zenml-nightly 0.80.0.dev20250324__py3-none-any.whl → 0.80.0.dev20250326__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
zenml/VERSION CHANGED
@@ -1 +1 @@
1
- 0.80.0.dev20250324
1
+ 0.80.0.dev20250326
zenml/cli/server.py CHANGED
@@ -193,6 +193,7 @@ def status() -> None:
193
193
 
194
194
  gc = GlobalConfiguration()
195
195
  client = Client()
196
+ _ = client.zen_store
196
197
 
197
198
  store_cfg = gc.store_configuration
198
199
 
@@ -216,30 +216,28 @@ class ServiceConnectorRegistry:
216
216
  AWSServiceConnector,
217
217
  )
218
218
  except ImportError as e:
219
- logger.warning(f"Could not import AWS service connector: {e}.")
219
+ logger.debug(f"Could not import AWS service connector: {e}.")
220
220
 
221
221
  try:
222
222
  from zenml.integrations.gcp.service_connectors.gcp_service_connector import ( # noqa
223
223
  GCPServiceConnector,
224
224
  )
225
225
  except ImportError as e:
226
- logger.warning(f"Could not import GCP service connector: {e}.")
226
+ logger.debug(f"Could not import GCP service connector: {e}.")
227
227
 
228
228
  try:
229
229
  from zenml.integrations.azure.service_connectors.azure_service_connector import ( # noqa
230
230
  AzureServiceConnector,
231
231
  )
232
232
  except ImportError as e:
233
- logger.warning(
234
- f"Could not import Azure service connector: {e}."
235
- )
233
+ logger.debug(f"Could not import Azure service connector: {e}.")
236
234
 
237
235
  try:
238
236
  from zenml.integrations.kubernetes.service_connectors.kubernetes_service_connector import ( # noqa
239
237
  KubernetesServiceConnector,
240
238
  )
241
239
  except ImportError as e:
242
- logger.warning(
240
+ logger.debug(
243
241
  f"Could not import Kubernetes service connector: {e}."
244
242
  )
245
243
 
@@ -248,7 +246,7 @@ class ServiceConnectorRegistry:
248
246
  DockerServiceConnector,
249
247
  )
250
248
  except ImportError as e:
251
- logger.warning(
249
+ logger.debug(
252
250
  f"Could not import Docker service connector: {e}."
253
251
  )
254
252
 
@@ -257,7 +255,7 @@ class ServiceConnectorRegistry:
257
255
  HyperAIServiceConnector,
258
256
  )
259
257
  except ImportError as e:
260
- logger.warning(
258
+ logger.debug(
261
259
  f"Could not import HyperAI service connector: {e}."
262
260
  )
263
261
 
@@ -232,7 +232,6 @@ class BaseZenStore(
232
232
  Returns:
233
233
  The initialized store.
234
234
  """
235
- logger.debug(f"Creating store with config '{config}'...")
236
235
  store_class = BaseZenStore.get_store_class(config.type)
237
236
  store = store_class(
238
237
  config=config,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: zenml-nightly
3
- Version: 0.80.0.dev20250324
3
+ Version: 0.80.0.dev20250326
4
4
  Summary: ZenML: Write production-ready ML code.
5
5
  License: Apache-2.0
6
6
  Keywords: machine learning,production,pipeline,mlops,devops
@@ -411,7 +411,7 @@ And finally, here are some other examples and use cases for inspiration:
411
411
 
412
412
  1. [E2E Batch Inference](examples/e2e/): Feature engineering, training, and inference pipelines for tabular machine learning.
413
413
  2. [Basic NLP with BERT](examples/e2e_nlp/): Feature engineering, training, and inference focused on NLP.
414
- 3. [LLM RAG Pipeline with Langchain and OpenAI](https://github.com/zenml-io/zenml-projects/tree/main/llm-agents): Using Langchain to create a simple RAG pipeline.
414
+ 3. [LLM RAG Pipeline with Langchain and OpenAI](https://github.com/zenml-io/zenml-projects/tree/main/zenml-support-agent): Using Langchain to create a simple RAG pipeline.
415
415
  4. [Huggingface Model to Sagemaker Endpoint](https://github.com/zenml-io/zenml-projects/tree/main/huggingface-sagemaker): Automated MLOps on Amazon Sagemaker and HuggingFace
416
416
  5. [LLMops](https://github.com/zenml-io/zenml-projects/tree/main/llm-complete-guide): Complete guide to do LLM with ZenML
417
417
 
@@ -486,8 +486,8 @@ our GitHub repo.
486
486
  ## 📚 LLM-focused Learning Resources
487
487
 
488
488
  1. [LL Complete Guide - Full RAG Pipeline](https://github.com/zenml-io/zenml-projects/tree/main/llm-complete-guide) - Document ingestion, embedding management, and query serving
489
- 2. [LLM Fine-Tuning Pipeline](https://github.com/zenml-io/zenml-projects/tree/main/llm-finetuning) - From data prep to deployed model
490
- 3. [LLM Agents Example](https://github.com/zenml-io/zenml-projects/tree/main/llm-agents) - Track conversation quality and tool usage
489
+ 2. [LLM Fine-Tuning Pipeline](https://github.com/zenml-io/zenml-projects/tree/main/zencoder) - From data prep to deployed model
490
+ 3. [LLM Agents Example](https://github.com/zenml-io/zenml-projects/tree/main/zenml-support-agent) - Track conversation quality and tool usage
491
491
 
492
492
  ## 🤖 AI-Friendly Documentation with llms.txt
493
493
 
@@ -1,5 +1,5 @@
1
1
  zenml/README.md,sha256=827dekbOWAs1BpW7VF1a4d7EbwPbjwccX-2zdXBENZo,1777
2
- zenml/VERSION,sha256=9phlaCMvA6sXB4pzR5hJ6TI_pDFX4AAtxMVfKGqTnP4,19
2
+ zenml/VERSION,sha256=tVfBlXyy_JWwNS9LpA-2Jm0soWRorAjKGCeBuYv9Z8w,19
3
3
  zenml/__init__.py,sha256=CKEyepFK-7akXYiMrNVh92Nb01Cjs23w4_YyI6sgdc8,2242
4
4
  zenml/actions/__init__.py,sha256=mrt6wPo73iKRxK754_NqsGyJ3buW7RnVeIGXr1xEw8Y,681
5
5
  zenml/actions/base_action.py,sha256=UcaHev6BTuLDwuswnyaPjdA8AgUqB5xPZ-lRtuvf2FU,25553
@@ -45,7 +45,7 @@ zenml/cli/pipeline.py,sha256=Vlz1OgGb1Ep-4Ekgd-Wz5SmieWigfx56i8wA5BGl228,19222
45
45
  zenml/cli/project.py,sha256=7kqc-MaNr7gFbkl2NlAPwQ4jMipRX-TW_Eml5fQJqao,5417
46
46
  zenml/cli/secret.py,sha256=zwt07v0xoIf_dLf-qY5CFdbKepBEuwmXD2HIMcLe_xU,20164
47
47
  zenml/cli/served_model.py,sha256=3w1UcAbg6Geu37fr7ej1_81GBCt3fF7j3Ge799YE4Mc,14974
48
- zenml/cli/server.py,sha256=30DYWQI9cNQgRTXeX2ff23RAdQcb9kYmDAtUNfV0SoQ,26105
48
+ zenml/cli/server.py,sha256=EmElo8MlPujj15waddSN7wb7M7vu0HCfkIFgILGLL6Q,26130
49
49
  zenml/cli/service_accounts.py,sha256=DkSrBroYvQ3zNDHVYbY9IxqmbN7f8wGsAmt0Wyjq1FE,17766
50
50
  zenml/cli/service_connectors.py,sha256=ZGo1X3UwoHZ2BEFVev216Vfaf9wBEb0PKduwtX3mnk4,74332
51
51
  zenml/cli/stack.py,sha256=J5FzZWOrn9RLoJ6WjsxDl75pcTrBMiPOJeQj_lNix6U,67236
@@ -715,7 +715,7 @@ zenml/secret/schemas/gcp_secret_schema.py,sha256=tDSxPXlfh4BOSICZjfJjUukfzEyBEgx
715
715
  zenml/service_connectors/__init__.py,sha256=gIBAVUPBZtdO6JtEBCixy9YG4wZRA1mnaxaGAxi3T1Q,645
716
716
  zenml/service_connectors/docker_service_connector.py,sha256=_6WPqYCcSUf8JPakipbkJRvaN2ghhY7zCr38WCHG0SI,13218
717
717
  zenml/service_connectors/service_connector.py,sha256=rVYXZDVp2XJEYIbhkQW3zEjlgsvxqGN9ZOmmVE_pum4,54977
718
- zenml/service_connectors/service_connector_registry.py,sha256=mCabyKAr7Y6bcAbIFXbir9YrHczDe1ZJ8Bks5bOQouk,9658
718
+ zenml/service_connectors/service_connector_registry.py,sha256=U5MdC9M_RfkHK56AoERB9HtDP4vxk2hDFoZRlWzBA9g,9608
719
719
  zenml/service_connectors/service_connector_utils.py,sha256=25eD-2BDWHmRFwpdV5xCAtM3osgGwBzZcZecYRox6Tk,17958
720
720
  zenml/services/__init__.py,sha256=BhqBztNXLrqN-4FZr24WHP9ujP_M0plt6axQvakh1jQ,2784
721
721
  zenml/services/container/__init__.py,sha256=dFHcmlXgNXjUaCR18oGQJ19-I_6f3UeAUURHjqldjTs,668
@@ -1066,7 +1066,7 @@ zenml/zen_server/template_execution/workload_manager_interface.py,sha256=CL9c7z8
1066
1066
  zenml/zen_server/utils.py,sha256=Jc2Q4UBaYG2ruHdsN9JmbOWfWU_eWD9wTBBEgcGAbqg,17439
1067
1067
  zenml/zen_server/zen_server_api.py,sha256=ALyv5096frXXRNySegEtsmkDbHLLqHd402bbQI7RnII,17941
1068
1068
  zenml/zen_stores/__init__.py,sha256=6LTgH6XwDeDxKqVJ1JTfGhmS8II1NLopPloINGmdyI0,691
1069
- zenml/zen_stores/base_zen_store.py,sha256=EQsuB5DrS0ivgSjB2wmr7qL8EN1_Xc7-GAhLyOrXMhM,15997
1069
+ zenml/zen_stores/base_zen_store.py,sha256=O4yQX-n6nufGsR6N9ZbcUvmlMshJV4RRUGhDV3Qxi_8,15931
1070
1070
  zenml/zen_stores/migrations/README.md,sha256=x04jsb6EOP6PBEGMQlDELiqKEham2O-iztAs9AylMFc,4898
1071
1071
  zenml/zen_stores/migrations/__init__.py,sha256=N9CHfdz0AZ6KniQ450VCIV3H0CuWtx83AloYy82woho,657
1072
1072
  zenml/zen_stores/migrations/alembic.py,sha256=JDqx7Md6DxnHtP3xrZG1I0cNv6NyTR0oO3tPRUPaS2I,7455
@@ -1308,8 +1308,8 @@ zenml/zen_stores/secrets_stores/sql_secrets_store.py,sha256=nEO0bAPlULBLxLVk-UTR
1308
1308
  zenml/zen_stores/sql_zen_store.py,sha256=RmcpUHnSlPOMLNZ9StPxi_9FPqB1HgfiK_Humst9sns,440431
1309
1309
  zenml/zen_stores/template_utils.py,sha256=GWBP5QEOyvhzndS_MLPmvh28sQaOPpPoZFXCIX9CRL4,9065
1310
1310
  zenml/zen_stores/zen_store_interface.py,sha256=fF_uL_FplnvGvM5o3jOQ8i1zHXhuhKLL2n4nvIKSR7E,92090
1311
- zenml_nightly-0.80.0.dev20250324.dist-info/LICENSE,sha256=wbnfEnXnafPbqwANHkV6LUsPKOtdpsd-SNw37rogLtc,11359
1312
- zenml_nightly-0.80.0.dev20250324.dist-info/METADATA,sha256=WVq6ij2hyZz6t8TdKgKLQdxnznklx51utoGbA1WQ-Ws,24215
1313
- zenml_nightly-0.80.0.dev20250324.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
1314
- zenml_nightly-0.80.0.dev20250324.dist-info/entry_points.txt,sha256=QK3ETQE0YswAM2mWypNMOv8TLtr7EjnqAFq1br_jEFE,43
1315
- zenml_nightly-0.80.0.dev20250324.dist-info/RECORD,,
1311
+ zenml_nightly-0.80.0.dev20250326.dist-info/LICENSE,sha256=wbnfEnXnafPbqwANHkV6LUsPKOtdpsd-SNw37rogLtc,11359
1312
+ zenml_nightly-0.80.0.dev20250326.dist-info/METADATA,sha256=uKBANAlnhbiYV3xrxE0Jsh8AKTgZBcIJiHMM0aAoguw,24227
1313
+ zenml_nightly-0.80.0.dev20250326.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
1314
+ zenml_nightly-0.80.0.dev20250326.dist-info/entry_points.txt,sha256=QK3ETQE0YswAM2mWypNMOv8TLtr7EjnqAFq1br_jEFE,43
1315
+ zenml_nightly-0.80.0.dev20250326.dist-info/RECORD,,