zenml-nightly 0.83.0.dev20250611__py3-none-any.whl → 0.83.0.dev20250613__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. zenml/VERSION +1 -1
  2. zenml/artifacts/utils.py +2 -2
  3. zenml/cli/__init__.py +18 -18
  4. zenml/cli/base.py +1 -1
  5. zenml/cli/server.py +1 -1
  6. zenml/cli/stack.py +2 -2
  7. zenml/client.py +3 -1
  8. zenml/config/compiler.py +1 -1
  9. zenml/config/secret_reference_mixin.py +1 -1
  10. zenml/integrations/aws/flavors/sagemaker_orchestrator_flavor.py +1 -1
  11. zenml/integrations/aws/orchestrators/sagemaker_orchestrator.py +1 -1
  12. zenml/integrations/gcp/orchestrators/vertex_orchestrator.py +1 -1
  13. zenml/integrations/neptune/experiment_trackers/run_state.py +1 -1
  14. zenml/materializers/base_materializer.py +3 -3
  15. zenml/materializers/cloudpickle_materializer.py +1 -1
  16. zenml/model/utils.py +1 -1
  17. zenml/orchestrators/base_orchestrator.py +1 -1
  18. zenml/orchestrators/utils.py +1 -1
  19. zenml/pipelines/pipeline_definition.py +1 -1
  20. zenml/service_connectors/service_connector_utils.py +3 -3
  21. zenml/stack/stack_component.py +1 -1
  22. zenml/steps/entrypoint_function_utils.py +1 -1
  23. zenml/utils/tag_utils.py +185 -31
  24. zenml/zen_stores/rest_zen_store.py +1 -1
  25. zenml/zen_stores/sql_zen_store.py +35 -16
  26. {zenml_nightly-0.83.0.dev20250611.dist-info → zenml_nightly-0.83.0.dev20250613.dist-info}/METADATA +1 -1
  27. {zenml_nightly-0.83.0.dev20250611.dist-info → zenml_nightly-0.83.0.dev20250613.dist-info}/RECORD +30 -30
  28. {zenml_nightly-0.83.0.dev20250611.dist-info → zenml_nightly-0.83.0.dev20250613.dist-info}/LICENSE +0 -0
  29. {zenml_nightly-0.83.0.dev20250611.dist-info → zenml_nightly-0.83.0.dev20250613.dist-info}/WHEEL +0 -0
  30. {zenml_nightly-0.83.0.dev20250611.dist-info → zenml_nightly-0.83.0.dev20250613.dist-info}/entry_points.txt +0 -0
zenml/VERSION CHANGED
@@ -1 +1 @@
1
- 0.83.0.dev20250611
1
+ 0.83.0.dev20250613
zenml/artifacts/utils.py CHANGED
@@ -852,7 +852,7 @@ def _load_artifact_store(
852
852
  StackComponent.from_model(artifact_store_model),
853
853
  )
854
854
  except ImportError:
855
- link = "https://docs.zenml.io/stack-components/artifact-stores/custom#enabling-artifact-visualizations-with-custom-artifact-stores"
855
+ link = "https://docs.zenml.io/stacks/stack-components/artifact-stores/custom#enabling-artifact-visualizations-with-custom-artifact-stores"
856
856
  raise NotImplementedError(
857
857
  f"Artifact store '{artifact_store_model.name}' could not be "
858
858
  f"instantiated. This is likely because the artifact store's "
@@ -950,7 +950,7 @@ def _load_file_from_artifact_store(
950
950
  raise e
951
951
  except Exception as e:
952
952
  logger.exception(e)
953
- link = "https://docs.zenml.io/stack-components/artifact-stores/custom#enabling-artifact-visualizations-with-custom-artifact-stores"
953
+ link = "https://docs.zenml.io/stacks/stack-components/artifact-stores/custom#enabling-artifact-visualizations-with-custom-artifact-stores"
954
954
  raise NotImplementedError(
955
955
  f"File '{uri}' could not be loaded because the underlying artifact "
956
956
  f"store '{artifact_store.name}' could not open the file. This is "
zenml/cli/__init__.py CHANGED
@@ -80,7 +80,7 @@ You can also pass in a directory path manually using the
80
80
  zenml init --path /path/to/dir
81
81
  ```
82
82
 
83
- If you wish to use one of [the available ZenML project templates](https://docs.zenml.io/how-to/project-setup-and-management/collaborate-with-team/project-templates)
83
+ If you wish to use one of [the available ZenML project templates](https://docs.zenml.io/user-guides/best-practices/project-templates)
84
84
  to generate a ready-to-use project scaffold in your repository, you can do so by
85
85
  passing the ``--template`` option:
86
86
 
@@ -232,7 +232,7 @@ and `and` keywords.
232
232
  Artifact Stores
233
233
  ---------------
234
234
 
235
- In ZenML, [the artifact store](https://docs.zenml.io/stack-components/artifact-stores)
235
+ In ZenML, [the artifact store](https://docs.zenml.io/stacks/stack-components/artifact-stores)
236
236
  is where all the inputs and outputs of your pipeline steps are stored. By
237
237
  default, ZenML initializes your repository with an artifact store with
238
238
  everything kept on your local machine. You can get a better understanding
@@ -327,7 +327,7 @@ zenml artifact-store --help
327
327
  Orchestrators
328
328
  -------------
329
329
 
330
- An [orchestrator](https://docs.zenml.io/stack-components/orchestrators)
330
+ An [orchestrator](https://docs.zenml.io/stacks/stack-components/orchestrators)
331
331
  is a special kind of backend that manages the running of each step of the
332
332
  pipeline. Orchestrators administer the actual pipeline runs. By default,
333
333
  ZenML initializes your repository with an orchestrator that runs everything
@@ -422,7 +422,7 @@ zenml orchestrators --help
422
422
  Container Registries
423
423
  --------------------
424
424
 
425
- [The container registry](https://docs.zenml.io/stack-components/container-registries)
425
+ [The container registry](https://docs.zenml.io/stacks/stack-components/container-registries)
426
426
  is where all the images that are used by a container-based orchestrator are
427
427
  stored. To get a better understanding regarding container registries, use
428
428
  the command:
@@ -517,7 +517,7 @@ zenml container-registry --help
517
517
  Data Validators
518
518
  ---------------
519
519
 
520
- In ZenML, [data validators](https://docs.zenml.io/stack-components/data-validators)
520
+ In ZenML, [data validators](https://docs.zenml.io/stacks/stack-components/data-validators)
521
521
  help you profile and validate your data.
522
522
 
523
523
  By default, a default ZenML local stack will not register a data validator. If
@@ -604,7 +604,7 @@ zenml data-validator --help
604
604
  Experiment Trackers
605
605
  -------------------
606
606
 
607
- [Experiment trackers](https://docs.zenml.io/stack-components/experiment-trackers)
607
+ [Experiment trackers](https://docs.zenml.io/stacks/stack-components/experiment-trackers)
608
608
  let you track your ML experiments by logging the parameters
609
609
  and allow you to compare between different runs. To get a better
610
610
  understanding regarding experiment trackers, use the command:
@@ -700,7 +700,7 @@ zenml experiment-tracker --help
700
700
  Model Deployers
701
701
  ---------------
702
702
 
703
- [Model deployers](https://docs.zenml.io/stack-components/model-deployers)
703
+ [Model deployers](https://docs.zenml.io/stacks/stack-components/model-deployers)
704
704
  are stack components responsible for online model serving. They are responsible
705
705
  for deploying models to a remote server. Model deployers also act as a registry
706
706
  for models that are served with ZenML. To get a better understanding regarding
@@ -837,7 +837,7 @@ zenml model-deployer --help
837
837
  Step Operators
838
838
  --------------
839
839
 
840
- [Step operators](https://docs.zenml.io/stack-components/step-operators)
840
+ [Step operators](https://docs.zenml.io/stacks/stack-components/step-operators)
841
841
  allow you to run individual steps in a custom environment different from the
842
842
  default one used by your active orchestrator. One example use-case is to run a
843
843
  training step of your pipeline in an environment with GPUs available. To get
@@ -932,7 +932,7 @@ zenml step-operator --help
932
932
  Alerters
933
933
  --------
934
934
 
935
- In ZenML, [alerters](https://docs.zenml.io/stack-components/alerters)
935
+ In ZenML, [alerters](https://docs.zenml.io/stacks/stack-components/alerters)
936
936
  allow you to send alerts from within your pipeline.
937
937
 
938
938
  By default, a default ZenML local stack will not register an alerter. If
@@ -1017,7 +1017,7 @@ zenml alerter --help
1017
1017
  Feature Stores
1018
1018
  --------------
1019
1019
 
1020
- [Feature stores](https://docs.zenml.io/stack-components/feature-stores)
1020
+ [Feature stores](https://docs.zenml.io/stacks/stack-components/feature-stores)
1021
1021
  allow data teams to serve data via an offline store and an online low-latency
1022
1022
  store where data is kept in sync between the two. To get a better understanding
1023
1023
  regarding feature stores, use the command:
@@ -1114,7 +1114,7 @@ zenml feature-store --help
1114
1114
  Annotators
1115
1115
  ----------
1116
1116
 
1117
- [Annotators](https://docs.zenml.io/stack-components/annotators)
1117
+ [Annotators](https://docs.zenml.io/stacks/stack-components/annotators)
1118
1118
  enable the use of data annotation as part of your ZenML stack and pipelines.
1119
1119
 
1120
1120
  By default, a default ZenML local stack will not register an annotator. If
@@ -1206,7 +1206,7 @@ zenml annotator --help
1206
1206
  Image Builders
1207
1207
  --------------
1208
1208
 
1209
- In ZenML, [image builders](https://docs.zenml.io/stack-components/image-builders)
1209
+ In ZenML, [image builders](https://docs.zenml.io/stacks/stack-components/image-builders)
1210
1210
  allow you to build container images such
1211
1211
  that your machine-learning pipelines and steps can be executed in remote
1212
1212
  environments.
@@ -1295,7 +1295,7 @@ zenml image-builder --help
1295
1295
  Model Registries
1296
1296
  ----------------
1297
1297
 
1298
- [Model registries](https://docs.zenml.io/stack-components/model-registries)
1298
+ [Model registries](https://docs.zenml.io/stacks/stack-components/model-registries)
1299
1299
  are centralized repositories that facilitate the collaboration and management
1300
1300
  of machine learning models. To get a better understanding regarding model
1301
1301
  registries as a concept, use the command:
@@ -1985,7 +1985,7 @@ Secrets management
1985
1985
  ------------------
1986
1986
 
1987
1987
  ZenML offers a way to [securely store secrets associated with your other
1988
- stack components and infrastructure](https://docs.zenml.io/getting-started/deploying-zenml/secret-management).
1988
+ stack components and infrastructure](https://docs.zenml.io/deploying-zenml/deploying-zenml/secret-management).
1989
1989
  A ZenML Secret is a collection or grouping of key-value pairs stored by the
1990
1990
  ZenML secrets store. ZenML Secrets are identified by a unique name which
1991
1991
  allows you to fetch or reference them in your pipelines and stacks.
@@ -2082,7 +2082,7 @@ challenge in configuring uninterrupted, secure access to infrastructure
2082
2082
  resources. In ZenML, Service Connectors streamline this process by abstracting
2083
2083
  away the complexity of authentication and help you connect your stack to your
2084
2084
  resources. You can find the full docs on the ZenML service connectors
2085
- [here](https://docs.zenml.io/how-to/infrastructure-deployment/auth-management).
2085
+ [here](https://docs.zenml.io/stacks/service-connectors/auth-management).
2086
2086
 
2087
2087
  The ZenML CLI features a variety of commands to help you manage your service
2088
2088
  connectors. First of all, to explore all the types of service connectors
@@ -2112,7 +2112,7 @@ zenml service-connector register SERVICE_CONNECTOR_NAME \
2112
2112
  ```
2113
2113
 
2114
2114
  For more details on how to create a service connector, please refer to our
2115
- [docs](https://docs.zenml.io/how-to/infrastructure-deployment/auth-management).
2115
+ [docs](https://docs.zenml.io/stacks/service-connectors/auth-management).
2116
2116
 
2117
2117
  To check if your service connector is registered properly, you can `verify` it.
2118
2118
  By doing this, you can both check if it is configured correctly and also, you
@@ -2366,7 +2366,7 @@ defining the pipeline is not in your current directory, the module path consists
2366
2366
  of the full path to the file, separated by dots, e.g.
2367
2367
  `some_directory.some_file.my_pipeline`.
2368
2368
 
2369
- To [build Docker images for your pipeline](https://docs.zenml.io/how-to/infrastructure-deployment/customize-docker-builds)
2369
+ To [build Docker images for your pipeline](https://docs.zenml.io/concepts/containerization)
2370
2370
  without actually running the pipeline, use:
2371
2371
 
2372
2372
  ```bash
@@ -2429,7 +2429,7 @@ Tagging your resources with ZenML
2429
2429
  ---------------------------------
2430
2430
 
2431
2431
  When you are using ZenML, you can [use tags to organize and categorize your
2432
- assets](https://docs.zenml.io/how-to/handle-data-artifacts/tagging).
2432
+ assets](https://docs.zenml.io/concepts/tags).
2433
2433
  This way, you can streamline your workflows and enhance the discoverability of
2434
2434
  your resources more easily.
2435
2435
 
zenml/cli/base.py CHANGED
@@ -264,7 +264,7 @@ def init(
264
264
  f"will only take effect when you're running ZenML from the initialized "
265
265
  f"repository root, or from a subdirectory. For more information on "
266
266
  f"repositories and configurations, please visit "
267
- f"https://docs.zenml.io/user-guides/production-guide/understand-stacks."
267
+ f"https://docs.zenml.io/user-guides/production-guide/understand-stacks"
268
268
  )
269
269
 
270
270
 
zenml/cli/server.py CHANGED
@@ -413,7 +413,7 @@ def connect(
413
413
  "filesystem and is no longer supported. The web login workflow will "
414
414
  "be used instead. An alternative for non-interactive environments "
415
415
  "is to create and use a service account API key (see "
416
- "https://docs.zenml.io/how-to/manage-zenml-server/connecting-to-zenml/connect-with-a-service-account "
416
+ "https://docs.zenml.io/deploying-zenml/connecting-to-zenml/connect-with-a-service-account "
417
417
  "for more information)."
418
418
  )
419
419
 
zenml/cli/stack.py CHANGED
@@ -276,7 +276,7 @@ def register_stack(
276
276
  "ZenML needs to be accessible from the cloud provider to allow "
277
277
  "the stack and its components to be registered automatically. "
278
278
  "Please deploy ZenML in a remote environment as described in "
279
- "the documentation: https://docs.zenml.io/getting-started/deploying-zenml "
279
+ "the documentation: https://docs.zenml.io/deploying-zenml/deploying-zenml "
280
280
  "or use a managed ZenML Pro server instance for quick access "
281
281
  "to this feature and more: https://www.zenml.io/pro"
282
282
  )
@@ -1515,7 +1515,7 @@ def deploy(
1515
1515
  "ZenML needs to be accessible from the cloud provider to allow the "
1516
1516
  "stack and its components to be registered automatically. "
1517
1517
  "Please deploy ZenML in a remote environment as described in the "
1518
- "documentation: https://docs.zenml.io/getting-started/deploying-zenml "
1518
+ "documentation: https://docs.zenml.io/deploying-zenml/deploying-zenml "
1519
1519
  "or use a managed ZenML Pro server instance for quick access to "
1520
1520
  "this feature and more: https://www.zenml.io/pro"
1521
1521
  )
zenml/client.py CHANGED
@@ -3542,7 +3542,9 @@ class Client(metaclass=ClientMetaClass):
3542
3542
  """
3543
3543
  return self._get_entity_by_id_or_name_or_prefix(
3544
3544
  get_method=self.zen_store.get_run_template,
3545
- list_method=self.list_run_templates,
3545
+ list_method=functools.partial(
3546
+ self.list_run_templates, hidden=None
3547
+ ),
3546
3548
  name_id_or_prefix=name_id_or_prefix,
3547
3549
  allow_name_prefix_match=False,
3548
3550
  project=project,
zenml/config/compiler.py CHANGED
@@ -598,7 +598,7 @@ class Compiler:
598
598
  f"no steps. Please make sure that your steps are decorated "
599
599
  "with `@step` and that at least one step is called within the "
600
600
  "pipeline. For more information, see "
601
- "https://docs.zenml.io/user-guides/starter-guide."
601
+ "https://docs.zenml.io/user-guides/starter-guide"
602
602
  )
603
603
 
604
604
  additional_spec_args: Dict[str, Any] = {
@@ -66,7 +66,7 @@ class SecretReferenceMixin(BaseModel):
66
66
  "but future versions of ZenML will require you to pass "
67
67
  "in sensitive information as secrets. Check out the "
68
68
  "documentation on how to configure values with secrets "
69
- "here: https://docs.zenml.io/getting-started/deploying-zenml/secret-management"
69
+ "here: https://docs.zenml.io/deploying-zenml/deploying-zenml/secret-management"
70
70
  )
71
71
  continue
72
72
 
@@ -190,7 +190,7 @@ class SagemakerOrchestratorConfig(
190
190
  scheduler_role: The ARN of the IAM role that will be assumed by
191
191
  the EventBridge service to launch Sagemaker pipelines
192
192
  (For more details regarding the required permissions, please check:
193
- https://docs.zenml.io/stack-components/orchestrators/sagemaker#required-iam-permissions-for-schedules)
193
+ https://docs.zenml.io/stacks/stack-components/orchestrators/sagemaker#required-iam-permissions-for-schedules)
194
194
  aws_access_key_id: The AWS access key ID to use to authenticate to AWS.
195
195
  If not provided, the value from the default AWS config will be used.
196
196
  aws_secret_access_key: The AWS secret access key to use to authenticate
@@ -693,7 +693,7 @@ class SagemakerOrchestrator(ContainerizedOrchestrator):
693
693
  "your client side credentials that you are "
694
694
  "is not configured correctly to schedule sagemaker "
695
695
  "pipelines. For more information, please check:"
696
- "https://docs.zenml.io/stack-components/orchestrators/sagemaker#required-iam-permissions-for-schedules"
696
+ "https://docs.zenml.io/stacks/stack-components/orchestrators/sagemaker#required-iam-permissions-for-schedules"
697
697
  )
698
698
  else:
699
699
  scheduler_role_arn = self.config.scheduler_role
@@ -913,7 +913,7 @@ class VertexOrchestrator(ContainerizedOrchestrator, GoogleCredentialsMixin):
913
913
  "set or set to 0. The accelerator type will be ignored. "
914
914
  "To fix this warning, either remove the specified "
915
915
  "accelerator type or set the `gpu_count` using the "
916
- "ResourceSettings (https://docs.zenml.io/how-to/advanced-topics/training-with-gpus)."
916
+ "ResourceSettings (https://docs.zenml.io/user-guides/tutorial/distributed-training)."
917
917
  )
918
918
 
919
919
  return dynamic_component
@@ -171,7 +171,7 @@ def get_neptune_run() -> "Run":
171
171
  "Unable to get neptune run: The experiment tracker has not been "
172
172
  "initialized. To solve this, make sure you use the experiment "
173
173
  "tracker in your step. See "
174
- "https://docs.zenml.io/stack-components/experiment-trackers/neptune#how-do-you-use-it "
174
+ "https://docs.zenml.io/stacks/stack-components/experiment-trackers/neptune#how-do-you-use-it "
175
175
  "for more information."
176
176
  )
177
177
 
@@ -68,7 +68,7 @@ class BaseMaterializerMeta(type):
68
68
  f"Invalid materializer class '{name}'. When creating a "
69
69
  f"custom materializer, make sure to specify at least one "
70
70
  f"type in its ASSOCIATED_TYPES class variable.",
71
- url="https://docs.zenml.io/how-to/handle-data-artifacts/handle-custom-data-types",
71
+ url="https://docs.zenml.io/concepts/artifacts/materializers",
72
72
  )
73
73
 
74
74
  # Validate associated artifact type.
@@ -83,7 +83,7 @@ class BaseMaterializerMeta(type):
83
83
  f"custom materializer, make sure to specify a valid "
84
84
  f"artifact type in its ASSOCIATED_ARTIFACT_TYPE class "
85
85
  f"variable.",
86
- url="https://docs.zenml.io/how-to/handle-data-artifacts/handle-custom-data-types",
86
+ url="https://docs.zenml.io/concepts/artifacts/materializers",
87
87
  )
88
88
 
89
89
  # Validate associated data types.
@@ -92,7 +92,7 @@ class BaseMaterializerMeta(type):
92
92
  raise MaterializerInterfaceError(
93
93
  f"Associated type {associated_type} for materializer "
94
94
  f"{name} is not a class.",
95
- url="https://docs.zenml.io/how-to/handle-data-artifacts/handle-custom-data-types",
95
+ url="https://docs.zenml.io/concepts/artifacts/materializers",
96
96
  )
97
97
 
98
98
  # Register the materializer.
@@ -102,7 +102,7 @@ class CloudpickleMaterializer(BaseMaterializer):
102
102
  "the artifacts cannot be loaded when running with a different "
103
103
  "Python version. Please consider implementing a custom "
104
104
  f"materializer for type `{type(data)}` according to the "
105
- "instructions at https://docs.zenml.io/how-to/handle-data-artifacts/handle-custom-data-types"
105
+ "instructions at https://docs.zenml.io/concepts/artifacts/materializers"
106
106
  )
107
107
 
108
108
  # save python version for validation on loading
zenml/model/utils.py CHANGED
@@ -58,7 +58,7 @@ def log_model_metadata(
58
58
  "The `log_model_metadata` function is deprecated and will soon be "
59
59
  "removed. Instead, you can consider using: "
60
60
  "`log_metadata(metadata={...}, infer_model=True)` instead. For more "
61
- "info: https://docs.zenml.io/how-to/model-management-metrics/track-metrics-metadata/attach-metadata-to-a-model"
61
+ "info: https://docs.zenml.io/concepts/metadata#attaching-metadata-to-models"
62
62
  )
63
63
 
64
64
  from zenml import log_metadata
@@ -61,7 +61,7 @@ class BaseOrchestratorConfig(StackComponentConfig):
61
61
  "The 'custom_docker_base_image_name' field has been "
62
62
  "deprecated. To use a custom base container image with your "
63
63
  "orchestrators, please use the DockerSettings in your "
64
- "pipeline (see https://docs.zenml.io/how-to/infrastructure-deployment/customize-docker-builds)."
64
+ "pipeline (see https://docs.zenml.io/concepts/containerization)."
65
65
  )
66
66
 
67
67
  return data
@@ -182,7 +182,7 @@ def get_config_environment_vars(
182
182
  "service account API key to authenticate to the ZenML "
183
183
  "server instead of your regular user account. For more "
184
184
  "information, see "
185
- "https://docs.zenml.io/how-to/manage-zenml-server/connecting-to-zenml/connect-with-a-service-account"
185
+ "https://docs.zenml.io/deploying-zenml/connecting-to-zenml/connect-with-a-service-account"
186
186
  )
187
187
 
188
188
  # The schedule, pipeline run or step run credentials are scoped to
@@ -686,7 +686,7 @@ To avoid this consider setting pipeline parameters only in one place (config or
686
686
  f"Stack {stack.name} does not support scheduling. "
687
687
  "Not all orchestrator types support scheduling, "
688
688
  "kindly consult with "
689
- "https://docs.zenml.io/how-to/build-pipelines/schedule-a-pipeline "
689
+ "https://docs.zenml.io/concepts/steps_and_pipelines/scheduling "
690
690
  "for details."
691
691
  )
692
692
  if schedule.name:
@@ -60,9 +60,9 @@ def _raise_specific_cloud_exception_if_needed(
60
60
  orchestrators: List[ResourcesInfo],
61
61
  container_registries: List[ResourcesInfo],
62
62
  ) -> None:
63
- AWS_DOCS = "https://docs.zenml.io/how-to/infrastructure-deployment/auth-management/aws-service-connector"
64
- GCP_DOCS = "https://docs.zenml.io/how-to/infrastructure-deployment/auth-management/gcp-service-connector"
65
- AZURE_DOCS = "https://docs.zenml.io/how-to/infrastructure-deployment/auth-management/azure-service-connector"
63
+ AWS_DOCS = "https://docs.zenml.io/stacks/service-connectors/connector-types/aws-service-connector"
64
+ GCP_DOCS = "https://docs.zenml.io/stacks/service-connectors/connector-types/gcp-service-connector"
65
+ AZURE_DOCS = "https://docs.zenml.io/stacks/service-connectors/connector-types/azure-service-connector"
66
66
 
67
67
  if not artifact_stores:
68
68
  error_msg = (
@@ -106,7 +106,7 @@ class StackComponentConfig(BaseModel, ABC):
106
106
  "in sensitive information as secrets. Check out the "
107
107
  "documentation on how to configure your stack "
108
108
  "components with secrets here: "
109
- "https://docs.zenml.io/getting-started/deploying-zenml/secret-management"
109
+ "https://docs.zenml.io/deploying-zenml/deploying-zenml/secret-management"
110
110
  )
111
111
  continue
112
112
 
@@ -83,7 +83,7 @@ class StepArtifact:
83
83
  "you're trying to unpack the return value of your step but the "
84
84
  "step only returns a single artifact. For more information on how "
85
85
  "to add type annotations to your step to indicate multiple "
86
- "artifacts visit https://docs.zenml.io/how-to/build-pipelines/step-output-typing-and-annotation#type-annotations."
86
+ "artifacts visit https://docs.zenml.io/concepts/steps_and_pipelines#multiple-return-values."
87
87
  )
88
88
 
89
89
 
zenml/utils/tag_utils.py CHANGED
@@ -44,7 +44,7 @@ add_tags(tags=[...], run_template=...)
44
44
  # Manual tagging to an artifact
45
45
  add_tags(tags=[...], artifact=...)
46
46
 
47
- # Automatic tagging to an artifact version(within a step)
47
+ # Automatic tagging to an artifact version (within a step)
48
48
  add_tags(tags=[...], infer_artifact=True) # step with single output
49
49
  add_tags(tags=[...], artifact_name=..., infer_artifact=True) # specific output of a step
50
50
 
@@ -148,7 +148,7 @@ def add_tags(
148
148
  *,
149
149
  tags: List[Union[str, Tag]],
150
150
  artifact_name: str,
151
- artifact_version: Optional[str] = None,
151
+ artifact_version: str,
152
152
  ) -> None: ...
153
153
 
154
154
 
@@ -191,7 +191,7 @@ def add_tags(
191
191
  artifact_version_id: Optional[UUID] = None,
192
192
  artifact_name: Optional[str] = None,
193
193
  artifact_version: Optional[str] = None,
194
- infer_artifact: bool = False,
194
+ infer_artifact: Optional[bool] = None,
195
195
  ) -> None:
196
196
  """Add tags to various resource types in a generalized way.
197
197
 
@@ -220,19 +220,52 @@ def add_tags(
220
220
  resource_type = None
221
221
 
222
222
  # Tag a pipeline
223
- if pipeline is not None:
223
+ if pipeline is not None and all(
224
+ v is None
225
+ for v in [
226
+ run,
227
+ run_template,
228
+ artifact,
229
+ artifact_version_id,
230
+ artifact_name,
231
+ artifact_version,
232
+ infer_artifact,
233
+ ]
234
+ ):
224
235
  pipeline_model = client.get_pipeline(name_id_or_prefix=pipeline)
225
236
  resource_id = pipeline_model.id
226
237
  resource_type = TaggableResourceTypes.PIPELINE
227
238
 
228
239
  # Tag a run by ID
229
- elif run is not None:
240
+ elif run is not None and all(
241
+ v is None
242
+ for v in [
243
+ pipeline,
244
+ run_template,
245
+ artifact,
246
+ artifact_version_id,
247
+ artifact_name,
248
+ artifact_version,
249
+ infer_artifact,
250
+ ]
251
+ ):
230
252
  run_model = client.get_pipeline_run(name_id_or_prefix=run)
231
253
  resource_id = run_model.id
232
254
  resource_type = TaggableResourceTypes.PIPELINE_RUN
233
255
 
234
256
  # Tag a run template
235
- elif run_template is not None:
257
+ elif run_template is not None and all(
258
+ v is None
259
+ for v in [
260
+ pipeline,
261
+ run,
262
+ artifact,
263
+ artifact_version_id,
264
+ artifact_name,
265
+ artifact_version,
266
+ infer_artifact,
267
+ ]
268
+ ):
236
269
  run_template_model = client.get_run_template(
237
270
  name_id_or_prefix=run_template
238
271
  )
@@ -240,26 +273,68 @@ def add_tags(
240
273
  resource_type = TaggableResourceTypes.RUN_TEMPLATE
241
274
 
242
275
  # Tag an artifact
243
- elif artifact is not None:
276
+ elif artifact is not None and all(
277
+ v is None
278
+ for v in [
279
+ pipeline,
280
+ run,
281
+ run_template,
282
+ artifact_version_id,
283
+ artifact_name,
284
+ artifact_version,
285
+ infer_artifact,
286
+ ]
287
+ ):
244
288
  artifact_model = client.get_artifact(name_id_or_prefix=artifact)
245
289
  resource_id = artifact_model.id
246
290
  resource_type = TaggableResourceTypes.ARTIFACT
247
291
 
292
+ # Tag an artifact version by its ID
293
+ elif artifact_version_id is not None and all(
294
+ v is None
295
+ for v in [
296
+ pipeline,
297
+ run,
298
+ run_template,
299
+ artifact,
300
+ artifact_name,
301
+ artifact_version,
302
+ infer_artifact,
303
+ ]
304
+ ):
305
+ resource_id = artifact_version_id
306
+ resource_type = TaggableResourceTypes.ARTIFACT_VERSION
307
+
248
308
  # Tag an artifact version by its name and version
249
- elif artifact_name is not None and artifact_version is not None:
309
+ elif (artifact_name is not None and artifact_version is not None) and all(
310
+ v is None
311
+ for v in [
312
+ pipeline,
313
+ run,
314
+ run_template,
315
+ artifact,
316
+ artifact_version_id,
317
+ infer_artifact,
318
+ ]
319
+ ):
250
320
  artifact_version_model = client.get_artifact_version(
251
321
  name_id_or_prefix=artifact_name, version=artifact_version
252
322
  )
253
323
  resource_id = artifact_version_model.id
254
324
  resource_type = TaggableResourceTypes.ARTIFACT_VERSION
255
325
 
256
- # Tag an artifact version by its ID
257
- elif artifact_version_id is not None:
258
- resource_id = artifact_version_id
259
- resource_type = TaggableResourceTypes.ARTIFACT_VERSION
260
-
261
326
  # Tag an artifact version through the step context
262
- elif infer_artifact is True:
327
+ elif infer_artifact is True and all(
328
+ v is None
329
+ for v in [
330
+ pipeline,
331
+ run,
332
+ run_template,
333
+ artifact,
334
+ artifact_version_id,
335
+ artifact_version,
336
+ ]
337
+ ):
263
338
  resource_type = TaggableResourceTypes.ARTIFACT_VERSION
264
339
 
265
340
  try:
@@ -308,12 +383,14 @@ def add_tags(
308
383
  elif all(
309
384
  v is None
310
385
  for v in [
386
+ pipeline,
311
387
  run,
388
+ run_template,
389
+ artifact,
312
390
  artifact_version_id,
313
391
  artifact_name,
314
392
  artifact_version,
315
- pipeline,
316
- run_template,
393
+ infer_artifact,
317
394
  ]
318
395
  ):
319
396
  try:
@@ -437,7 +514,7 @@ def remove_tags(
437
514
  *,
438
515
  tags: List[str],
439
516
  artifact_name: str,
440
- artifact_version: Optional[str] = None,
517
+ artifact_version: str,
441
518
  ) -> None: ...
442
519
 
443
520
 
@@ -464,7 +541,7 @@ def remove_tags(
464
541
  artifact_version_id: Optional[UUID] = None,
465
542
  artifact_name: Optional[str] = None,
466
543
  artifact_version: Optional[str] = None,
467
- infer_artifact: bool = False,
544
+ infer_artifact: Optional[bool] = None,
468
545
  ) -> None:
469
546
  """Remove tags from various resource types in a generalized way.
470
547
 
@@ -492,13 +569,35 @@ def remove_tags(
492
569
  resource_type = None
493
570
 
494
571
  # Remove tags from a pipeline
495
- if pipeline is not None:
572
+ if pipeline is not None and all(
573
+ v is None
574
+ for v in [
575
+ run_template,
576
+ run,
577
+ artifact,
578
+ artifact_version_id,
579
+ artifact_name,
580
+ artifact_version,
581
+ infer_artifact,
582
+ ]
583
+ ):
496
584
  pipeline_model = client.get_pipeline(name_id_or_prefix=pipeline)
497
585
  resource_id = pipeline_model.id
498
586
  resource_type = TaggableResourceTypes.PIPELINE
499
587
 
500
588
  # Remove tags from a run template
501
- elif run_template is not None:
589
+ elif run_template is not None and all(
590
+ v is None
591
+ for v in [
592
+ pipeline,
593
+ run,
594
+ artifact,
595
+ artifact_version_id,
596
+ artifact_version,
597
+ artifact_name,
598
+ infer_artifact,
599
+ ]
600
+ ):
502
601
  run_template_model = client.get_run_template(
503
602
  name_id_or_prefix=run_template
504
603
  )
@@ -506,32 +605,85 @@ def remove_tags(
506
605
  resource_type = TaggableResourceTypes.RUN_TEMPLATE
507
606
 
508
607
  # Remove tags from a run
509
- elif run is not None:
608
+ elif run is not None and all(
609
+ v is None
610
+ for v in [
611
+ pipeline,
612
+ run_template,
613
+ artifact,
614
+ artifact_version_id,
615
+ artifact_name,
616
+ artifact_version,
617
+ infer_artifact,
618
+ ]
619
+ ):
510
620
  run_model = client.get_pipeline_run(name_id_or_prefix=run)
511
621
  resource_id = run_model.id
512
622
  resource_type = TaggableResourceTypes.PIPELINE_RUN
513
623
 
514
624
  # Remove tags from an artifact
515
- elif artifact is not None:
625
+ elif artifact is not None and all(
626
+ v is None
627
+ for v in [
628
+ pipeline,
629
+ run_template,
630
+ run,
631
+ artifact_version_id,
632
+ artifact_name,
633
+ artifact_version,
634
+ infer_artifact,
635
+ ]
636
+ ):
516
637
  artifact_model = client.get_artifact(name_id_or_prefix=artifact)
517
638
  resource_id = artifact_model.id
518
639
  resource_type = TaggableResourceTypes.ARTIFACT
519
640
 
641
+ # Remove tags from an artifact version by its ID
642
+ elif artifact_version_id is not None and all(
643
+ v is None
644
+ for v in [
645
+ pipeline,
646
+ run_template,
647
+ run,
648
+ artifact,
649
+ artifact_name,
650
+ artifact_version,
651
+ infer_artifact,
652
+ ]
653
+ ):
654
+ resource_id = artifact_version_id
655
+ resource_type = TaggableResourceTypes.ARTIFACT_VERSION
656
+
520
657
  # Remove tags from an artifact version by its name and version
521
- elif artifact_name is not None and artifact_version is not None:
658
+ elif (artifact_name is not None and artifact_version is not None) and all(
659
+ v is None
660
+ for v in [
661
+ pipeline,
662
+ run_template,
663
+ run,
664
+ artifact,
665
+ artifact_version_id,
666
+ infer_artifact,
667
+ ]
668
+ ):
522
669
  artifact_version_model = client.get_artifact_version(
523
670
  name_id_or_prefix=artifact_name, version=artifact_version
524
671
  )
525
672
  resource_id = artifact_version_model.id
526
673
  resource_type = TaggableResourceTypes.ARTIFACT_VERSION
527
674
 
528
- # Remove tags from an artifact version by its ID
529
- elif artifact_version_id is not None:
530
- resource_id = artifact_version_id
531
- resource_type = TaggableResourceTypes.ARTIFACT_VERSION
532
-
533
675
  # Remove tags from an artifact version through the step context
534
- elif infer_artifact is True:
676
+ elif infer_artifact is True and all(
677
+ v is None
678
+ for v in [
679
+ pipeline,
680
+ run_template,
681
+ run,
682
+ artifact,
683
+ artifact_version_id,
684
+ artifact_version,
685
+ ]
686
+ ):
535
687
  try:
536
688
  from zenml.steps.step_context import get_step_context
537
689
 
@@ -579,12 +731,14 @@ def remove_tags(
579
731
  elif all(
580
732
  v is None
581
733
  for v in [
734
+ pipeline,
582
735
  run,
736
+ run_template,
737
+ artifact,
583
738
  artifact_version_id,
584
739
  artifact_name,
585
740
  artifact_version,
586
- pipeline,
587
- run_template,
741
+ infer_artifact,
588
742
  ]
589
743
  ):
590
744
  try:
@@ -4454,7 +4454,7 @@ class RestZenStore(BaseZenStore):
4454
4454
  f"`zenml login {self.url}` to "
4455
4455
  "re-authenticate to the server or authenticate using "
4456
4456
  "an API key. See "
4457
- "https://docs.zenml.io/how-to/project-setup-and-management/connecting-to-zenml/connect-with-a-service-account "
4457
+ "https://docs.zenml.io/deploying-zenml/connecting-to-zenml/connect-with-a-service-account "
4458
4458
  "for more information."
4459
4459
  )
4460
4460
  # Clear the current token from the credentials store to
@@ -3001,10 +3001,6 @@ class SqlZenStore(BaseZenStore):
3001
3001
  )
3002
3002
  session.add(vis_schema)
3003
3003
 
3004
- # Commit the visualizations so potential future rollbacks don't
3005
- # remove them
3006
- session.commit()
3007
-
3008
3004
  # Save tags of the artifact
3009
3005
  self._attach_tags_to_resources(
3010
3006
  tags=artifact_version.tags,
@@ -5188,9 +5184,19 @@ class SqlZenStore(BaseZenStore):
5188
5184
  # we want to display them as separate nodes in the
5189
5185
  # DAG. We can therefore always create a new node
5190
5186
  # here.
5187
+ is_manual_load = (
5188
+ input.type == StepRunInputArtifactType.MANUAL
5189
+ )
5191
5190
  artifact_node = helper.add_artifact_node(
5192
5191
  node_id=helper.get_artifact_node_id(
5193
- name=input.name,
5192
+ # For manual loads, the name might not be
5193
+ # unique, so we use the artifact ID instead.
5194
+ # We don't need to keep the name consistent
5195
+ # with placeholder nodes as they don't exist
5196
+ # for manual loads.
5197
+ name=str(input.artifact_id)
5198
+ if is_manual_load
5199
+ else input.name,
5194
5200
  step_name=step_name,
5195
5201
  io_type=input.type,
5196
5202
  is_input=True,
@@ -5221,9 +5227,20 @@ class SqlZenStore(BaseZenStore):
5221
5227
  # want to merge these and instead display them
5222
5228
  # separately in the DAG, but if that should ever change
5223
5229
  # this would be the place to merge them.
5230
+ is_manual_save = (
5231
+ output.artifact_version.save_type
5232
+ == ArtifactSaveType.MANUAL
5233
+ )
5224
5234
  artifact_node = helper.add_artifact_node(
5225
5235
  node_id=helper.get_artifact_node_id(
5226
- name=output.name,
5236
+ # For manual saves, the name might not be
5237
+ # unique, so we use the artifact ID instead.
5238
+ # We don't need to keep the name consistent
5239
+ # with placeholder nodes as they don't exist
5240
+ # for manual saves.
5241
+ name=str(output.artifact_id)
5242
+ if is_manual_save
5243
+ else output.name,
5227
5244
  step_name=step_name,
5228
5245
  io_type=output.artifact_version.save_type,
5229
5246
  is_input=False,
@@ -12003,17 +12020,16 @@ class SqlZenStore(BaseZenStore):
12003
12020
  validate_name(tag)
12004
12021
  self._set_request_user_id(request_model=tag, session=session)
12005
12022
 
12006
- with session.begin_nested() as nested_session:
12007
- tag_schema = TagSchema.from_request(tag)
12008
- session.add(tag_schema)
12023
+ tag_schema = TagSchema.from_request(tag)
12024
+ session.add(tag_schema)
12009
12025
 
12010
- try:
12011
- session.commit()
12012
- except IntegrityError:
12013
- nested_session.rollback()
12014
- raise EntityExistsError(
12015
- f"Tag with name `{tag.name}` already exists."
12016
- )
12026
+ try:
12027
+ session.commit()
12028
+ except IntegrityError:
12029
+ session.rollback()
12030
+ raise EntityExistsError(
12031
+ f"Tag with name `{tag.name}` already exists."
12032
+ )
12017
12033
  return tag_schema
12018
12034
 
12019
12035
  @track_decorator(AnalyticsEvent.CREATED_TAG)
@@ -12394,6 +12410,7 @@ class SqlZenStore(BaseZenStore):
12394
12410
  other_runs_with_same_tag = self.list_runs(
12395
12411
  PipelineRunFilter(
12396
12412
  id=f"notequals:{resource.id}",
12413
+ project=resource.project.id,
12397
12414
  pipeline_id=resource.pipeline_id,
12398
12415
  tags=[tag_schema.name],
12399
12416
  )
@@ -12418,6 +12435,7 @@ class SqlZenStore(BaseZenStore):
12418
12435
  self.list_artifact_versions(
12419
12436
  ArtifactVersionFilter(
12420
12437
  id=f"notequals:{resource.id}",
12438
+ project=resource.project.id,
12421
12439
  artifact_id=resource.artifact_id,
12422
12440
  tags=[tag_schema.name],
12423
12441
  )
@@ -12447,6 +12465,7 @@ class SqlZenStore(BaseZenStore):
12447
12465
  older_templates = self.list_run_templates(
12448
12466
  RunTemplateFilter(
12449
12467
  id=f"notequals:{resource.id}",
12468
+ project=resource.project.id,
12450
12469
  pipeline_id=scope_id,
12451
12470
  tags=[tag_schema.name],
12452
12471
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: zenml-nightly
3
- Version: 0.83.0.dev20250611
3
+ Version: 0.83.0.dev20250613
4
4
  Summary: ZenML: Write production-ready ML code.
5
5
  License: Apache-2.0
6
6
  Keywords: machine learning,production,pipeline,mlops,devops
@@ -1,5 +1,5 @@
1
1
  zenml/README.md,sha256=827dekbOWAs1BpW7VF1a4d7EbwPbjwccX-2zdXBENZo,1777
2
- zenml/VERSION,sha256=AmJkgThV_NCzJghsZ5bR4XF2rGm2az4fszG8PZix2gE,19
2
+ zenml/VERSION,sha256=raYTX7L20222A6BNt7Djwt8Q0R7IUDK_SDF-BODdqRg,19
3
3
  zenml/__init__.py,sha256=CKEyepFK-7akXYiMrNVh92Nb01Cjs23w4_YyI6sgdc8,2242
4
4
  zenml/actions/__init__.py,sha256=mrt6wPo73iKRxK754_NqsGyJ3buW7RnVeIGXr1xEw8Y,681
5
5
  zenml/actions/base_action.py,sha256=UcaHev6BTuLDwuswnyaPjdA8AgUqB5xPZ-lRtuvf2FU,25553
@@ -25,12 +25,12 @@ zenml/artifacts/external_artifact.py,sha256=7nLANV0vsGC36H1s_B_awX4hnZgXHCGIscQ2
25
25
  zenml/artifacts/external_artifact_config.py,sha256=P172p0JOu8Xx1F8RCQut1dnRpt5lpWXGNqMbY-V90sI,3323
26
26
  zenml/artifacts/preexisting_data_materializer.py,sha256=dcahDcHUD3Lvn0-6zE2BG84bkyo_ydAgzBWxtbyJJZQ,3325
27
27
  zenml/artifacts/unmaterialized_artifact.py,sha256=JNPKq_sNifQx5wP8jEw7TGBEi26zwKirPGlWX9uxbJI,1300
28
- zenml/artifacts/utils.py,sha256=44wDliyVDmfNQSRpdUwI4JhhsmGP18FF4mWgyEmN0E8,35933
29
- zenml/cli/__init__.py,sha256=nxq4ifwLV5qT7Qghb42h02XUOcOihBkZp2xBqgiykM8,75670
28
+ zenml/artifacts/utils.py,sha256=_J5glTW-tkc_49sWZVhYZpDXOHR5fzKvngeJMLDTpuQ,35947
29
+ zenml/cli/__init__.py,sha256=Q-DTKGMxUCyN8aAchAvjoWJeZ3f55Hnt4FpagiNHSbU,75655
30
30
  zenml/cli/annotator.py,sha256=JRR7_TJOWKyiKGv1kwSjG1Ay6RBWPVgm0X-D0uSBlyE,6976
31
31
  zenml/cli/artifact.py,sha256=7lsAS52DroBTFkFWxkyb-lIDOGP5jPL_Se_RDG_2jgg,9564
32
32
  zenml/cli/authorized_device.py,sha256=_1PzE3BM2SmwtuzRliEMStvbBRKWQmg_lbwCRtn8dBg,4324
33
- zenml/cli/base.py,sha256=9E4_9LeAAlDAusrg5-lpM4Ne1kYLkKOmUlcmhBilzaU,28373
33
+ zenml/cli/base.py,sha256=DZfUI61nmWLR5OYZRyYqOLuBYu0UrFynLXaLVMEavE4,28372
34
34
  zenml/cli/cli.py,sha256=Pnq468IZ4oqzluA_gZ5PsrdnSPEyHcasIH-xI1_8Y_Q,5454
35
35
  zenml/cli/code_repository.py,sha256=6T3Hgv0vxNGhZ4Lb5TDw8t0Ihzv0qQS6ojFoflQ2de8,9446
36
36
  zenml/cli/config.py,sha256=UI_j0a_zRgEUd2q0zuOi4UgbjiCYjMJ_Y9iSg-wi8Oo,2768
@@ -45,17 +45,17 @@ zenml/cli/pipeline.py,sha256=Vlz1OgGb1Ep-4Ekgd-Wz5SmieWigfx56i8wA5BGl228,19222
45
45
  zenml/cli/project.py,sha256=oo9rxjwcX9Mi-0ZtiTMOoajQ8JrEkl23BcNFZxjfhj0,6536
46
46
  zenml/cli/secret.py,sha256=zwt07v0xoIf_dLf-qY5CFdbKepBEuwmXD2HIMcLe_xU,20164
47
47
  zenml/cli/served_model.py,sha256=3w1UcAbg6Geu37fr7ej1_81GBCt3fF7j3Ge799YE4Mc,14974
48
- zenml/cli/server.py,sha256=G4O1py2pYe4X3-WhIneAkGM6YHJXeh9EvZU_42_bGt4,26362
48
+ zenml/cli/server.py,sha256=j5uu1Ej6v9K-yBnguGdg8-BedLxUtKaEeW20X6nLjGc,26351
49
49
  zenml/cli/service_accounts.py,sha256=DkSrBroYvQ3zNDHVYbY9IxqmbN7f8wGsAmt0Wyjq1FE,17766
50
50
  zenml/cli/service_connectors.py,sha256=ZGo1X3UwoHZ2BEFVev216Vfaf9wBEb0PKduwtX3mnk4,74332
51
- zenml/cli/stack.py,sha256=J5FzZWOrn9RLoJ6WjsxDl75pcTrBMiPOJeQj_lNix6U,67236
51
+ zenml/cli/stack.py,sha256=FgO2Qx_9r_ok5FoutTbXRm6pzUp8mlaTguZQKw3YbLQ,67236
52
52
  zenml/cli/stack_components.py,sha256=QqakqWsvzgG7nOvQmvlbcfwDZUTsXI2pOlsOBXP5EXg,52963
53
53
  zenml/cli/tag.py,sha256=JiAoYyDDBBYj0ChT8zWY8KGjzAnJTNx-WLQrjLLEyik,4802
54
54
  zenml/cli/text_utils.py,sha256=bY1GIjoULt1cW2FyrPlMoAXNS2R7cSOjDFEZQqrpVQ8,3553
55
55
  zenml/cli/user_management.py,sha256=sNnhaUxH-cHecbZBR1L0mEU0TnLNZHzI6ZBCUSQa7OY,13078
56
56
  zenml/cli/utils.py,sha256=vMAb9f6GDfNVGmZWOz9UOyPRpKI3KfnYpRl_w9YUBNE,86501
57
57
  zenml/cli/version.py,sha256=nm1iSU_1V6-MUwpMKeXcwFhLYGUMLswvQL67cEuCpxA,3635
58
- zenml/client.py,sha256=cf4sYrVCx9xbX3ZcQKF2j-jRroCxy-MKUNkEOhZD1yk,293336
58
+ zenml/client.py,sha256=YXGUxFdpxLHcl84Oe4Mc1QoXph8aBsUPUT6wOcjBEWQ,293398
59
59
  zenml/client_lazy_loader.py,sha256=oyxKvBWVB7k2pHMavdhNEOfR2Vk4IS3XUu43SBzDPsI,7152
60
60
  zenml/code_repositories/__init__.py,sha256=W5bDfzAG8OXIKZSV1L-VHuzMcSCYa9qzTdPb3jqfyYw,920
61
61
  zenml/code_repositories/base_code_repository.py,sha256=Id6VjbUu8N3ZpNvBGhOgbahtoMiCAtYXed3G7YQ_iAc,5225
@@ -65,7 +65,7 @@ zenml/code_repositories/local_repository_context.py,sha256=1VyiYkJBDVg0iGusgRQDT
65
65
  zenml/config/__init__.py,sha256=DZEic7euSbwI9Yb3FMRQhTgfhqz-C6OdAiYmOb0-opI,1519
66
66
  zenml/config/base_settings.py,sha256=itoLqc1cOwEYhgSGdZmSKSaBevQkvYH7NQh7PUamazc,1700
67
67
  zenml/config/build_configuration.py,sha256=jGGNwP0Cb7a80JXArNxDgxzxl9ytSZRtv-WW7_psLbM,6870
68
- zenml/config/compiler.py,sha256=bK3LCDkrFc9SapJYH-vuQZ_o8scHNs-FdC5DblIUU4U,23024
68
+ zenml/config/compiler.py,sha256=dVQ2FfliNxt93H2SYwlSOVyh-5dmdMd7abbIVRuIn3I,23023
69
69
  zenml/config/constants.py,sha256=QvSgMwXWxtspcJ45CrFDP1ZY3w6gS3bIhXLOtIDAbZA,713
70
70
  zenml/config/docker_settings.py,sha256=xZvoeC6v6RG_5MFK_RgdTgrkOLu-QT6frY4SGQNZUTo,18460
71
71
  zenml/config/global_config.py,sha256=59orl6xp4moxSo2Q8tXtDfpIBX4AxJ9FHcm8s2VHyWw,29712
@@ -75,7 +75,7 @@ zenml/config/pipeline_spec.py,sha256=uWpiIfznJvXAiKs1yMIUDT1h1tYEFNO-RDVTYcIv9CE
75
75
  zenml/config/resource_settings.py,sha256=0taXGHvDfXuvpMplxsuzpznB1sAvWJIGnXoVJ9-ySfw,3899
76
76
  zenml/config/retry_config.py,sha256=4UH1xqw0G6fSEbXSNKfmiFEkwadxQef9BGMe3JBm6NI,929
77
77
  zenml/config/schedule.py,sha256=-83j99U9OyiG7E322XWA7QvuLSwQzF21whwpeiF0b30,5348
78
- zenml/config/secret_reference_mixin.py,sha256=YvY68MTd1gE23IVprf0BLkNn62hoxcvb5nqGgc8jMkU,5871
78
+ zenml/config/secret_reference_mixin.py,sha256=SKmvPkoe78V8wM1gQMGS0e2VmvwjMAwG2E474fLqs9Q,5871
79
79
  zenml/config/secrets_store_config.py,sha256=y05zqyQhr_DGrs3IfBGa_FRoZ043hSYRT5wzrx-zHTU,2818
80
80
  zenml/config/server_config.py,sha256=DYYQ10HddkvlCWobBpwpg8ggO6imMZCnfFxzqlkQg_U,32336
81
81
  zenml/config/settings_resolver.py,sha256=PR9BRm_x1dy7nVKa9UqpeFdck8IEATSW6aWT8FKd-DI,4278
@@ -141,12 +141,12 @@ zenml/integrations/aws/container_registries/aws_container_registry.py,sha256=SCx
141
141
  zenml/integrations/aws/flavors/__init__.py,sha256=XYL9fpwKzeFfHCjakU0iJ3SyHVRJk63QT7luOy9Giek,1480
142
142
  zenml/integrations/aws/flavors/aws_container_registry_flavor.py,sha256=GIDLOySz1zF08YSkmKIj89TxBqSLWueXLAHyxYwm-NI,4169
143
143
  zenml/integrations/aws/flavors/aws_image_builder_flavor.py,sha256=XobJOw5ymbY22i7YHWGYOKDQoJQAqTeMIfvkADt-DDc,5343
144
- zenml/integrations/aws/flavors/sagemaker_orchestrator_flavor.py,sha256=aPBuzQjkroSZOdGWynXYu_A1c0YjK5dB96zb0NvHkBs,13604
144
+ zenml/integrations/aws/flavors/sagemaker_orchestrator_flavor.py,sha256=rcMCoYMFxL8AtwMUf_wdnmQrIMmBwryNDfoU39pVC2E,13611
145
145
  zenml/integrations/aws/flavors/sagemaker_step_operator_flavor.py,sha256=e3locb2OnF7bqV3iafIUB_tHhDE8-i7eyB4H6Hyqj1Y,6084
146
146
  zenml/integrations/aws/image_builders/__init__.py,sha256=91hgH1OphG2i-vk-G8N4yKBFIzK89Wu7BK4-T5yOA7E,786
147
147
  zenml/integrations/aws/image_builders/aws_image_builder.py,sha256=UcPYYYjJjfsicY3hV4OZeJt552AVmwPZPlv-AsG1g1I,11489
148
148
  zenml/integrations/aws/orchestrators/__init__.py,sha256=Wh0Fhtt_uo6YrkvXY9kL0M478FL7XpapjoFreUZbgUg,794
149
- zenml/integrations/aws/orchestrators/sagemaker_orchestrator.py,sha256=EfDFT2WG0t-6x1CU0n57BS7YCC0wPA8CfTGpb4-G0Tc,39282
149
+ zenml/integrations/aws/orchestrators/sagemaker_orchestrator.py,sha256=EtZpTgK-Z9Q4Eb7cM6VGXnrAkiJjpFrIdtQkHiw0Hhw,39289
150
150
  zenml/integrations/aws/orchestrators/sagemaker_orchestrator_entrypoint_config.py,sha256=WXCWdVojIZxx5_3-g1T95S2vsJ-RLNGcp-V409wgme0,1555
151
151
  zenml/integrations/aws/service_connectors/__init__.py,sha256=w2Md40yG89PwmU9eBceh6dGy3XYZ3MKusNAZ51sGOgE,783
152
152
  zenml/integrations/aws/service_connectors/aws_service_connector.py,sha256=7H69IoOYmyn5QcXEfL1-OmC0UaQ54TfNNhv2t8A6Daw,92107
@@ -269,7 +269,7 @@ zenml/integrations/gcp/google_credentials_mixin.py,sha256=bPy3JYCCcyuTmPiVFqbY81
269
269
  zenml/integrations/gcp/image_builders/__init__.py,sha256=2IvTL6U2YpUoxGQXeXew-6WFoL5hHIxkqr4DaA5Ez9w,786
270
270
  zenml/integrations/gcp/image_builders/gcp_image_builder.py,sha256=5T6BXsHxLhvp1BF_rslXl1oZzykJUPuZ3E_7-9ZZYLk,9019
271
271
  zenml/integrations/gcp/orchestrators/__init__.py,sha256=6xLFJKZKQk73fHPF-XdpbQO87zjQNGTsNHjJjLfG_Kg,805
272
- zenml/integrations/gcp/orchestrators/vertex_orchestrator.py,sha256=qoMCr36buZUz0y4CyTFQde3RDslkaGLAG0FjXc0XEPU,42100
272
+ zenml/integrations/gcp/orchestrators/vertex_orchestrator.py,sha256=r2q-iHPFm6sQKcKitCvuYqfMJz6mPXQ0WvWvFYDFmto,42100
273
273
  zenml/integrations/gcp/service_connectors/__init__.py,sha256=fdydawaor8KAtMYvRZieiTuA1i5QATxXXgI-yV1lsn8,788
274
274
  zenml/integrations/gcp/service_connectors/gcp_service_connector.py,sha256=9u-vEHbmSyN5IGwYI8v39TcFZg5ObgkxlbwSPz-e5zE,95018
275
275
  zenml/integrations/gcp/step_operators/__init__.py,sha256=iPkob2LtPIQ-OHszhbNz_ojhoovL6SprmTx37It4EJ8,808
@@ -404,7 +404,7 @@ zenml/integrations/modal/step_operators/modal_step_operator.py,sha256=J2HiNaGnlP
404
404
  zenml/integrations/neptune/__init__.py,sha256=PcqYVwybBcEy5YFODNA6bxT91kxaETReFmCWzExGhM8,1627
405
405
  zenml/integrations/neptune/experiment_trackers/__init__.py,sha256=DJi7lk7NXYrRg3VGPPSEsMycKECDfXL-h2V0A0r7z8Y,833
406
406
  zenml/integrations/neptune/experiment_trackers/neptune_experiment_tracker.py,sha256=hqEOgyBEQhjcnxvgw2oC2WZ0FAv1ez4VAqa_fJAHeCw,3716
407
- zenml/integrations/neptune/experiment_trackers/run_state.py,sha256=W-3mnjoVT-lZNVxGm4982jvMYbxC9WNiQ9_0vd4f9SM,5411
407
+ zenml/integrations/neptune/experiment_trackers/run_state.py,sha256=Qvge0eaUs70NQIBpsY5P8vRHHS1hHCAlZkZsmiGgoqk,5418
408
408
  zenml/integrations/neptune/flavors/__init__.py,sha256=NzORpmtI3Vu7yH1maj5pYd_2gQoN4QR2ZZLy1uPr6uw,975
409
409
  zenml/integrations/neptune/flavors/neptune_experiment_tracker_flavor.py,sha256=dGlRmnPjG5qG1RlcpEmpANDKAigh1N4hE86jvmaC968,3634
410
410
  zenml/integrations/neptune/neptune_constants.py,sha256=-VddhrALS1HMBhGtFiGDKaRahC-qhG0JAF2zAuc3lMM,746
@@ -596,9 +596,9 @@ zenml/login/pro/workspace/models.py,sha256=godIY1q2dUxB0QILaOFOeqV1I3WglWUjZC11n
596
596
  zenml/login/server_info.py,sha256=-_sK2L-curHdzUv1JDOwF6GoEeAXT5vFZN0J-5Ug4wU,1663
597
597
  zenml/login/web_login.py,sha256=y0vDwonQ-8wMjqMeRW0ANLoZR9X5OKmz-8qCzCiuBZo,9175
598
598
  zenml/materializers/__init__.py,sha256=C3lZaTmIFxwIPwCKF8oLQUkLaX2o7Dbj9hvYVFrSzt8,1758
599
- zenml/materializers/base_materializer.py,sha256=M4hwkw7PB0LskCE92r-S35011l7DlFemit-EuUCW3Nc,14002
599
+ zenml/materializers/base_materializer.py,sha256=wMRLOAz0arRU2Q6tCxcYVfT62I-qg7HVHOPUd1OtKAg,13939
600
600
  zenml/materializers/built_in_materializer.py,sha256=HgcCHg3GpuQ4t-jecYcdg0kldUfLeUJvIpm8-wcS11I,17189
601
- zenml/materializers/cloudpickle_materializer.py,sha256=x8a6jEMTky6N2YVHiwrnGWSfVJUpiy-4kQsD2Aqj_E0,4837
601
+ zenml/materializers/cloudpickle_materializer.py,sha256=PIZauXg1SBYmBUi9FBd2t3LFyZupp3jYtMjZ0OTug18,4816
602
602
  zenml/materializers/materializer_registry.py,sha256=ic-aWhJ2Ex9F_rml2dDVAxhRfW3nd71QMxzfTPP6BIM,4002
603
603
  zenml/materializers/numpy_materializer.py,sha256=OLcHF9Z0tAqQ_U8TraA0vGmZjHoT7eT_XevncIutt0M,1715
604
604
  zenml/materializers/pandas_materializer.py,sha256=c4B-ly04504gysA66iCYcmEdeh0ClePRTxRCkmHqIgE,1725
@@ -613,7 +613,7 @@ zenml/metadata/metadata_types.py,sha256=ts1EhF2qGZb8siKv1nkPSeFeyR2kbiIODkpk-hyo
613
613
  zenml/model/__init__.py,sha256=bFPHnWCgAGAjUPCmODHUmwbB0KGljNSEik857Yi-QX0,673
614
614
  zenml/model/lazy_load.py,sha256=nnu37QaIPU0peqVCEwG3k37LJe_D1i6RCs_8xoId6yk,4583
615
615
  zenml/model/model.py,sha256=i8xcvD0nxQfmi1O5dctZGQXE8SVtmmK1If1OaYKcAwA,27231
616
- zenml/model/utils.py,sha256=R7OuuC-wI5331reaqSg8AkpfRNIPSWzGHfL6w9Eyadc,6013
616
+ zenml/model/utils.py,sha256=-NNG1xALQWHyNNJu9AMfr5WejdRe0_R-JngxsW45QvU,5978
617
617
  zenml/model_deployers/__init__.py,sha256=oVBLtTfrNenl5OI1iqtQUvJ0vpocRVUN_HIt8qpoZmY,1730
618
618
  zenml/model_deployers/base_model_deployer.py,sha256=Z5-E_zC0Ss5OQhUBz9YKeVgS2MJOzuNz2aBzqI5eo4U,24610
619
619
  zenml/model_registries/__init__.py,sha256=wA9Vzo0w_e9zuXOVURB9w8oMLSnTaimXcxg_Nb7O3b0,1238
@@ -681,7 +681,7 @@ zenml/models/v2/misc/statistics.py,sha256=ajce9rHC2bBylLzOmLfcOBSbTnJD67Y8n5YKCY
681
681
  zenml/models/v2/misc/tag.py,sha256=jUoz7wqMpDFlIUmvj4PVq8NYJJB7TMCcdRfW-DAABCU,974
682
682
  zenml/models/v2/misc/user_auth.py,sha256=1-yafNA9qK4wL8ToROjaklTVI7Mj9va0t80_4wm7w3U,6988
683
683
  zenml/orchestrators/__init__.py,sha256=p4Y9Ni7Lp33fZ6UrjgI7qu-rrg8LrlyafCM-K1WC81w,1961
684
- zenml/orchestrators/base_orchestrator.py,sha256=EcxtHluCl8ov37hFk-7ncrCiozJJX34yl_eg44HcjxM,12127
684
+ zenml/orchestrators/base_orchestrator.py,sha256=cjD-2OSrvh6ZuZ8ehM7rjg9RhkD_WaALgYlBJ67q5bY,12096
685
685
  zenml/orchestrators/cache_utils.py,sha256=QkmTs-ANfXve9_QzTqgGlyulZDEWOngoTcsiSjG5aA8,5906
686
686
  zenml/orchestrators/containerized_orchestrator.py,sha256=rdebgBW0Bk--JcHcT0NpLkAbyhY0VS5xO1uwWEgkLpA,3230
687
687
  zenml/orchestrators/dag_runner.py,sha256=4oAGc52nHv8HeI_Vj7GH1jzjJom1uwUJ_la9usQoOFY,9404
@@ -696,13 +696,13 @@ zenml/orchestrators/step_launcher.py,sha256=6hrLj0Dr5-FcKTm3cvLVnr3PuUpaYbyEs1MR
696
696
  zenml/orchestrators/step_run_utils.py,sha256=FX7msn7yov-AMbtrdpoY_fst1ge65GoRFIIVdxuVyds,14898
697
697
  zenml/orchestrators/step_runner.py,sha256=EUgKG_g0fOQ6gnB1hPSSa6UXwUKVkguC-Yj-Q0yEQXg,26632
698
698
  zenml/orchestrators/topsort.py,sha256=D8evz3X47zwpXd90NMLsJD-_uCeXtV6ClzNfDUrq7cM,5784
699
- zenml/orchestrators/utils.py,sha256=agh8m5v1OYU-16Rcp6YDwDbHt9S1F46zsRe3AWC_tBc,12967
699
+ zenml/orchestrators/utils.py,sha256=6bqLc1fmdJTXg8JUwUKs8YNbmxTuMIfWmUbUpg-7hx0,12956
700
700
  zenml/orchestrators/wheeled_orchestrator.py,sha256=eOnMcnd3sCzfhA2l6qRAzF0rOXzaojbjvvYvTkqixQo,4791
701
701
  zenml/pipelines/__init__.py,sha256=hpIX7hN8jsQRHT5R-xSXZL88qrHwkmrvGLQeu1rWt4o,873
702
702
  zenml/pipelines/build_utils.py,sha256=DltGesybT8qYum4i23mvWZlVRgp7UxWdbHd1Y9ySv5c,27889
703
703
  zenml/pipelines/pipeline_context.py,sha256=4BixReLcPo33VtNBDrMwnJqjKTinHjmO5AOfmoeIOQM,3659
704
704
  zenml/pipelines/pipeline_decorator.py,sha256=LB21QYrbFeBdUGwKBUNbdpXAxO4OOtYl5Vs_mzJNXqU,4600
705
- zenml/pipelines/pipeline_definition.py,sha256=V_5IQH93RKtv9vUblJcYCuTs6HydgDEOcqTGPdMQrTM,59637
705
+ zenml/pipelines/pipeline_definition.py,sha256=CVZDquIjq8WaiRwJuckTH_SxLnkR08g1FdZxCsJlcUU,59634
706
706
  zenml/pipelines/run_utils.py,sha256=VouyPLQm9QgI2zZuc-F8XRW_beb1Uew4vt6ucT9bC-E,12288
707
707
  zenml/plugins/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
708
708
  zenml/plugins/base_plugin_flavor.py,sha256=88IxFW91UB_rQ8xPlfRnIhIJh7A308NEq2epMMdlOng,2530
@@ -719,7 +719,7 @@ zenml/service_connectors/__init__.py,sha256=gIBAVUPBZtdO6JtEBCixy9YG4wZRA1mnaxaG
719
719
  zenml/service_connectors/docker_service_connector.py,sha256=_6WPqYCcSUf8JPakipbkJRvaN2ghhY7zCr38WCHG0SI,13218
720
720
  zenml/service_connectors/service_connector.py,sha256=8Z_S_1qcfTla9r-Yu2hOmWaVYQ8C9jbkTSawu5QzY6o,55139
721
721
  zenml/service_connectors/service_connector_registry.py,sha256=U5MdC9M_RfkHK56AoERB9HtDP4vxk2hDFoZRlWzBA9g,9608
722
- zenml/service_connectors/service_connector_utils.py,sha256=25eD-2BDWHmRFwpdV5xCAtM3osgGwBzZcZecYRox6Tk,17958
722
+ zenml/service_connectors/service_connector_utils.py,sha256=jcJIClAVHPasqPy1QKqrzSmW1UHcHXekaX4cT-5exUU,17937
723
723
  zenml/services/__init__.py,sha256=BhqBztNXLrqN-4FZr24WHP9ujP_M0plt6axQvakh1jQ,2784
724
724
  zenml/services/container/__init__.py,sha256=dFHcmlXgNXjUaCR18oGQJ19-I_6f3UeAUURHjqldjTs,668
725
725
  zenml/services/container/container_service.py,sha256=EJ8RM0llzCwKxVZj3Oyhu7HC0K8XNWP-VQhIutff-kw,18403
@@ -738,7 +738,7 @@ zenml/stack/authentication_mixin.py,sha256=_Rn6SurHnyBuU_CJBOkwPR305yQFfqN60t6nE
738
738
  zenml/stack/flavor.py,sha256=wFLjajCw_G2NMR2UJzEGH2dcLj1dvmU9dDI5iS8b9rk,10544
739
739
  zenml/stack/flavor_registry.py,sha256=IL0fRrxxQJ9YkCYCeADP7nwWEQo4XBElJY4owMjKGbQ,6108
740
740
  zenml/stack/stack.py,sha256=3mLGNBuep0PeBcoFfOEaB6Ya206yav1ppiH5YEjp9xA,33042
741
- zenml/stack/stack_component.py,sha256=eshFuuknjtA5yT1d8aWPoWMkDph-K8E06eeZ-h__T38,29237
741
+ zenml/stack/stack_component.py,sha256=QTPqU48xLVNRIocumzQQrnE-wwgZab9dMkPzOTIo3lc,29237
742
742
  zenml/stack/stack_validator.py,sha256=hWbvvGIeWLj6NwSsF4GCc6RAxAWvxHXTcBZL9nJvcak,3111
743
743
  zenml/stack/utils.py,sha256=CHs9rxdqHkUT12KPhJX1YPtIWnZBoVlRlq5PzNymq3E,6406
744
744
  zenml/stack_deployments/__init__.py,sha256=-7593cQ_ZgRn774Ol-8AKXXQquIU4DSiaThVEr6TfWM,644
@@ -754,7 +754,7 @@ zenml/step_operators/step_operator_entrypoint_configuration.py,sha256=WoNO-fXukV
754
754
  zenml/steps/__init__.py,sha256=KKWFOmCZGLDEikOD2E5YmDA7QHo47uPV37by21WwI0U,1453
755
755
  zenml/steps/base_step.py,sha256=qzW9I99PWK8brm3wdV1NEuUxGFlMvrmqNh3YjNKUkgg,44312
756
756
  zenml/steps/decorated_step.py,sha256=C8Ng5PCLc9eql4JF1N345HQ6LyC1qCUdTnysUTeoAJs,1315
757
- zenml/steps/entrypoint_function_utils.py,sha256=AuBIKqcquuvSTNhvuavtSuPdzzEfdOa3_h3mt7twfrA,9577
757
+ zenml/steps/entrypoint_function_utils.py,sha256=H0WIkHpR_R0S9gl_tWr0nX-fcBlYnm8OQ1cimvrw-qo,9555
758
758
  zenml/steps/step_context.py,sha256=sFvVVvEyKmWTrucofor8Cuxv-72jbziVaQY-OlOvFAM,15526
759
759
  zenml/steps/step_decorator.py,sha256=cbu7s2EZ6-yIgBlY6npour2X_CnUCkBfcXfJoiSb3iQ,6454
760
760
  zenml/steps/step_invocation.py,sha256=ETfOaV-P4_iXGk9y1-xK54Kfg2QRYaGoj_jTyEYZfb0,4861
@@ -797,7 +797,7 @@ zenml/utils/singleton.py,sha256=uFRrUlUdS5VyY9lLJyl_n5kqppsqJLKkBhSj4g5VPkY,2757
797
797
  zenml/utils/source_code_utils.py,sha256=8iyNA2MGIORYVEkSdxNTXfS1ZdFKXTAG1dZRkeQtPL0,3751
798
798
  zenml/utils/source_utils.py,sha256=joKLghhDq9dh0fd8B0WRGX-nN-uwnGQdgmsyY_n-8gY,27033
799
799
  zenml/utils/string_utils.py,sha256=xJ8Abm52yFQyOpNrgpoLjDbPCgb6rpJsi8N4-7bb5GU,7254
800
- zenml/utils/tag_utils.py,sha256=2LJ-3XkXuWnffUsyfCwahzL_N2k4lIYIgBs1HVShhA0,19180
800
+ zenml/utils/tag_utils.py,sha256=GjuTyrkZAPhT27nP41bttBAvqGFpzgVZ9WZ_mswLc6o,22543
801
801
  zenml/utils/time_utils.py,sha256=-9Y9zwJ-6Gv7hoZQCoftPyC2LCLo2bYj6OgdyBaE44o,4076
802
802
  zenml/utils/typed_model.py,sha256=00EAo1I1VnOBHG4-ce8dPkyHRPpgi67SRIU-KdewRWs,4757
803
803
  zenml/utils/typing_utils.py,sha256=jP7JKrlLsuMIStXhwKFNWykE6SMOR72tJIJ_qEbQSNc,6555
@@ -1281,7 +1281,7 @@ zenml/zen_stores/migrations/versions/f49904a80aa7_increase_length_of_artifact_ta
1281
1281
  zenml/zen_stores/migrations/versions/f76a368a25a5_add_stack_description.py,sha256=u8fRomaasFeGhxvM2zU-Ab-AEpVsWm5zRcixxKFXdRw,904
1282
1282
  zenml/zen_stores/migrations/versions/fbd7f18ced1e_increase_step_run_field_lengths.py,sha256=kn-ng5EHe_mmLfffIFbz7T59z-to3oMx8III_4wOsz4,1956
1283
1283
  zenml/zen_stores/migrations/versions/ff538a321a92_migrate_onboarding_state.py,sha256=gsUFLJQ32_o9U35JCVqkqJVVk-zfq3yel25hXhzVFm4,3829
1284
- zenml/zen_stores/rest_zen_store.py,sha256=1n2g6qR4TdvskFXOPdR_rLLhLOYgeVYZfNOwiBXz-DE,160139
1284
+ zenml/zen_stores/rest_zen_store.py,sha256=S7eMMfd7unRX1MzvTLaHNQ_GoUOni4izizfJdgyTXsw,160119
1285
1285
  zenml/zen_stores/schemas/__init__.py,sha256=4EXqExiVyxdnGxhQ_Hz79mOdRuMD0LsGlw0PaP2Ef6o,4333
1286
1286
  zenml/zen_stores/schemas/action_schemas.py,sha256=jymEro5r20seTpRcAr5iZw-g8rXZRSZFEbiEm_iFaj8,7618
1287
1287
  zenml/zen_stores/schemas/api_key_schemas.py,sha256=RJS-lH7AHHAe9oXA0CGWvtbrmYgVfNP9nMa7rhtRNnY,8379
@@ -1324,11 +1324,11 @@ zenml/zen_stores/secrets_stores/hashicorp_secrets_store.py,sha256=5err1a-TrV3SR5
1324
1324
  zenml/zen_stores/secrets_stores/secrets_store_interface.py,sha256=Q2Jbnt2Pp7NGlR-u1YBfRZV2g8su2Fd0ArBMdksAE-Q,2819
1325
1325
  zenml/zen_stores/secrets_stores/service_connector_secrets_store.py,sha256=S87ne23D08PAwtfRVlVnBn8R0ilTpEh6r8blauNV5WQ,6941
1326
1326
  zenml/zen_stores/secrets_stores/sql_secrets_store.py,sha256=LPFW757WCJLP1S8vrvjsrl2Tf1yo281xUTjSBsos4qk,8788
1327
- zenml/zen_stores/sql_zen_store.py,sha256=zgdaIUTG2JYTr6_sW_yhYar_ZgPQZiKWEO3rmM0ys1Y,466071
1327
+ zenml/zen_stores/sql_zen_store.py,sha256=uYYwCvz-ot-qHPModf7Z6FheVRtZj7TUiWw-tHaBzGI,467346
1328
1328
  zenml/zen_stores/template_utils.py,sha256=GbJ7LgGVYHSCKPEA8RNTxPoVTWqpC77F_lGzjJ4O1Fw,9220
1329
1329
  zenml/zen_stores/zen_store_interface.py,sha256=_ap55L3_mrHgegsLkMRSmmNXVasYC53LwjcEeuS1YT4,92411
1330
- zenml_nightly-0.83.0.dev20250611.dist-info/LICENSE,sha256=wbnfEnXnafPbqwANHkV6LUsPKOtdpsd-SNw37rogLtc,11359
1331
- zenml_nightly-0.83.0.dev20250611.dist-info/METADATA,sha256=n7QUbanOkHx11TvKqo-2zfDF75fepC5lxY3zn3mBPm8,24317
1332
- zenml_nightly-0.83.0.dev20250611.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
1333
- zenml_nightly-0.83.0.dev20250611.dist-info/entry_points.txt,sha256=QK3ETQE0YswAM2mWypNMOv8TLtr7EjnqAFq1br_jEFE,43
1334
- zenml_nightly-0.83.0.dev20250611.dist-info/RECORD,,
1330
+ zenml_nightly-0.83.0.dev20250613.dist-info/LICENSE,sha256=wbnfEnXnafPbqwANHkV6LUsPKOtdpsd-SNw37rogLtc,11359
1331
+ zenml_nightly-0.83.0.dev20250613.dist-info/METADATA,sha256=2iedUCzK58EUDGXITPNywLGmCuqlhXKHvyfj8d7JE7A,24317
1332
+ zenml_nightly-0.83.0.dev20250613.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
1333
+ zenml_nightly-0.83.0.dev20250613.dist-info/entry_points.txt,sha256=QK3ETQE0YswAM2mWypNMOv8TLtr7EjnqAFq1br_jEFE,43
1334
+ zenml_nightly-0.83.0.dev20250613.dist-info/RECORD,,