zenml-nightly 0.71.0.dev20250105__py3-none-any.whl → 0.71.0.dev20250106__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- zenml/VERSION +1 -1
- {zenml_nightly-0.71.0.dev20250105.dist-info → zenml_nightly-0.71.0.dev20250106.dist-info}/METADATA +2 -2
- {zenml_nightly-0.71.0.dev20250105.dist-info → zenml_nightly-0.71.0.dev20250106.dist-info}/RECORD +6 -13
- {zenml_nightly-0.71.0.dev20250105.dist-info → zenml_nightly-0.71.0.dev20250106.dist-info}/WHEEL +1 -1
- CLA.md +0 -110
- CODE-OF-CONDUCT.md +0 -132
- CONTRIBUTING.md +0 -260
- README.md +0 -342
- RELEASE_NOTES.md +0 -5722
- ROADMAP.md +0 -5
- SECURITY.md +0 -15
- {zenml_nightly-0.71.0.dev20250105.dist-info → zenml_nightly-0.71.0.dev20250106.dist-info}/LICENSE +0 -0
- {zenml_nightly-0.71.0.dev20250105.dist-info → zenml_nightly-0.71.0.dev20250106.dist-info}/entry_points.txt +0 -0
README.md
DELETED
@@ -1,342 +0,0 @@
|
|
1
|
-
<div align="center">
|
2
|
-
<img referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=0fcbab94-8fbe-4a38-93e8-c2348450a42e" />
|
3
|
-
<h1 align="center">Connecting data science teams seamlessly to cloud infrastructure.
|
4
|
-
</h1>
|
5
|
-
</div>
|
6
|
-
|
7
|
-
<!-- PROJECT SHIELDS -->
|
8
|
-
<!--
|
9
|
-
*** I'm using markdown "reference style" links for readability.
|
10
|
-
*** Reference links are enclosed in brackets [ ] instead of parentheses ( ).
|
11
|
-
*** See the bottom of this document for the declaration of the reference variables
|
12
|
-
*** for contributors-url, forks-url, etc. This is an optional, concise syntax you may use.
|
13
|
-
*** https://www.markdownguide.org/basic-syntax/#reference-style-links
|
14
|
-
-->
|
15
|
-
|
16
|
-
<div align="center">
|
17
|
-
|
18
|
-
<!-- PROJECT LOGO -->
|
19
|
-
<br />
|
20
|
-
<a href="https://zenml.io">
|
21
|
-
<img alt="ZenML Logo" src="docs/book/.gitbook/assets/header.png" alt="ZenML Logo">
|
22
|
-
</a>
|
23
|
-
<br />
|
24
|
-
|
25
|
-
[![PyPi][pypi-shield]][pypi-url]
|
26
|
-
[![PyPi][pypiversion-shield]][pypi-url]
|
27
|
-
[![PyPi][downloads-shield]][downloads-url]
|
28
|
-
[![Contributors][contributors-shield]][contributors-url]
|
29
|
-
[![License][license-shield]][license-url]
|
30
|
-
<!-- [![Build][build-shield]][build-url] -->
|
31
|
-
<!-- [![CodeCov][codecov-shield]][codecov-url] -->
|
32
|
-
|
33
|
-
</div>
|
34
|
-
|
35
|
-
<!-- MARKDOWN LINKS & IMAGES -->
|
36
|
-
<!-- https://www.markdownguide.org/basic-syntax/#reference-style-links -->
|
37
|
-
|
38
|
-
[pypi-shield]: https://img.shields.io/pypi/pyversions/zenml?color=281158
|
39
|
-
|
40
|
-
[pypi-url]: https://pypi.org/project/zenml/
|
41
|
-
|
42
|
-
[pypiversion-shield]: https://img.shields.io/pypi/v/zenml?color=361776
|
43
|
-
|
44
|
-
[downloads-shield]: https://img.shields.io/pypi/dm/zenml?color=431D93
|
45
|
-
|
46
|
-
[downloads-url]: https://pypi.org/project/zenml/
|
47
|
-
|
48
|
-
[codecov-shield]: https://img.shields.io/codecov/c/gh/zenml-io/zenml?color=7A3EF4
|
49
|
-
|
50
|
-
[codecov-url]: https://codecov.io/gh/zenml-io/zenml
|
51
|
-
|
52
|
-
[contributors-shield]: https://img.shields.io/github/contributors/zenml-io/zenml?color=7A3EF4
|
53
|
-
|
54
|
-
[contributors-url]: https://github.com/zenml-io/zenml/graphs/contributors
|
55
|
-
|
56
|
-
[license-shield]: https://img.shields.io/github/license/zenml-io/zenml?color=9565F6
|
57
|
-
|
58
|
-
[license-url]: https://github.com/zenml-io/zenml/blob/main/LICENSE
|
59
|
-
|
60
|
-
[linkedin-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555
|
61
|
-
|
62
|
-
[linkedin-url]: https://www.linkedin.com/company/zenml/
|
63
|
-
|
64
|
-
[twitter-shield]: https://img.shields.io/twitter/follow/zenml_io?style=for-the-badge
|
65
|
-
|
66
|
-
[twitter-url]: https://twitter.com/zenml_io
|
67
|
-
|
68
|
-
[slack-shield]: https://img.shields.io/badge/-Slack-black.svg?style=for-the-badge&logo=linkedin&colorB=555
|
69
|
-
|
70
|
-
[slack-url]: https://zenml.io/slack-invite
|
71
|
-
|
72
|
-
[build-shield]: https://img.shields.io/github/workflow/status/zenml-io/zenml/Build,%20Lint,%20Unit%20&%20Integration%20Test/develop?logo=github&style=for-the-badge
|
73
|
-
|
74
|
-
[build-url]: https://github.com/zenml-io/zenml/actions/workflows/ci.yml
|
75
|
-
|
76
|
-
---
|
77
|
-
|
78
|
-
## ⭐️ Show Your Support
|
79
|
-
|
80
|
-
If you find ZenML helpful or interesting, please consider giving us a star on GitHub. Your support helps promote the project and lets others know that it's worth checking out.
|
81
|
-
|
82
|
-
Thank you for your support! 🌟
|
83
|
-
|
84
|
-
[](https://github.com/zenml-io/zenml/stargazers)
|
85
|
-
|
86
|
-
## 🤸 Quickstart
|
87
|
-
[](https://colab.research.google.com/github/zenml-io/zenml/blob/main/examples/quickstart/quickstart.ipynb)
|
88
|
-
|
89
|
-
[Install ZenML](https://docs.zenml.io/getting-started/installation) via [PyPI](https://pypi.org/project/zenml/). Python 3.9 - 3.12 is required:
|
90
|
-
|
91
|
-
```bash
|
92
|
-
pip install "zenml[server]" notebook
|
93
|
-
```
|
94
|
-
|
95
|
-
Take a tour with the guided quickstart by running:
|
96
|
-
|
97
|
-
```bash
|
98
|
-
zenml go
|
99
|
-
```
|
100
|
-
|
101
|
-
## 🪄 Simple, integrated, End-to-end MLOps
|
102
|
-
|
103
|
-
### Create machine learning pipelines with minimal code changes
|
104
|
-
|
105
|
-
ZenML is a MLOps framework intended for data scientists or ML engineers looking to standardize machine learning practices. Just add `@step` and `@pipeline` to your existing Python functions to get going. Here is a toy example:
|
106
|
-
|
107
|
-
```python
|
108
|
-
from zenml import pipeline, step
|
109
|
-
|
110
|
-
@step # Just add this decorator
|
111
|
-
def load_data() -> dict:
|
112
|
-
training_data = [[1, 2], [3, 4], [5, 6]]
|
113
|
-
labels = [0, 1, 0]
|
114
|
-
return {'features': training_data, 'labels': labels}
|
115
|
-
|
116
|
-
@step
|
117
|
-
def train_model(data: dict) -> None:
|
118
|
-
total_features = sum(map(sum, data['features']))
|
119
|
-
total_labels = sum(data['labels'])
|
120
|
-
|
121
|
-
print(f"Trained model using {len(data['features'])} data points. "
|
122
|
-
f"Feature sum is {total_features}, label sum is {total_labels}")
|
123
|
-
|
124
|
-
@pipeline # This function combines steps together
|
125
|
-
def simple_ml_pipeline():
|
126
|
-
dataset = load_data()
|
127
|
-
train_model(dataset)
|
128
|
-
|
129
|
-
if __name__ == "__main__":
|
130
|
-
run = simple_ml_pipeline() # call this to run the pipeline
|
131
|
-
|
132
|
-
```
|
133
|
-
|
134
|
-

|
135
|
-
|
136
|
-
### Easily provision an MLOps stack or reuse your existing infrastructure
|
137
|
-
|
138
|
-
The framework is a gentle entry point for practitioners to build complex ML pipelines with little knowledge required of the underlying infrastructure complexity. ZenML pipelines can be run on AWS, GCP, Azure, Airflow, Kubeflow and even on Kubernetes without having to change any code or know underlying internals.
|
139
|
-
|
140
|
-
ZenML provides different features to aid people to get started quickly on a remote setting as well. If you want to deploy a remote stack from scratch on your selected cloud provider, you can use the 1-click deployment feature either through the dashboard:
|
141
|
-
|
142
|
-

|
143
|
-
|
144
|
-
Or, through our CLI command:
|
145
|
-
|
146
|
-
```bash
|
147
|
-
zenml stack deploy --provider aws
|
148
|
-
```
|
149
|
-
|
150
|
-
Alternatively, if the necessary pieces of infrastructure are already deployed, you can register a cloud stack seamlessly through the stack wizard:
|
151
|
-
|
152
|
-
```bash
|
153
|
-
zenml stack register <STACK_NAME> --provider aws
|
154
|
-
```
|
155
|
-
|
156
|
-
Read more about [ZenML stacks](https://docs.zenml.io/user-guide/production-guide/understand-stacks).
|
157
|
-
|
158
|
-
### Run workloads easily on your production infrastructure
|
159
|
-
|
160
|
-
Once you have your MLOps stack configured, you can easily run workloads on it:
|
161
|
-
|
162
|
-
```bash
|
163
|
-
zenml stack set <STACK_NAME>
|
164
|
-
python run.py
|
165
|
-
```
|
166
|
-
|
167
|
-
```python
|
168
|
-
from zenml.config import ResourceSettings, DockerSettings
|
169
|
-
|
170
|
-
@step(
|
171
|
-
settings={
|
172
|
-
"resources": ResourceSettings(memory="16GB", gpu_count="1", cpu_count="8"),
|
173
|
-
"docker": DockerSettings(parent_image="pytorch/pytorch:1.12.1-cuda11.3-cudnn8-runtime")
|
174
|
-
}
|
175
|
-
)
|
176
|
-
def training(...):
|
177
|
-
...
|
178
|
-
```
|
179
|
-
|
180
|
-

|
181
|
-
|
182
|
-
### Track models, pipeline, and artifacts
|
183
|
-
|
184
|
-
Create a complete lineage of who, where, and what data and models are produced.
|
185
|
-
|
186
|
-
You’ll be able to find out who produced which model, at what time, with which data, and on which version of the code. This guarantees full reproducibility and auditability.
|
187
|
-
|
188
|
-
```python
|
189
|
-
from zenml import Model
|
190
|
-
|
191
|
-
@step(model=Model(name="classification"))
|
192
|
-
def trainer(training_df: pd.DataFrame) -> Annotated["model", torch.nn.Module]:
|
193
|
-
...
|
194
|
-
```
|
195
|
-
|
196
|
-

|
197
|
-
|
198
|
-
### Purpose built for machine learning with integrations to your favorite tools
|
199
|
-
|
200
|
-
While ZenML brings a lot of value out of the box, it also integrates into your existing tooling and infrastructure without you having to be locked in.
|
201
|
-
|
202
|
-
```python
|
203
|
-
from bentoml._internal.bento import bento
|
204
|
-
|
205
|
-
@step(on_failure=alert_slack, experiment_tracker="mlflow")
|
206
|
-
def train_and_deploy(training_df: pd.DataFrame) -> bento.Bento
|
207
|
-
mlflow.autolog()
|
208
|
-
...
|
209
|
-
return bento
|
210
|
-
```
|
211
|
-
|
212
|
-

|
213
|
-
|
214
|
-
## 🖼️ Learning
|
215
|
-
|
216
|
-
The best way to learn about ZenML is the [docs](https://docs.zenml.io/). We recommend beginning with the [Starter Guide](https://docs.zenml.io/user-guide/starter-guide) to get up and running quickly.
|
217
|
-
|
218
|
-
If you are a visual learner, this 11-minute video tutorial is also a great start:
|
219
|
-
|
220
|
-
[](https://www.youtube.com/watch?v=wEVwIkDvUPs)
|
221
|
-
|
222
|
-
And finally, here are some other examples and use cases for inspiration:
|
223
|
-
|
224
|
-
1. [E2E Batch Inference](examples/e2e/): Feature engineering, training, and inference pipelines for tabular machine learning.
|
225
|
-
2. [Basic NLP with BERT](examples/e2e_nlp/): Feature engineering, training, and inference focused on NLP.
|
226
|
-
3. [LLM RAG Pipeline with Langchain and OpenAI](https://github.com/zenml-io/zenml-projects/tree/main/llm-agents): Using Langchain to create a simple RAG pipeline.
|
227
|
-
4. [Huggingface Model to Sagemaker Endpoint](https://github.com/zenml-io/zenml-projects/tree/main/huggingface-sagemaker): Automated MLOps on Amazon Sagemaker and HuggingFace
|
228
|
-
5. [LLMops](https://github.com/zenml-io/zenml-projects/tree/main/llm-complete-guide): Complete guide to do LLM with ZenML
|
229
|
-
|
230
|
-
|
231
|
-
## 📚 Learn from Books
|
232
|
-
|
233
|
-
<div align="center">
|
234
|
-
<a href="https://www.amazon.com/LLM-Engineers-Handbook-engineering-production/dp/1836200072">
|
235
|
-
<img src="docs/book/.gitbook/assets/llm_engineering_handbook_cover.jpg" alt="LLM Engineer's Handbook Cover" width="200"/></img>
|
236
|
-
</a>
|
237
|
-
<a href="https://www.amazon.com/-/en/Andrew-McMahon/dp/1837631964">
|
238
|
-
<img src="docs/book/.gitbook/assets/ml_engineering_with_python.jpg" alt="Machine Learning Engineering with Python Cover" width="200"/></img>
|
239
|
-
</a>
|
240
|
-
</br></br>
|
241
|
-
</div>
|
242
|
-
|
243
|
-
ZenML is featured in these comprehensive guides to modern MLOps and LLM engineering. Learn how to build production-ready machine learning systems with real-world examples and best practices.
|
244
|
-
|
245
|
-
## 🔋 Deploy ZenML
|
246
|
-
|
247
|
-
For full functionality ZenML should be deployed on the cloud to
|
248
|
-
enable collaborative features as the central MLOps interface for teams.
|
249
|
-
|
250
|
-
Read more about various deployment options [here](https://docs.zenml.io/getting-started/deploying-zenml).
|
251
|
-
|
252
|
-
Or, sign up for [ZenML Pro to get a fully managed server on a free trial](https://cloud.zenml.io/?utm_source=readme&utm_medium=referral_link&utm_campaign=cloud_promotion&utm_content=signup_link).
|
253
|
-
|
254
|
-
## Use ZenML with VS Code
|
255
|
-
|
256
|
-
ZenML has a [VS Code extension](https://marketplace.visualstudio.com/items?itemName=ZenML.zenml-vscode) that allows you to inspect your stacks and pipeline runs directly from your editor. The extension also allows you to switch your stacks without needing to type any CLI commands.
|
257
|
-
|
258
|
-
<details>
|
259
|
-
<summary>🖥️ VS Code Extension in Action!</summary>
|
260
|
-
<div align="center">
|
261
|
-
<img width="60%" src="/docs/book/.gitbook/assets/zenml-extension-shortened.gif" alt="ZenML Extension">
|
262
|
-
</div>
|
263
|
-
</details>
|
264
|
-
|
265
|
-
## 🗺 Roadmap
|
266
|
-
|
267
|
-
ZenML is being built in public. The [roadmap](https://zenml.io/roadmap) is a regularly updated source of truth for the ZenML community to understand where the product is going in the short, medium, and long term.
|
268
|
-
|
269
|
-
ZenML is managed by a [core team](https://zenml.io/company) of developers that are responsible for making key decisions and incorporating feedback from the community. The team oversees feedback via various channels,
|
270
|
-
and you can directly influence the roadmap as follows:
|
271
|
-
|
272
|
-
- Vote on your most wanted feature on our [Discussion
|
273
|
-
board](https://zenml.io/discussion).
|
274
|
-
- Start a thread in our [Slack channel](https://zenml.io/slack).
|
275
|
-
- [Create an issue](https://github.com/zenml-io/zenml/issues/new/choose) on our GitHub repo.
|
276
|
-
|
277
|
-
## 🙌 Contributing and Community
|
278
|
-
|
279
|
-
We would love to develop ZenML together with our community! The best way to get
|
280
|
-
started is to select any issue from the `[good-first-issue`
|
281
|
-
label](https://github.com/issues?q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Azenml-io+label%3A%22good+first+issue%22)
|
282
|
-
and open up a Pull Request!
|
283
|
-
|
284
|
-
If you
|
285
|
-
would like to contribute, please review our [Contributing
|
286
|
-
Guide](CONTRIBUTING.md) for all relevant details.
|
287
|
-
|
288
|
-
## 🆘 Getting Help
|
289
|
-
|
290
|
-
The first point of call should
|
291
|
-
be [our Slack group](https://zenml.io/slack-invite/).
|
292
|
-
Ask your questions about bugs or specific use cases, and someone from
|
293
|
-
the [core team](https://zenml.io/company) will respond.
|
294
|
-
Or, if you
|
295
|
-
prefer, [open an issue](https://github.com/zenml-io/zenml/issues/new/choose) on
|
296
|
-
our GitHub repo.
|
297
|
-
|
298
|
-
## ⭐️ Show Your Support
|
299
|
-
|
300
|
-
If you find ZenML helpful or interesting, please consider giving us a star on GitHub. Your support helps promote the project and lets others know that it's worth checking out.
|
301
|
-
|
302
|
-
Thank you for your support! 🌟
|
303
|
-
|
304
|
-
[](https://github.com/zenml-io/zenml/stargazers)
|
305
|
-
|
306
|
-
## 📜 License
|
307
|
-
|
308
|
-
ZenML is distributed under the terms of the Apache License Version 2.0.
|
309
|
-
A complete version of the license is available in the [LICENSE](LICENSE) file in
|
310
|
-
this repository. Any contribution made to this project will be licensed under
|
311
|
-
the Apache License Version 2.0.
|
312
|
-
|
313
|
-
<div>
|
314
|
-
<p align="left">
|
315
|
-
<div align="left">
|
316
|
-
Join our <a href="https://zenml.io/slack" target="_blank">
|
317
|
-
<img width="18" src="https://cdn3.iconfinder.com/data/icons/logos-and-brands-adobe/512/306_Slack-512.png" alt="Slack"/>
|
318
|
-
<b>Slack Community</b> </a> and be part of the ZenML family.
|
319
|
-
</div>
|
320
|
-
<br />
|
321
|
-
<a href="https://zenml.io/features">Features</a>
|
322
|
-
·
|
323
|
-
<a href="https://zenml.io/roadmap">Roadmap</a>
|
324
|
-
·
|
325
|
-
<a href="https://github.com/zenml-io/zenml/issues">Report Bug</a>
|
326
|
-
·
|
327
|
-
<a href="https://zenml.io/pro">Sign up for ZenML Pro</a>
|
328
|
-
·
|
329
|
-
<a href="https://www.zenml.io/blog">Read Blog</a>
|
330
|
-
·
|
331
|
-
<a href="https://github.com/issues?q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Azenml-io+label%3A%22good+first+issue%22">Contribute to Open Source</a>
|
332
|
-
·
|
333
|
-
<a href="https://github.com/zenml-io/zenml-projects">Projects Showcase</a>
|
334
|
-
<br />
|
335
|
-
<br />
|
336
|
-
🎉 Version 0.71.0 is out. Check out the release notes
|
337
|
-
<a href="https://github.com/zenml-io/zenml/releases">here</a>.
|
338
|
-
<br />
|
339
|
-
🖥️ Download our VS Code Extension <a href="https://marketplace.visualstudio.com/items?itemName=ZenML.zenml-vscode">here</a>.
|
340
|
-
<br />
|
341
|
-
</p>
|
342
|
-
</div>
|