.py,sha256=-3zeByIUjIvsx3564O2gJ463512QkZl04okL3eB-nJs,491568
1356
1356
  zenml/zen_stores/template_utils.py,sha256=iCXrXpqzVTY7roqop4Eh9J7DmLW6PQeILZexmw_l3b8,10074
1357
1357
  zenml/zen_stores/zen_store_interface.py,sha256=weiSULdI9AsbCE10a5TcwtybX-BJs9hKhjPJnTapWv4,93023
1358
- zenml_nightly-0.84.2.dev20250819.dist-info/LICENSE,sha256=wbnfEnXnafPbqwANHkV6LUsPKOtdpsd-SNw37rogLtc,11359
1359
- zenml_nightly-0.84.2.dev20250819.dist-info/METADATA,sha256=g0QdBvjQVzxHtGn1PR2Vnjqlc-Km_8RnqknYiGZjTvo,24303
1360
- zenml_nightly-0.84.2.dev20250819.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
1361
- zenml_nightly-0.84.2.dev20250819.dist-info/entry_points.txt,sha256=QK3ETQE0YswAM2mWypNMOv8TLtr7EjnqAFq1br_jEFE,43
1362
- zenml_nightly-0.84.2.dev20250819.dist-info/RECORD,,
1358
+ zenml_nightly-0.84.2.dev20250821.dist-info/LICENSE,sha256=wbnfEnXnafPbqwANHkV6LUsPKOtdpsd-SNw37rogLtc,11359
1359
+ zenml_nightly-0.84.2.dev20250821.dist-info/METADATA,sha256=odTEr5qNuiuneU0oO5mGutzgwLgkydiTCv6stSAs0GM,25251
1360
+ zenml_nightly-0.84.2.dev20250821.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
1361
+ zenml_nightly-0.84.2.dev20250821.dist-info/entry_points.txt,sha256=QK3ETQE0YswAM2mWypNMOv8TLtr7EjnqAFq1br_jEFE,43
1362
+ zenml_nightly-0.84.2.dev20250821.dist-info/RECORD,,