zenml-nightly 0.71.0.dev20250105__py3-none-any.whl → 0.71.0.dev20250107__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
CONTRIBUTING.md DELETED
@@ -1,260 +0,0 @@
1
- # 🧑‍💻 Contributing to ZenML
2
-
3
- A big welcome and thank you for considering contributing to ZenML! It’s people
4
- like you that make it a reality for users
5
- in our community.
6
-
7
- Reading and following these guidelines will help us make the contribution
8
- process easy and effective for everyone
9
- involved. It also communicates that you agree to respect the developers' time
10
- management and develop these open-source projects. In return, we will reciprocate that respect by reading your
11
- issue, assessing changes, and helping
12
- you finalize your pull requests.
13
-
14
- ## ⚡️ Quicklinks
15
-
16
- - [🧑‍💻 Contributing to ZenML](#-contributing-to-zenml)
17
- - [⚡️ Quicklinks](#-quicklinks)
18
- - [🧑‍⚖️ Code of Conduct](#-code-of-conduct)
19
- - [🛫 Getting Started](#-getting-started)
20
- - [⁉️ Issues](#-issues)
21
- - [🏷 Pull Requests: When to make one](#-pull-requests-when-to-make-one)
22
- - [💯 Pull Requests: Workflow to Contribute](#-pull-requests-workflow-to-contribute)
23
- - [🧱 Pull Requests: Rebase on develop](#-pull-requests-rebase-your-branch-on-develop)
24
- - [🧐 Linting, formatting, and tests](#-linting-formatting-and-tests)
25
- - [🚨 Reporting a Vulnerability](#-reporting-a-vulnerability)
26
- - [Coding Conventions](#coding-conventions)
27
- - [👷 Creating a new Integration](#-creating-a-new-integration)
28
- - [🆘 Getting Help](#-getting-help)
29
-
30
- ## 🧑‍⚖️ Code of Conduct
31
-
32
- We take our open-source community seriously and hold ourselves and other
33
- contributors to high standards of communication.
34
- By participating and contributing to this project, you agree to uphold
35
- our [Code of Conduct](https://github.com/zenml-io/zenml/blob/master/CODE-OF-CONDUCT.md)
36
- .
37
-
38
- ## 🛫 Getting Started
39
-
40
- Contributions are made to this repo via Issues and Pull Requests (PRs). A few
41
- general guidelines that cover both:
42
-
43
- - To report security vulnerabilities, please get in touch
44
- at [support@zenml.io](mailto:support@zenml.io), monitored by
45
- our security team.
46
- - Search for existing Issues and PRs before creating your own.
47
- - We work hard to make sure issues are handled on time, but it could take a
48
- while to investigate the root cause depending on the impact.
49
-
50
- A friendly ping in the comment thread to the submitter or a contributor can help
51
- draw attention if your issue is blocking.
52
-
53
- ### Good First Issues for New Contributors
54
-
55
- The best way to start is to check the
56
- [`good-first-issue`](https://github.com/issues?q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Azenml-io+label%3A%22good+first+issue%22)
57
- label on the issue board. The core team creates these issues as necessary
58
- smaller tasks that you can work on to get deeper into ZenML internals. These
59
- should generally require relatively simple changes, probably affecting just one
60
- or two files which we think are ideal for people new to ZenML.
61
-
62
- The next step after that would be to look at the
63
- [`good-second-issue`](https://github.com/issues?q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Azenml-io+label%3A%22good+second+issue%22)
64
- label on the issue board. These are a bit more complex, might involve more
65
- files, but should still be well-defined and achievable to people relatively new
66
- to ZenML.
67
-
68
- ### ⁉️ Issues
69
-
70
- Issues should be used to report problems with the library, request a new
71
- feature, or to discuss potential changes before
72
- a PR is created. When you create a new Issue, a template will be loaded that
73
- will guide you through collecting and
74
- providing the information we need to investigate.
75
-
76
- If you find an Issue that addresses your problem, please add your own
77
- reproduction information to the
78
- existing issue rather than creating a new one. Adding
79
- a [reaction](https://github.blog/2016-03-10-add-reactions-to-pull-requests-issues-and-comments/)
80
- can also help by
81
- indicating to our maintainers that a particular issue is affecting more than
82
- just the reporter.
83
-
84
- ### 🏷 Pull Requests: When to make one
85
-
86
- Pull Requests (PRs) to ZenML are always welcome and can be a quick way to get your fix or
87
- improvement slated for the next release. In
88
- general, PRs should:
89
-
90
- - Only fix/add the functionality in question **OR** address widespread
91
- whitespace/style issues, not both.
92
- - Add unit or integration tests for fixed or changed functionality (if a test
93
- suite already exists).
94
- - Address a single concern in the least number of changed lines as possible.
95
- - Include documentation in the repo or in your Pull Request.
96
- - Be accompanied by a filled-out Pull Request template (loaded automatically when
97
- a PR is created).
98
-
99
- For changes that address core functionality or would require breaking changes (e.g. a major release), it's best to open
100
- an Issue to discuss your proposal first. This is not required but can save time
101
- creating and reviewing changes.
102
-
103
- ### 💯 Pull Requests: Workflow to Contribute
104
-
105
- <p class="callout warning">Please note that development in ZenML happens off of the <b>develop</b> branch, <b>not main</b>,
106
- which is the default branch on GitHub. Therefore, please pay particular attention to step 5 and step 9 below. </p>
107
-
108
- In general, we follow
109
- the ["fork-and-pull" Git workflow](https://github.com/susam/gitpr)
110
-
111
- 1. Review and sign
112
- the [Contributor License Agreement](https://cla-assistant.io/zenml-io/zenml) (
113
- CLA).
114
- 2. Fork the repository to your own Github account.
115
- 3. Clone the project to your machine.
116
- 4. Checkout the **develop** branch <- `git checkout develop`.
117
- 5. Create a branch (again, off of the develop branch) locally with a succinct but descriptive name.
118
- 6. Commit changes to the branch
119
- 7. Follow the `Linting, formatting, and tests` guide to make sure your code adheres to the ZenML coding style (see below).
120
- 8. Push changes to your fork.
121
- 9. Open a PR in our repository (to the `develop` branch, **NOT** `main`) and
122
- follow the PR template so that we can efficiently review the changes.
123
-
124
- ### 🧱 Pull Requests: Rebase Your Branch on Develop
125
-
126
- 1. When making pull requests to ZenML, you should always make your changes on a branch that is based on `develop`. You can create a new branch based on `develop` by running the following command:
127
- ```
128
- git checkout -b <new-branch-name> develop
129
- ```
130
- 2. Fetch the latest changes from the remote `develop` branch:
131
- ```
132
- git fetch origin develop
133
- ```
134
- 3. Switch to your branch:
135
- ```
136
- git checkout <your-branch-name>
137
- ```
138
- 4. Rebase your branch on `develop`:
139
- ```
140
- git rebase origin/develop
141
- ```
142
- This will apply your branch's changes on top of the latest changes in `develop`, one commit at a time.
143
- 5. Resolve any conflicts that may arise during the rebase. Git will notify you if there are any conflicts that need to be resolved. Use a text editor to manually resolve the conflicts in the affected files.
144
- 6. After resolving the conflicts, stage the changes:
145
- ```
146
- git add .
147
- ```
148
- 7. Continue the rebase for all of your commits and go to 5) if there are conflicts.
149
- ```
150
- git rebase --continue
151
- ```
152
- 8. Push the rebased branch to your remote repository:
153
- ```
154
- git push origin --force <your-branch-name>
155
- ```
156
- 9. Open a pull request targeting the `develop` branch. The changes from your rebased branch will now be based on the latest `develop` branch.
157
-
158
- ### 🧐 Linting, formatting, and tests
159
-
160
- To install ZenML from your local checked out files including all core dev-dependencies, run:
161
-
162
- ```
163
- pip install -e ".[server,dev]"
164
- ```
165
-
166
- Optionally, you might want to run the following commands to ensure you have all
167
- integrations for `mypy` checks:
168
-
169
- ```
170
- zenml integration install -y -i feast
171
- pip install click~=8.0.3
172
- mypy --install-types
173
- ```
174
-
175
- Warning: This might take a while for both (~ 15 minutes each, depending on your machine), however if you have
176
- time, please run it as it will make the
177
- next commands error-free. Note that the `zenml integration install` command
178
- might also fail on account of dependency conflicts so you can just install the
179
- specific integration you're working on and manually run the mypy command for the
180
- files you've been working on.
181
-
182
- You can now run the following scripts to automatically format your
183
- code and to check whether the code formatting, linting, docstrings, and
184
- spelling is in order:
185
-
186
- ```
187
- bash scripts/format.sh
188
- bash scripts/run-ci-checks.sh
189
- ```
190
-
191
- If you're on Windows you might have to run the formatting script as `bash
192
- scripts/format.sh --no-yamlfix` and run the yamlfix command separately as
193
- `yamlfix .github -v`.
194
-
195
- Tests can be run as follows:
196
-
197
- ```
198
- bash scripts/test-coverage-xml.sh
199
- ```
200
-
201
- Please note that it is good practice to run the above commands before submitting
202
- any Pull Request: The CI GitHub Action
203
- will run it anyway, so you might as well catch the errors locally!
204
-
205
- ### 🚨 Reporting a Vulnerability
206
-
207
- Please refer to [our security / reporting instructions](./SECURITY.md) for
208
- details on reporting vulnerabilities.
209
-
210
-
211
- ## Coding Conventions
212
-
213
- The code within the repository is structured in the following way -
214
- the most relevant places for contributors are highlighted with a `<-` arrow:
215
-
216
- ```
217
- ├── .github -- Definition of the GH action workflows
218
- ├── docker -- Dockerfiles used to build ZenML docker images
219
- ├── docs <- The ZenML docs, CLI docs and API docs live here
220
- │ ├── book <- In case you make user facing changes, update docs here
221
- │ └── mkdocs -- Some configurations for the API/CLI docs
222
- ├── examples <- When adding an integration, add an example here
223
- ├── scripts -- Scripts used by Github Actions or for local linting/testing
224
- ├── src/zenml <- The heart of ZenML
225
- │ ├── <stack_component> <- Each stack component has its own directory
226
- │ ├── cli <- Change and improve the CLI here
227
- │ ├── config -- The ZenML config methods live here
228
- │ ├── integrations <- Add new integrations here
229
- │ ├── io -- File operation implementations
230
- │ ├── materializers <- Materializers responsible for reading/writing artifacts
231
- │ ├── pipelines <- The base pipeline and its decorator
232
- │ ├── services -- Code responsible for managing services
233
- │ ├── stack <- Stack, Stack Components and the flavor registry
234
- │ ├── steps <- Steps and their decorators are defined here
235
- │ ├── utils <- Collection on useful utils
236
- │ ├── zen_server -- Code for running the Zen Server
237
- │ └── zen_stores -- Code for storing stacks in multiple settings
238
- └── test <- Don't forget to write unit tests for your code
239
- ```
240
-
241
- ## 👷 Creating a new Integration
242
-
243
- In case you want to create an entirely new integration that you would like to
244
- see supported by ZenML there are a few steps that you should follow:
245
-
246
- 1. Create the actual integration. Check out the
247
- [Integrations README](src/zenml/integrations/README.md)
248
- for detailed step-by-step instructions.
249
- 2. Create an example of how to use the integration. Check out the
250
- [Examples README](examples/README.md)
251
- to find out what to do.
252
- 3. All integrations deserve to be documented. Make sure to pay a visit to the
253
- [Component Guide](https://docs.zenml.io/stack-components/component-guide)
254
- in the docs and add your implementations.
255
-
256
- ## 🆘 Getting Help
257
-
258
- Join us in the [ZenML Slack Community](https://zenml.io/slack-invite/) to
259
- interact directly with the core team and community at large. This is a good
260
- place to ideate, discuss concepts or ask for help.
README.md DELETED
@@ -1,342 +0,0 @@
1
- <div align="center">
2
- <img referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=0fcbab94-8fbe-4a38-93e8-c2348450a42e" />
3
- <h1 align="center">Connecting data science teams seamlessly to cloud infrastructure.
4
- </h1>
5
- </div>
6
-
7
- <!-- PROJECT SHIELDS -->
8
- <!--
9
- *** I'm using markdown "reference style" links for readability.
10
- *** Reference links are enclosed in brackets [ ] instead of parentheses ( ).
11
- *** See the bottom of this document for the declaration of the reference variables
12
- *** for contributors-url, forks-url, etc. This is an optional, concise syntax you may use.
13
- *** https://www.markdownguide.org/basic-syntax/#reference-style-links
14
- -->
15
-
16
- <div align="center">
17
-
18
- <!-- PROJECT LOGO -->
19
- <br />
20
- <a href="https://zenml.io">
21
- <img alt="ZenML Logo" src="docs/book/.gitbook/assets/header.png" alt="ZenML Logo">
22
- </a>
23
- <br />
24
-
25
- [![PyPi][pypi-shield]][pypi-url]
26
- [![PyPi][pypiversion-shield]][pypi-url]
27
- [![PyPi][downloads-shield]][downloads-url]
28
- [![Contributors][contributors-shield]][contributors-url]
29
- [![License][license-shield]][license-url]
30
- <!-- [![Build][build-shield]][build-url] -->
31
- <!-- [![CodeCov][codecov-shield]][codecov-url] -->
32
-
33
- </div>
34
-
35
- <!-- MARKDOWN LINKS & IMAGES -->
36
- <!-- https://www.markdownguide.org/basic-syntax/#reference-style-links -->
37
-
38
- [pypi-shield]: https://img.shields.io/pypi/pyversions/zenml?color=281158
39
-
40
- [pypi-url]: https://pypi.org/project/zenml/
41
-
42
- [pypiversion-shield]: https://img.shields.io/pypi/v/zenml?color=361776
43
-
44
- [downloads-shield]: https://img.shields.io/pypi/dm/zenml?color=431D93
45
-
46
- [downloads-url]: https://pypi.org/project/zenml/
47
-
48
- [codecov-shield]: https://img.shields.io/codecov/c/gh/zenml-io/zenml?color=7A3EF4
49
-
50
- [codecov-url]: https://codecov.io/gh/zenml-io/zenml
51
-
52
- [contributors-shield]: https://img.shields.io/github/contributors/zenml-io/zenml?color=7A3EF4
53
-
54
- [contributors-url]: https://github.com/zenml-io/zenml/graphs/contributors
55
-
56
- [license-shield]: https://img.shields.io/github/license/zenml-io/zenml?color=9565F6
57
-
58
- [license-url]: https://github.com/zenml-io/zenml/blob/main/LICENSE
59
-
60
- [linkedin-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555
61
-
62
- [linkedin-url]: https://www.linkedin.com/company/zenml/
63
-
64
- [twitter-shield]: https://img.shields.io/twitter/follow/zenml_io?style=for-the-badge
65
-
66
- [twitter-url]: https://twitter.com/zenml_io
67
-
68
- [slack-shield]: https://img.shields.io/badge/-Slack-black.svg?style=for-the-badge&logo=linkedin&colorB=555
69
-
70
- [slack-url]: https://zenml.io/slack-invite
71
-
72
- [build-shield]: https://img.shields.io/github/workflow/status/zenml-io/zenml/Build,%20Lint,%20Unit%20&%20Integration%20Test/develop?logo=github&style=for-the-badge
73
-
74
- [build-url]: https://github.com/zenml-io/zenml/actions/workflows/ci.yml
75
-
76
- ---
77
-
78
- ## ⭐️ Show Your Support
79
-
80
- If you find ZenML helpful or interesting, please consider giving us a star on GitHub. Your support helps promote the project and lets others know that it's worth checking out.
81
-
82
- Thank you for your support! 🌟
83
-
84
- [![Star this project](https://img.shields.io/github/stars/zenml-io/zenml?style=social)](https://github.com/zenml-io/zenml/stargazers)
85
-
86
- ## 🤸 Quickstart
87
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/zenml-io/zenml/blob/main/examples/quickstart/quickstart.ipynb)
88
-
89
- [Install ZenML](https://docs.zenml.io/getting-started/installation) via [PyPI](https://pypi.org/project/zenml/). Python 3.9 - 3.12 is required:
90
-
91
- ```bash
92
- pip install "zenml[server]" notebook
93
- ```
94
-
95
- Take a tour with the guided quickstart by running:
96
-
97
- ```bash
98
- zenml go
99
- ```
100
-
101
- ## 🪄 Simple, integrated, End-to-end MLOps
102
-
103
- ### Create machine learning pipelines with minimal code changes
104
-
105
- ZenML is a MLOps framework intended for data scientists or ML engineers looking to standardize machine learning practices. Just add `@step` and `@pipeline` to your existing Python functions to get going. Here is a toy example:
106
-
107
- ```python
108
- from zenml import pipeline, step
109
-
110
- @step # Just add this decorator
111
- def load_data() -> dict:
112
- training_data = [[1, 2], [3, 4], [5, 6]]
113
- labels = [0, 1, 0]
114
- return {'features': training_data, 'labels': labels}
115
-
116
- @step
117
- def train_model(data: dict) -> None:
118
- total_features = sum(map(sum, data['features']))
119
- total_labels = sum(data['labels'])
120
-
121
- print(f"Trained model using {len(data['features'])} data points. "
122
- f"Feature sum is {total_features}, label sum is {total_labels}")
123
-
124
- @pipeline # This function combines steps together
125
- def simple_ml_pipeline():
126
- dataset = load_data()
127
- train_model(dataset)
128
-
129
- if __name__ == "__main__":
130
- run = simple_ml_pipeline() # call this to run the pipeline
131
-
132
- ```
133
-
134
- ![Running a ZenML pipeline](/docs/book/.gitbook/assets/readme_basic_pipeline.gif)
135
-
136
- ### Easily provision an MLOps stack or reuse your existing infrastructure
137
-
138
- The framework is a gentle entry point for practitioners to build complex ML pipelines with little knowledge required of the underlying infrastructure complexity. ZenML pipelines can be run on AWS, GCP, Azure, Airflow, Kubeflow and even on Kubernetes without having to change any code or know underlying internals.
139
-
140
- ZenML provides different features to aid people to get started quickly on a remote setting as well. If you want to deploy a remote stack from scratch on your selected cloud provider, you can use the 1-click deployment feature either through the dashboard:
141
-
142
- ![Running a ZenML pipeline](/docs/book/.gitbook/assets/one-click-deployment.gif)
143
-
144
- Or, through our CLI command:
145
-
146
- ```bash
147
- zenml stack deploy --provider aws
148
- ```
149
-
150
- Alternatively, if the necessary pieces of infrastructure are already deployed, you can register a cloud stack seamlessly through the stack wizard:
151
-
152
- ```bash
153
- zenml stack register <STACK_NAME> --provider aws
154
- ```
155
-
156
- Read more about [ZenML stacks](https://docs.zenml.io/user-guide/production-guide/understand-stacks).
157
-
158
- ### Run workloads easily on your production infrastructure
159
-
160
- Once you have your MLOps stack configured, you can easily run workloads on it:
161
-
162
- ```bash
163
- zenml stack set <STACK_NAME>
164
- python run.py
165
- ```
166
-
167
- ```python
168
- from zenml.config import ResourceSettings, DockerSettings
169
-
170
- @step(
171
- settings={
172
- "resources": ResourceSettings(memory="16GB", gpu_count="1", cpu_count="8"),
173
- "docker": DockerSettings(parent_image="pytorch/pytorch:1.12.1-cuda11.3-cudnn8-runtime")
174
- }
175
- )
176
- def training(...):
177
- ...
178
- ```
179
-
180
- ![Workloads with ZenML](/docs/book/.gitbook/assets/readme_compute.gif)
181
-
182
- ### Track models, pipeline, and artifacts
183
-
184
- Create a complete lineage of who, where, and what data and models are produced.
185
-
186
- You’ll be able to find out who produced which model, at what time, with which data, and on which version of the code. This guarantees full reproducibility and auditability.
187
-
188
- ```python
189
- from zenml import Model
190
-
191
- @step(model=Model(name="classification"))
192
- def trainer(training_df: pd.DataFrame) -> Annotated["model", torch.nn.Module]:
193
- ...
194
- ```
195
-
196
- ![Exploring ZenML Models](/docs/book/.gitbook/assets/readme_mcp.gif)
197
-
198
- ### Purpose built for machine learning with integrations to your favorite tools
199
-
200
- While ZenML brings a lot of value out of the box, it also integrates into your existing tooling and infrastructure without you having to be locked in.
201
-
202
- ```python
203
- from bentoml._internal.bento import bento
204
-
205
- @step(on_failure=alert_slack, experiment_tracker="mlflow")
206
- def train_and_deploy(training_df: pd.DataFrame) -> bento.Bento
207
- mlflow.autolog()
208
- ...
209
- return bento
210
- ```
211
-
212
- ![Exploring ZenML Integrations](/docs/book/.gitbook/assets/readme_integrations.gif)
213
-
214
- ## 🖼️ Learning
215
-
216
- The best way to learn about ZenML is the [docs](https://docs.zenml.io/). We recommend beginning with the [Starter Guide](https://docs.zenml.io/user-guide/starter-guide) to get up and running quickly.
217
-
218
- If you are a visual learner, this 11-minute video tutorial is also a great start:
219
-
220
- [![Introductory Youtube Video](docs/book/.gitbook/assets/readme_youtube_thumbnail.png)](https://www.youtube.com/watch?v=wEVwIkDvUPs)
221
-
222
- And finally, here are some other examples and use cases for inspiration:
223
-
224
- 1. [E2E Batch Inference](examples/e2e/): Feature engineering, training, and inference pipelines for tabular machine learning.
225
- 2. [Basic NLP with BERT](examples/e2e_nlp/): Feature engineering, training, and inference focused on NLP.
226
- 3. [LLM RAG Pipeline with Langchain and OpenAI](https://github.com/zenml-io/zenml-projects/tree/main/llm-agents): Using Langchain to create a simple RAG pipeline.
227
- 4. [Huggingface Model to Sagemaker Endpoint](https://github.com/zenml-io/zenml-projects/tree/main/huggingface-sagemaker): Automated MLOps on Amazon Sagemaker and HuggingFace
228
- 5. [LLMops](https://github.com/zenml-io/zenml-projects/tree/main/llm-complete-guide): Complete guide to do LLM with ZenML
229
-
230
-
231
- ## 📚 Learn from Books
232
-
233
- <div align="center">
234
- <a href="https://www.amazon.com/LLM-Engineers-Handbook-engineering-production/dp/1836200072">
235
- <img src="docs/book/.gitbook/assets/llm_engineering_handbook_cover.jpg" alt="LLM Engineer's Handbook Cover" width="200"/></img>
236
- </a>&nbsp;&nbsp;&nbsp;&nbsp;
237
- <a href="https://www.amazon.com/-/en/Andrew-McMahon/dp/1837631964">
238
- <img src="docs/book/.gitbook/assets/ml_engineering_with_python.jpg" alt="Machine Learning Engineering with Python Cover" width="200"/></img>
239
- </a>
240
- </br></br>
241
- </div>
242
-
243
- ZenML is featured in these comprehensive guides to modern MLOps and LLM engineering. Learn how to build production-ready machine learning systems with real-world examples and best practices.
244
-
245
- ## 🔋 Deploy ZenML
246
-
247
- For full functionality ZenML should be deployed on the cloud to
248
- enable collaborative features as the central MLOps interface for teams.
249
-
250
- Read more about various deployment options [here](https://docs.zenml.io/getting-started/deploying-zenml).
251
-
252
- Or, sign up for [ZenML Pro to get a fully managed server on a free trial](https://cloud.zenml.io/?utm_source=readme&utm_medium=referral_link&utm_campaign=cloud_promotion&utm_content=signup_link).
253
-
254
- ## Use ZenML with VS Code
255
-
256
- ZenML has a [VS Code extension](https://marketplace.visualstudio.com/items?itemName=ZenML.zenml-vscode) that allows you to inspect your stacks and pipeline runs directly from your editor. The extension also allows you to switch your stacks without needing to type any CLI commands.
257
-
258
- <details>
259
- <summary>🖥️ VS Code Extension in Action!</summary>
260
- <div align="center">
261
- <img width="60%" src="/docs/book/.gitbook/assets/zenml-extension-shortened.gif" alt="ZenML Extension">
262
- </div>
263
- </details>
264
-
265
- ## 🗺 Roadmap
266
-
267
- ZenML is being built in public. The [roadmap](https://zenml.io/roadmap) is a regularly updated source of truth for the ZenML community to understand where the product is going in the short, medium, and long term.
268
-
269
- ZenML is managed by a [core team](https://zenml.io/company) of developers that are responsible for making key decisions and incorporating feedback from the community. The team oversees feedback via various channels,
270
- and you can directly influence the roadmap as follows:
271
-
272
- - Vote on your most wanted feature on our [Discussion
273
- board](https://zenml.io/discussion).
274
- - Start a thread in our [Slack channel](https://zenml.io/slack).
275
- - [Create an issue](https://github.com/zenml-io/zenml/issues/new/choose) on our GitHub repo.
276
-
277
- ## 🙌 Contributing and Community
278
-
279
- We would love to develop ZenML together with our community! The best way to get
280
- started is to select any issue from the `[good-first-issue`
281
- label](https://github.com/issues?q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Azenml-io+label%3A%22good+first+issue%22)
282
- and open up a Pull Request!
283
-
284
- If you
285
- would like to contribute, please review our [Contributing
286
- Guide](CONTRIBUTING.md) for all relevant details.
287
-
288
- ## 🆘 Getting Help
289
-
290
- The first point of call should
291
- be [our Slack group](https://zenml.io/slack-invite/).
292
- Ask your questions about bugs or specific use cases, and someone from
293
- the [core team](https://zenml.io/company) will respond.
294
- Or, if you
295
- prefer, [open an issue](https://github.com/zenml-io/zenml/issues/new/choose) on
296
- our GitHub repo.
297
-
298
- ## ⭐️ Show Your Support
299
-
300
- If you find ZenML helpful or interesting, please consider giving us a star on GitHub. Your support helps promote the project and lets others know that it's worth checking out.
301
-
302
- Thank you for your support! 🌟
303
-
304
- [![Star this project](https://img.shields.io/github/stars/zenml-io/zenml?style=social)](https://github.com/zenml-io/zenml/stargazers)
305
-
306
- ## 📜 License
307
-
308
- ZenML is distributed under the terms of the Apache License Version 2.0.
309
- A complete version of the license is available in the [LICENSE](LICENSE) file in
310
- this repository. Any contribution made to this project will be licensed under
311
- the Apache License Version 2.0.
312
-
313
- <div>
314
- <p align="left">
315
- <div align="left">
316
- Join our <a href="https://zenml.io/slack" target="_blank">
317
- <img width="18" src="https://cdn3.iconfinder.com/data/icons/logos-and-brands-adobe/512/306_Slack-512.png" alt="Slack"/>
318
- <b>Slack Community</b> </a> and be part of the ZenML family.
319
- </div>
320
- <br />
321
- <a href="https://zenml.io/features">Features</a>
322
- ·
323
- <a href="https://zenml.io/roadmap">Roadmap</a>
324
- ·
325
- <a href="https://github.com/zenml-io/zenml/issues">Report Bug</a>
326
- ·
327
- <a href="https://zenml.io/pro">Sign up for ZenML Pro</a>
328
- ·
329
- <a href="https://www.zenml.io/blog">Read Blog</a>
330
- ·
331
- <a href="https://github.com/issues?q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Azenml-io+label%3A%22good+first+issue%22">Contribute to Open Source</a>
332
- ·
333
- <a href="https://github.com/zenml-io/zenml-projects">Projects Showcase</a>
334
- <br />
335
- <br />
336
- 🎉 Version 0.71.0 is out. Check out the release notes
337
- <a href="https://github.com/zenml-io/zenml/releases">here</a>.
338
- <br />
339
- 🖥️ Download our VS Code Extension <a href="https://marketplace.visualstudio.com/items?itemName=ZenML.zenml-vscode">here</a>.
340
- <br />
341
- </p>
342
- </div>