zenml-nightly 0.71.0.dev20250104__py3-none-any.whl → 0.71.0.dev20250106__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
README.md DELETED
@@ -1,342 +0,0 @@
1
- <div align="center">
2
- <img referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=0fcbab94-8fbe-4a38-93e8-c2348450a42e" />
3
- <h1 align="center">Connecting data science teams seamlessly to cloud infrastructure.
4
- </h1>
5
- </div>
6
-
7
- <!-- PROJECT SHIELDS -->
8
- <!--
9
- *** I'm using markdown "reference style" links for readability.
10
- *** Reference links are enclosed in brackets [ ] instead of parentheses ( ).
11
- *** See the bottom of this document for the declaration of the reference variables
12
- *** for contributors-url, forks-url, etc. This is an optional, concise syntax you may use.
13
- *** https://www.markdownguide.org/basic-syntax/#reference-style-links
14
- -->
15
-
16
- <div align="center">
17
-
18
- <!-- PROJECT LOGO -->
19
- <br />
20
- <a href="https://zenml.io">
21
- <img alt="ZenML Logo" src="docs/book/.gitbook/assets/header.png" alt="ZenML Logo">
22
- </a>
23
- <br />
24
-
25
- [![PyPi][pypi-shield]][pypi-url]
26
- [![PyPi][pypiversion-shield]][pypi-url]
27
- [![PyPi][downloads-shield]][downloads-url]
28
- [![Contributors][contributors-shield]][contributors-url]
29
- [![License][license-shield]][license-url]
30
- <!-- [![Build][build-shield]][build-url] -->
31
- <!-- [![CodeCov][codecov-shield]][codecov-url] -->
32
-
33
- </div>
34
-
35
- <!-- MARKDOWN LINKS & IMAGES -->
36
- <!-- https://www.markdownguide.org/basic-syntax/#reference-style-links -->
37
-
38
- [pypi-shield]: https://img.shields.io/pypi/pyversions/zenml?color=281158
39
-
40
- [pypi-url]: https://pypi.org/project/zenml/
41
-
42
- [pypiversion-shield]: https://img.shields.io/pypi/v/zenml?color=361776
43
-
44
- [downloads-shield]: https://img.shields.io/pypi/dm/zenml?color=431D93
45
-
46
- [downloads-url]: https://pypi.org/project/zenml/
47
-
48
- [codecov-shield]: https://img.shields.io/codecov/c/gh/zenml-io/zenml?color=7A3EF4
49
-
50
- [codecov-url]: https://codecov.io/gh/zenml-io/zenml
51
-
52
- [contributors-shield]: https://img.shields.io/github/contributors/zenml-io/zenml?color=7A3EF4
53
-
54
- [contributors-url]: https://github.com/zenml-io/zenml/graphs/contributors
55
-
56
- [license-shield]: https://img.shields.io/github/license/zenml-io/zenml?color=9565F6
57
-
58
- [license-url]: https://github.com/zenml-io/zenml/blob/main/LICENSE
59
-
60
- [linkedin-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555
61
-
62
- [linkedin-url]: https://www.linkedin.com/company/zenml/
63
-
64
- [twitter-shield]: https://img.shields.io/twitter/follow/zenml_io?style=for-the-badge
65
-
66
- [twitter-url]: https://twitter.com/zenml_io
67
-
68
- [slack-shield]: https://img.shields.io/badge/-Slack-black.svg?style=for-the-badge&logo=linkedin&colorB=555
69
-
70
- [slack-url]: https://zenml.io/slack-invite
71
-
72
- [build-shield]: https://img.shields.io/github/workflow/status/zenml-io/zenml/Build,%20Lint,%20Unit%20&%20Integration%20Test/develop?logo=github&style=for-the-badge
73
-
74
- [build-url]: https://github.com/zenml-io/zenml/actions/workflows/ci.yml
75
-
76
- ---
77
-
78
- ## ⭐️ Show Your Support
79
-
80
- If you find ZenML helpful or interesting, please consider giving us a star on GitHub. Your support helps promote the project and lets others know that it's worth checking out.
81
-
82
- Thank you for your support! 🌟
83
-
84
- [![Star this project](https://img.shields.io/github/stars/zenml-io/zenml?style=social)](https://github.com/zenml-io/zenml/stargazers)
85
-
86
- ## 🤸 Quickstart
87
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/zenml-io/zenml/blob/main/examples/quickstart/quickstart.ipynb)
88
-
89
- [Install ZenML](https://docs.zenml.io/getting-started/installation) via [PyPI](https://pypi.org/project/zenml/). Python 3.9 - 3.12 is required:
90
-
91
- ```bash
92
- pip install "zenml[server]" notebook
93
- ```
94
-
95
- Take a tour with the guided quickstart by running:
96
-
97
- ```bash
98
- zenml go
99
- ```
100
-
101
- ## 🪄 Simple, integrated, End-to-end MLOps
102
-
103
- ### Create machine learning pipelines with minimal code changes
104
-
105
- ZenML is a MLOps framework intended for data scientists or ML engineers looking to standardize machine learning practices. Just add `@step` and `@pipeline` to your existing Python functions to get going. Here is a toy example:
106
-
107
- ```python
108
- from zenml import pipeline, step
109
-
110
- @step # Just add this decorator
111
- def load_data() -> dict:
112
- training_data = [[1, 2], [3, 4], [5, 6]]
113
- labels = [0, 1, 0]
114
- return {'features': training_data, 'labels': labels}
115
-
116
- @step
117
- def train_model(data: dict) -> None:
118
- total_features = sum(map(sum, data['features']))
119
- total_labels = sum(data['labels'])
120
-
121
- print(f"Trained model using {len(data['features'])} data points. "
122
- f"Feature sum is {total_features}, label sum is {total_labels}")
123
-
124
- @pipeline # This function combines steps together
125
- def simple_ml_pipeline():
126
- dataset = load_data()
127
- train_model(dataset)
128
-
129
- if __name__ == "__main__":
130
- run = simple_ml_pipeline() # call this to run the pipeline
131
-
132
- ```
133
-
134
- ![Running a ZenML pipeline](/docs/book/.gitbook/assets/readme_basic_pipeline.gif)
135
-
136
- ### Easily provision an MLOps stack or reuse your existing infrastructure
137
-
138
- The framework is a gentle entry point for practitioners to build complex ML pipelines with little knowledge required of the underlying infrastructure complexity. ZenML pipelines can be run on AWS, GCP, Azure, Airflow, Kubeflow and even on Kubernetes without having to change any code or know underlying internals.
139
-
140
- ZenML provides different features to aid people to get started quickly on a remote setting as well. If you want to deploy a remote stack from scratch on your selected cloud provider, you can use the 1-click deployment feature either through the dashboard:
141
-
142
- ![Running a ZenML pipeline](/docs/book/.gitbook/assets/one-click-deployment.gif)
143
-
144
- Or, through our CLI command:
145
-
146
- ```bash
147
- zenml stack deploy --provider aws
148
- ```
149
-
150
- Alternatively, if the necessary pieces of infrastructure are already deployed, you can register a cloud stack seamlessly through the stack wizard:
151
-
152
- ```bash
153
- zenml stack register <STACK_NAME> --provider aws
154
- ```
155
-
156
- Read more about [ZenML stacks](https://docs.zenml.io/user-guide/production-guide/understand-stacks).
157
-
158
- ### Run workloads easily on your production infrastructure
159
-
160
- Once you have your MLOps stack configured, you can easily run workloads on it:
161
-
162
- ```bash
163
- zenml stack set <STACK_NAME>
164
- python run.py
165
- ```
166
-
167
- ```python
168
- from zenml.config import ResourceSettings, DockerSettings
169
-
170
- @step(
171
- settings={
172
- "resources": ResourceSettings(memory="16GB", gpu_count="1", cpu_count="8"),
173
- "docker": DockerSettings(parent_image="pytorch/pytorch:1.12.1-cuda11.3-cudnn8-runtime")
174
- }
175
- )
176
- def training(...):
177
- ...
178
- ```
179
-
180
- ![Workloads with ZenML](/docs/book/.gitbook/assets/readme_compute.gif)
181
-
182
- ### Track models, pipeline, and artifacts
183
-
184
- Create a complete lineage of who, where, and what data and models are produced.
185
-
186
- You’ll be able to find out who produced which model, at what time, with which data, and on which version of the code. This guarantees full reproducibility and auditability.
187
-
188
- ```python
189
- from zenml import Model
190
-
191
- @step(model=Model(name="classification"))
192
- def trainer(training_df: pd.DataFrame) -> Annotated["model", torch.nn.Module]:
193
- ...
194
- ```
195
-
196
- ![Exploring ZenML Models](/docs/book/.gitbook/assets/readme_mcp.gif)
197
-
198
- ### Purpose built for machine learning with integrations to your favorite tools
199
-
200
- While ZenML brings a lot of value out of the box, it also integrates into your existing tooling and infrastructure without you having to be locked in.
201
-
202
- ```python
203
- from bentoml._internal.bento import bento
204
-
205
- @step(on_failure=alert_slack, experiment_tracker="mlflow")
206
- def train_and_deploy(training_df: pd.DataFrame) -> bento.Bento
207
- mlflow.autolog()
208
- ...
209
- return bento
210
- ```
211
-
212
- ![Exploring ZenML Integrations](/docs/book/.gitbook/assets/readme_integrations.gif)
213
-
214
- ## 🖼️ Learning
215
-
216
- The best way to learn about ZenML is the [docs](https://docs.zenml.io/). We recommend beginning with the [Starter Guide](https://docs.zenml.io/user-guide/starter-guide) to get up and running quickly.
217
-
218
- If you are a visual learner, this 11-minute video tutorial is also a great start:
219
-
220
- [![Introductory Youtube Video](docs/book/.gitbook/assets/readme_youtube_thumbnail.png)](https://www.youtube.com/watch?v=wEVwIkDvUPs)
221
-
222
- And finally, here are some other examples and use cases for inspiration:
223
-
224
- 1. [E2E Batch Inference](examples/e2e/): Feature engineering, training, and inference pipelines for tabular machine learning.
225
- 2. [Basic NLP with BERT](examples/e2e_nlp/): Feature engineering, training, and inference focused on NLP.
226
- 3. [LLM RAG Pipeline with Langchain and OpenAI](https://github.com/zenml-io/zenml-projects/tree/main/llm-agents): Using Langchain to create a simple RAG pipeline.
227
- 4. [Huggingface Model to Sagemaker Endpoint](https://github.com/zenml-io/zenml-projects/tree/main/huggingface-sagemaker): Automated MLOps on Amazon Sagemaker and HuggingFace
228
- 5. [LLMops](https://github.com/zenml-io/zenml-projects/tree/main/llm-complete-guide): Complete guide to do LLM with ZenML
229
-
230
-
231
- ## 📚 Learn from Books
232
-
233
- <div align="center">
234
- <a href="https://www.amazon.com/LLM-Engineers-Handbook-engineering-production/dp/1836200072">
235
- <img src="docs/book/.gitbook/assets/llm_engineering_handbook_cover.jpg" alt="LLM Engineer's Handbook Cover" width="200"/></img>
236
- </a>&nbsp;&nbsp;&nbsp;&nbsp;
237
- <a href="https://www.amazon.com/-/en/Andrew-McMahon/dp/1837631964">
238
- <img src="docs/book/.gitbook/assets/ml_engineering_with_python.jpg" alt="Machine Learning Engineering with Python Cover" width="200"/></img>
239
- </a>
240
- </br></br>
241
- </div>
242
-
243
- ZenML is featured in these comprehensive guides to modern MLOps and LLM engineering. Learn how to build production-ready machine learning systems with real-world examples and best practices.
244
-
245
- ## 🔋 Deploy ZenML
246
-
247
- For full functionality ZenML should be deployed on the cloud to
248
- enable collaborative features as the central MLOps interface for teams.
249
-
250
- Read more about various deployment options [here](https://docs.zenml.io/getting-started/deploying-zenml).
251
-
252
- Or, sign up for [ZenML Pro to get a fully managed server on a free trial](https://cloud.zenml.io/?utm_source=readme&utm_medium=referral_link&utm_campaign=cloud_promotion&utm_content=signup_link).
253
-
254
- ## Use ZenML with VS Code
255
-
256
- ZenML has a [VS Code extension](https://marketplace.visualstudio.com/items?itemName=ZenML.zenml-vscode) that allows you to inspect your stacks and pipeline runs directly from your editor. The extension also allows you to switch your stacks without needing to type any CLI commands.
257
-
258
- <details>
259
- <summary>🖥️ VS Code Extension in Action!</summary>
260
- <div align="center">
261
- <img width="60%" src="/docs/book/.gitbook/assets/zenml-extension-shortened.gif" alt="ZenML Extension">
262
- </div>
263
- </details>
264
-
265
- ## 🗺 Roadmap
266
-
267
- ZenML is being built in public. The [roadmap](https://zenml.io/roadmap) is a regularly updated source of truth for the ZenML community to understand where the product is going in the short, medium, and long term.
268
-
269
- ZenML is managed by a [core team](https://zenml.io/company) of developers that are responsible for making key decisions and incorporating feedback from the community. The team oversees feedback via various channels,
270
- and you can directly influence the roadmap as follows:
271
-
272
- - Vote on your most wanted feature on our [Discussion
273
- board](https://zenml.io/discussion).
274
- - Start a thread in our [Slack channel](https://zenml.io/slack).
275
- - [Create an issue](https://github.com/zenml-io/zenml/issues/new/choose) on our GitHub repo.
276
-
277
- ## 🙌 Contributing and Community
278
-
279
- We would love to develop ZenML together with our community! The best way to get
280
- started is to select any issue from the `[good-first-issue`
281
- label](https://github.com/issues?q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Azenml-io+label%3A%22good+first+issue%22)
282
- and open up a Pull Request!
283
-
284
- If you
285
- would like to contribute, please review our [Contributing
286
- Guide](CONTRIBUTING.md) for all relevant details.
287
-
288
- ## 🆘 Getting Help
289
-
290
- The first point of call should
291
- be [our Slack group](https://zenml.io/slack-invite/).
292
- Ask your questions about bugs or specific use cases, and someone from
293
- the [core team](https://zenml.io/company) will respond.
294
- Or, if you
295
- prefer, [open an issue](https://github.com/zenml-io/zenml/issues/new/choose) on
296
- our GitHub repo.
297
-
298
- ## ⭐️ Show Your Support
299
-
300
- If you find ZenML helpful or interesting, please consider giving us a star on GitHub. Your support helps promote the project and lets others know that it's worth checking out.
301
-
302
- Thank you for your support! 🌟
303
-
304
- [![Star this project](https://img.shields.io/github/stars/zenml-io/zenml?style=social)](https://github.com/zenml-io/zenml/stargazers)
305
-
306
- ## 📜 License
307
-
308
- ZenML is distributed under the terms of the Apache License Version 2.0.
309
- A complete version of the license is available in the [LICENSE](LICENSE) file in
310
- this repository. Any contribution made to this project will be licensed under
311
- the Apache License Version 2.0.
312
-
313
- <div>
314
- <p align="left">
315
- <div align="left">
316
- Join our <a href="https://zenml.io/slack" target="_blank">
317
- <img width="18" src="https://cdn3.iconfinder.com/data/icons/logos-and-brands-adobe/512/306_Slack-512.png" alt="Slack"/>
318
- <b>Slack Community</b> </a> and be part of the ZenML family.
319
- </div>
320
- <br />
321
- <a href="https://zenml.io/features">Features</a>
322
- ·
323
- <a href="https://zenml.io/roadmap">Roadmap</a>
324
- ·
325
- <a href="https://github.com/zenml-io/zenml/issues">Report Bug</a>
326
- ·
327
- <a href="https://zenml.io/pro">Sign up for ZenML Pro</a>
328
- ·
329
- <a href="https://www.zenml.io/blog">Read Blog</a>
330
- ·
331
- <a href="https://github.com/issues?q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Azenml-io+label%3A%22good+first+issue%22">Contribute to Open Source</a>
332
- ·
333
- <a href="https://github.com/zenml-io/zenml-projects">Projects Showcase</a>
334
- <br />
335
- <br />
336
- 🎉 Version 0.71.0 is out. Check out the release notes
337
- <a href="https://github.com/zenml-io/zenml/releases">here</a>.
338
- <br />
339
- 🖥️ Download our VS Code Extension <a href="https://marketplace.visualstudio.com/items?itemName=ZenML.zenml-vscode">here</a>.
340
- <br />
341
- </p>
342
- </div>