zenml-nightly 0.70.0.dev20241127__py3-none-any.whl → 0.70.0.dev20241129__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- zenml/VERSION +1 -1
- zenml/artifacts/artifact_config.py +21 -1
- zenml/artifacts/utils.py +5 -1
- zenml/cli/pipeline.py +80 -0
- zenml/config/compiler.py +12 -3
- zenml/config/pipeline_configurations.py +20 -0
- zenml/config/pipeline_run_configuration.py +1 -0
- zenml/config/step_configurations.py +21 -0
- zenml/enums.py +1 -0
- zenml/integrations/__init__.py +1 -0
- zenml/integrations/constants.py +1 -0
- zenml/integrations/feast/__init__.py +1 -1
- zenml/integrations/feast/feature_stores/feast_feature_store.py +13 -9
- zenml/integrations/kubernetes/orchestrators/kube_utils.py +46 -2
- zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator.py +13 -2
- zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator_entrypoint.py +3 -1
- zenml/integrations/kubernetes/orchestrators/manifest_utils.py +3 -2
- zenml/integrations/kubernetes/step_operators/kubernetes_step_operator.py +3 -1
- zenml/integrations/modal/__init__.py +46 -0
- zenml/integrations/modal/flavors/__init__.py +26 -0
- zenml/integrations/modal/flavors/modal_step_operator_flavor.py +125 -0
- zenml/integrations/modal/step_operators/__init__.py +22 -0
- zenml/integrations/modal/step_operators/modal_step_operator.py +242 -0
- zenml/materializers/built_in_materializer.py +18 -1
- zenml/materializers/structured_string_materializer.py +8 -3
- zenml/model/model.py +6 -2
- zenml/models/v2/core/pipeline_run.py +4 -0
- zenml/models/v2/core/step_run.py +1 -1
- zenml/orchestrators/publish_utils.py +1 -1
- zenml/orchestrators/step_launcher.py +6 -2
- zenml/orchestrators/step_run_utils.py +15 -6
- zenml/orchestrators/step_runner.py +40 -2
- zenml/orchestrators/utils.py +29 -4
- zenml/pipelines/pipeline_decorator.py +4 -0
- zenml/pipelines/pipeline_definition.py +14 -3
- zenml/pipelines/run_utils.py +8 -3
- zenml/steps/base_step.py +11 -1
- zenml/steps/entrypoint_function_utils.py +4 -2
- zenml/steps/step_decorator.py +4 -0
- zenml/steps/utils.py +17 -5
- zenml/types.py +4 -0
- zenml/utils/string_utils.py +30 -12
- zenml/utils/visualization_utils.py +4 -1
- zenml/zen_server/template_execution/utils.py +1 -0
- zenml/zen_stores/schemas/artifact_schemas.py +2 -1
- zenml/zen_stores/schemas/pipeline_run_schemas.py +14 -3
- zenml/zen_stores/schemas/step_run_schemas.py +19 -0
- zenml/zen_stores/sql_zen_store.py +15 -11
- {zenml_nightly-0.70.0.dev20241127.dist-info → zenml_nightly-0.70.0.dev20241129.dist-info}/METADATA +1 -1
- {zenml_nightly-0.70.0.dev20241127.dist-info → zenml_nightly-0.70.0.dev20241129.dist-info}/RECORD +53 -48
- {zenml_nightly-0.70.0.dev20241127.dist-info → zenml_nightly-0.70.0.dev20241129.dist-info}/LICENSE +0 -0
- {zenml_nightly-0.70.0.dev20241127.dist-info → zenml_nightly-0.70.0.dev20241129.dist-info}/WHEEL +0 -0
- {zenml_nightly-0.70.0.dev20241127.dist-info → zenml_nightly-0.70.0.dev20241129.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,125 @@
|
|
1
|
+
# Copyright (c) ZenML GmbH 2024. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
12
|
+
# or implied. See the License for the specific language governing
|
13
|
+
# permissions and limitations under the License.
|
14
|
+
"""Modal step operator flavor."""
|
15
|
+
|
16
|
+
from typing import TYPE_CHECKING, Optional, Type
|
17
|
+
|
18
|
+
from zenml.config.base_settings import BaseSettings
|
19
|
+
from zenml.integrations.modal import MODAL_STEP_OPERATOR_FLAVOR
|
20
|
+
from zenml.step_operators import BaseStepOperatorConfig, BaseStepOperatorFlavor
|
21
|
+
|
22
|
+
if TYPE_CHECKING:
|
23
|
+
from zenml.integrations.modal.step_operators import ModalStepOperator
|
24
|
+
|
25
|
+
|
26
|
+
class ModalStepOperatorSettings(BaseSettings):
|
27
|
+
"""Settings for the Modal step operator.
|
28
|
+
|
29
|
+
Specifying the region and cloud provider is only available for Enterprise
|
30
|
+
and Team plan customers.
|
31
|
+
|
32
|
+
Certain combinations of settings are not available. It is suggested to err
|
33
|
+
on the side of looser settings rather than more restrictive ones to avoid
|
34
|
+
pipeline execution failures. In the case of failures, however, Modal
|
35
|
+
provides detailed error messages that can help identify what is
|
36
|
+
incompatible. See more in the Modal docs at https://modal.com/docs/guide/region-selection.
|
37
|
+
|
38
|
+
Attributes:
|
39
|
+
gpu: The type of GPU to use for the step execution.
|
40
|
+
region: The region to use for the step execution.
|
41
|
+
cloud: The cloud provider to use for the step execution.
|
42
|
+
"""
|
43
|
+
|
44
|
+
gpu: Optional[str] = None
|
45
|
+
region: Optional[str] = None
|
46
|
+
cloud: Optional[str] = None
|
47
|
+
|
48
|
+
|
49
|
+
class ModalStepOperatorConfig(
|
50
|
+
BaseStepOperatorConfig, ModalStepOperatorSettings
|
51
|
+
):
|
52
|
+
"""Configuration for the Modal step operator."""
|
53
|
+
|
54
|
+
@property
|
55
|
+
def is_remote(self) -> bool:
|
56
|
+
"""Checks if this stack component is running remotely.
|
57
|
+
|
58
|
+
This designation is used to determine if the stack component can be
|
59
|
+
used with a local ZenML database or if it requires a remote ZenML
|
60
|
+
server.
|
61
|
+
|
62
|
+
Returns:
|
63
|
+
True if this config is for a remote component, False otherwise.
|
64
|
+
"""
|
65
|
+
return True
|
66
|
+
|
67
|
+
|
68
|
+
class ModalStepOperatorFlavor(BaseStepOperatorFlavor):
|
69
|
+
"""Modal step operator flavor."""
|
70
|
+
|
71
|
+
@property
|
72
|
+
def name(self) -> str:
|
73
|
+
"""Name of the flavor.
|
74
|
+
|
75
|
+
Returns:
|
76
|
+
The name of the flavor.
|
77
|
+
"""
|
78
|
+
return MODAL_STEP_OPERATOR_FLAVOR
|
79
|
+
|
80
|
+
@property
|
81
|
+
def docs_url(self) -> Optional[str]:
|
82
|
+
"""A url to point at docs explaining this flavor.
|
83
|
+
|
84
|
+
Returns:
|
85
|
+
A flavor docs url.
|
86
|
+
"""
|
87
|
+
return self.generate_default_docs_url()
|
88
|
+
|
89
|
+
@property
|
90
|
+
def sdk_docs_url(self) -> Optional[str]:
|
91
|
+
"""A url to point at SDK docs explaining this flavor.
|
92
|
+
|
93
|
+
Returns:
|
94
|
+
A flavor SDK docs url.
|
95
|
+
"""
|
96
|
+
return self.generate_default_sdk_docs_url()
|
97
|
+
|
98
|
+
@property
|
99
|
+
def logo_url(self) -> str:
|
100
|
+
"""A url to represent the flavor in the dashboard.
|
101
|
+
|
102
|
+
Returns:
|
103
|
+
The flavor logo.
|
104
|
+
"""
|
105
|
+
return "https://public-flavor-logos.s3.eu-central-1.amazonaws.com/step_operator/modal.png"
|
106
|
+
|
107
|
+
@property
|
108
|
+
def config_class(self) -> Type[ModalStepOperatorConfig]:
|
109
|
+
"""Returns `ModalStepOperatorConfig` config class.
|
110
|
+
|
111
|
+
Returns:
|
112
|
+
The config class.
|
113
|
+
"""
|
114
|
+
return ModalStepOperatorConfig
|
115
|
+
|
116
|
+
@property
|
117
|
+
def implementation_class(self) -> Type["ModalStepOperator"]:
|
118
|
+
"""Implementation class for this flavor.
|
119
|
+
|
120
|
+
Returns:
|
121
|
+
The implementation class.
|
122
|
+
"""
|
123
|
+
from zenml.integrations.modal.step_operators import ModalStepOperator
|
124
|
+
|
125
|
+
return ModalStepOperator
|
@@ -0,0 +1,22 @@
|
|
1
|
+
# Copyright (c) ZenML GmbH 2024. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
12
|
+
# or implied. See the License for the specific language governing
|
13
|
+
# permissions and limitations under the License.
|
14
|
+
"""Modal step operator."""
|
15
|
+
|
16
|
+
from zenml.integrations.modal.step_operators.modal_step_operator import (
|
17
|
+
ModalStepOperator,
|
18
|
+
)
|
19
|
+
|
20
|
+
__all__ = [
|
21
|
+
"ModalStepOperator",
|
22
|
+
]
|
@@ -0,0 +1,242 @@
|
|
1
|
+
# Copyright (c) ZenML GmbH 2024. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
12
|
+
# or implied. See the License for the specific language governing
|
13
|
+
# permissions and limitations under the License.
|
14
|
+
"""Modal step operator implementation."""
|
15
|
+
|
16
|
+
import asyncio
|
17
|
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Type, cast
|
18
|
+
|
19
|
+
import modal
|
20
|
+
from modal_proto import api_pb2
|
21
|
+
|
22
|
+
from zenml.client import Client
|
23
|
+
from zenml.config.build_configuration import BuildConfiguration
|
24
|
+
from zenml.config.resource_settings import ByteUnit, ResourceSettings
|
25
|
+
from zenml.enums import StackComponentType
|
26
|
+
from zenml.integrations.modal.flavors import (
|
27
|
+
ModalStepOperatorConfig,
|
28
|
+
ModalStepOperatorSettings,
|
29
|
+
)
|
30
|
+
from zenml.logger import get_logger
|
31
|
+
from zenml.stack import Stack, StackValidator
|
32
|
+
from zenml.step_operators import BaseStepOperator
|
33
|
+
|
34
|
+
if TYPE_CHECKING:
|
35
|
+
from zenml.config.base_settings import BaseSettings
|
36
|
+
from zenml.config.step_run_info import StepRunInfo
|
37
|
+
from zenml.models import PipelineDeploymentBase
|
38
|
+
|
39
|
+
logger = get_logger(__name__)
|
40
|
+
|
41
|
+
MODAL_STEP_OPERATOR_DOCKER_IMAGE_KEY = "modal_step_operator"
|
42
|
+
|
43
|
+
|
44
|
+
def get_gpu_values(
|
45
|
+
settings: ModalStepOperatorSettings, resource_settings: ResourceSettings
|
46
|
+
) -> Optional[str]:
|
47
|
+
"""Get the GPU values for the Modal step operator.
|
48
|
+
|
49
|
+
Args:
|
50
|
+
settings: The Modal step operator settings.
|
51
|
+
resource_settings: The resource settings.
|
52
|
+
|
53
|
+
Returns:
|
54
|
+
The GPU string if a count is specified, otherwise the GPU type.
|
55
|
+
"""
|
56
|
+
if not settings.gpu:
|
57
|
+
return None
|
58
|
+
gpu_count = resource_settings.gpu_count
|
59
|
+
return f"{settings.gpu}:{gpu_count}" if gpu_count else settings.gpu
|
60
|
+
|
61
|
+
|
62
|
+
class ModalStepOperator(BaseStepOperator):
|
63
|
+
"""Step operator to run a step on Modal.
|
64
|
+
|
65
|
+
This class defines code that can set up a Modal environment and run
|
66
|
+
functions in it.
|
67
|
+
"""
|
68
|
+
|
69
|
+
@property
|
70
|
+
def config(self) -> ModalStepOperatorConfig:
|
71
|
+
"""Get the Modal step operator configuration.
|
72
|
+
|
73
|
+
Returns:
|
74
|
+
The Modal step operator configuration.
|
75
|
+
"""
|
76
|
+
return cast(ModalStepOperatorConfig, self._config)
|
77
|
+
|
78
|
+
@property
|
79
|
+
def settings_class(self) -> Optional[Type["BaseSettings"]]:
|
80
|
+
"""Get the settings class for the Modal step operator.
|
81
|
+
|
82
|
+
Returns:
|
83
|
+
The Modal step operator settings class.
|
84
|
+
"""
|
85
|
+
return ModalStepOperatorSettings
|
86
|
+
|
87
|
+
@property
|
88
|
+
def validator(self) -> Optional[StackValidator]:
|
89
|
+
"""Get the stack validator for the Modal step operator.
|
90
|
+
|
91
|
+
Returns:
|
92
|
+
The stack validator.
|
93
|
+
"""
|
94
|
+
|
95
|
+
def _validate_remote_components(stack: "Stack") -> Tuple[bool, str]:
|
96
|
+
if stack.artifact_store.config.is_local:
|
97
|
+
return False, (
|
98
|
+
"The Modal step operator runs code remotely and "
|
99
|
+
"needs to write files into the artifact store, but the "
|
100
|
+
f"artifact store `{stack.artifact_store.name}` of the "
|
101
|
+
"active stack is local. Please ensure that your stack "
|
102
|
+
"contains a remote artifact store when using the Modal "
|
103
|
+
"step operator."
|
104
|
+
)
|
105
|
+
|
106
|
+
container_registry = stack.container_registry
|
107
|
+
assert container_registry is not None
|
108
|
+
|
109
|
+
if container_registry.config.is_local:
|
110
|
+
return False, (
|
111
|
+
"The Modal step operator runs code remotely and "
|
112
|
+
"needs to push/pull Docker images, but the "
|
113
|
+
f"container registry `{container_registry.name}` of the "
|
114
|
+
"active stack is local. Please ensure that your stack "
|
115
|
+
"contains a remote container registry when using the "
|
116
|
+
"Modal step operator."
|
117
|
+
)
|
118
|
+
|
119
|
+
return True, ""
|
120
|
+
|
121
|
+
return StackValidator(
|
122
|
+
required_components={
|
123
|
+
StackComponentType.CONTAINER_REGISTRY,
|
124
|
+
StackComponentType.IMAGE_BUILDER,
|
125
|
+
},
|
126
|
+
custom_validation_function=_validate_remote_components,
|
127
|
+
)
|
128
|
+
|
129
|
+
def get_docker_builds(
|
130
|
+
self, deployment: "PipelineDeploymentBase"
|
131
|
+
) -> List["BuildConfiguration"]:
|
132
|
+
"""Get the Docker build configurations for the Modal step operator.
|
133
|
+
|
134
|
+
Args:
|
135
|
+
deployment: The pipeline deployment.
|
136
|
+
|
137
|
+
Returns:
|
138
|
+
A list of Docker build configurations.
|
139
|
+
"""
|
140
|
+
builds = []
|
141
|
+
for step_name, step in deployment.step_configurations.items():
|
142
|
+
if step.config.step_operator == self.name:
|
143
|
+
build = BuildConfiguration(
|
144
|
+
key=MODAL_STEP_OPERATOR_DOCKER_IMAGE_KEY,
|
145
|
+
settings=step.config.docker_settings,
|
146
|
+
step_name=step_name,
|
147
|
+
)
|
148
|
+
builds.append(build)
|
149
|
+
|
150
|
+
return builds
|
151
|
+
|
152
|
+
def launch(
|
153
|
+
self,
|
154
|
+
info: "StepRunInfo",
|
155
|
+
entrypoint_command: List[str],
|
156
|
+
environment: Dict[str, str],
|
157
|
+
) -> None:
|
158
|
+
"""Launch a step run on Modal.
|
159
|
+
|
160
|
+
Args:
|
161
|
+
info: The step run information.
|
162
|
+
entrypoint_command: The entrypoint command for the step.
|
163
|
+
environment: The environment variables for the step.
|
164
|
+
|
165
|
+
Raises:
|
166
|
+
RuntimeError: If no Docker credentials are found for the container registry.
|
167
|
+
ValueError: If no container registry is found in the stack.
|
168
|
+
"""
|
169
|
+
settings = cast(ModalStepOperatorSettings, self.get_settings(info))
|
170
|
+
image_name = info.get_image(key=MODAL_STEP_OPERATOR_DOCKER_IMAGE_KEY)
|
171
|
+
zc = Client()
|
172
|
+
stack = zc.active_stack
|
173
|
+
|
174
|
+
if not stack.container_registry:
|
175
|
+
raise ValueError(
|
176
|
+
"No Container registry found in the stack. "
|
177
|
+
"Please add a container registry and ensure "
|
178
|
+
"it is correctly configured."
|
179
|
+
)
|
180
|
+
|
181
|
+
if docker_creds := stack.container_registry.credentials:
|
182
|
+
docker_username, docker_password = docker_creds
|
183
|
+
else:
|
184
|
+
raise RuntimeError(
|
185
|
+
"No Docker credentials found for the container registry."
|
186
|
+
)
|
187
|
+
|
188
|
+
my_secret = modal.secret._Secret.from_dict(
|
189
|
+
{
|
190
|
+
"REGISTRY_USERNAME": docker_username,
|
191
|
+
"REGISTRY_PASSWORD": docker_password,
|
192
|
+
}
|
193
|
+
)
|
194
|
+
|
195
|
+
spec = modal.image.DockerfileSpec(
|
196
|
+
commands=[f"FROM {image_name}"], context_files={}
|
197
|
+
)
|
198
|
+
|
199
|
+
zenml_image = modal.Image._from_args(
|
200
|
+
dockerfile_function=lambda *_, **__: spec,
|
201
|
+
force_build=False,
|
202
|
+
image_registry_config=modal.image._ImageRegistryConfig(
|
203
|
+
api_pb2.REGISTRY_AUTH_TYPE_STATIC_CREDS, my_secret
|
204
|
+
),
|
205
|
+
).env(environment)
|
206
|
+
|
207
|
+
resource_settings = info.config.resource_settings
|
208
|
+
gpu_values = get_gpu_values(settings, resource_settings)
|
209
|
+
|
210
|
+
app = modal.App(
|
211
|
+
f"zenml-{info.run_name}-{info.step_run_id}-{info.pipeline_step_name}"
|
212
|
+
)
|
213
|
+
|
214
|
+
async def run_sandbox() -> asyncio.Future[None]:
|
215
|
+
loop = asyncio.get_event_loop()
|
216
|
+
future = loop.create_future()
|
217
|
+
with modal.enable_output():
|
218
|
+
async with app.run():
|
219
|
+
memory_mb = resource_settings.get_memory(ByteUnit.MB)
|
220
|
+
memory_int = (
|
221
|
+
int(memory_mb) if memory_mb is not None else None
|
222
|
+
)
|
223
|
+
sb = await modal.Sandbox.create.aio(
|
224
|
+
"bash",
|
225
|
+
"-c",
|
226
|
+
" ".join(entrypoint_command),
|
227
|
+
image=zenml_image,
|
228
|
+
gpu=gpu_values,
|
229
|
+
cpu=resource_settings.cpu_count,
|
230
|
+
memory=memory_int,
|
231
|
+
cloud=settings.cloud,
|
232
|
+
region=settings.region,
|
233
|
+
app=app,
|
234
|
+
timeout=86400, # 24h, the max Modal allows
|
235
|
+
)
|
236
|
+
|
237
|
+
await sb.wait.aio()
|
238
|
+
|
239
|
+
future.set_result(None)
|
240
|
+
return future
|
241
|
+
|
242
|
+
asyncio.run(run_sandbox())
|
@@ -28,7 +28,7 @@ from typing import (
|
|
28
28
|
)
|
29
29
|
|
30
30
|
from zenml.artifact_stores.base_artifact_store import BaseArtifactStore
|
31
|
-
from zenml.enums import ArtifactType
|
31
|
+
from zenml.enums import ArtifactType, VisualizationType
|
32
32
|
from zenml.logger import get_logger
|
33
33
|
from zenml.materializers.base_materializer import BaseMaterializer
|
34
34
|
from zenml.materializers.materializer_registry import materializer_registry
|
@@ -415,6 +415,23 @@ class BuiltInContainerMaterializer(BaseMaterializer):
|
|
415
415
|
self.artifact_store.rmtree(entry["path"])
|
416
416
|
raise e
|
417
417
|
|
418
|
+
# save dict type objects to JSON file with JSON visualization type
|
419
|
+
def save_visualizations(self, data: Any) -> Dict[str, "VisualizationType"]:
|
420
|
+
"""Save visualizations for the given data.
|
421
|
+
|
422
|
+
Args:
|
423
|
+
data: The data to save visualizations for.
|
424
|
+
|
425
|
+
Returns:
|
426
|
+
A dictionary of visualization URIs and their types.
|
427
|
+
"""
|
428
|
+
# dict/list type objects are always saved as JSON files
|
429
|
+
# doesn't work for non-serializable types as they
|
430
|
+
# are saved as list of lists in different files
|
431
|
+
if _is_serializable(data):
|
432
|
+
return {self.data_path: VisualizationType.JSON}
|
433
|
+
return {}
|
434
|
+
|
418
435
|
def extract_metadata(self, data: Any) -> Dict[str, "MetadataType"]:
|
419
436
|
"""Extract metadata from the given built-in container object.
|
420
437
|
|
@@ -19,22 +19,23 @@ from typing import Dict, Type, Union
|
|
19
19
|
from zenml.enums import ArtifactType, VisualizationType
|
20
20
|
from zenml.logger import get_logger
|
21
21
|
from zenml.materializers.base_materializer import BaseMaterializer
|
22
|
-
from zenml.types import CSVString, HTMLString, MarkdownString
|
22
|
+
from zenml.types import CSVString, HTMLString, JSONString, MarkdownString
|
23
23
|
|
24
24
|
logger = get_logger(__name__)
|
25
25
|
|
26
26
|
|
27
|
-
STRUCTURED_STRINGS = Union[CSVString, HTMLString, MarkdownString]
|
27
|
+
STRUCTURED_STRINGS = Union[CSVString, HTMLString, MarkdownString, JSONString]
|
28
28
|
|
29
29
|
HTML_FILENAME = "output.html"
|
30
30
|
MARKDOWN_FILENAME = "output.md"
|
31
31
|
CSV_FILENAME = "output.csv"
|
32
|
+
JSON_FILENAME = "output.json"
|
32
33
|
|
33
34
|
|
34
35
|
class StructuredStringMaterializer(BaseMaterializer):
|
35
36
|
"""Materializer for HTML or Markdown strings."""
|
36
37
|
|
37
|
-
ASSOCIATED_TYPES = (CSVString, HTMLString, MarkdownString)
|
38
|
+
ASSOCIATED_TYPES = (CSVString, HTMLString, MarkdownString, JSONString)
|
38
39
|
ASSOCIATED_ARTIFACT_TYPE = ArtifactType.DATA_ANALYSIS
|
39
40
|
|
40
41
|
def load(self, data_type: Type[STRUCTURED_STRINGS]) -> STRUCTURED_STRINGS:
|
@@ -94,6 +95,8 @@ class StructuredStringMaterializer(BaseMaterializer):
|
|
94
95
|
filename = HTML_FILENAME
|
95
96
|
elif issubclass(data_type, MarkdownString):
|
96
97
|
filename = MARKDOWN_FILENAME
|
98
|
+
elif issubclass(data_type, JSONString):
|
99
|
+
filename = JSON_FILENAME
|
97
100
|
else:
|
98
101
|
raise ValueError(
|
99
102
|
f"Data type {data_type} is not supported by this materializer."
|
@@ -120,6 +123,8 @@ class StructuredStringMaterializer(BaseMaterializer):
|
|
120
123
|
return VisualizationType.HTML
|
121
124
|
elif issubclass(data_type, MarkdownString):
|
122
125
|
return VisualizationType.MARKDOWN
|
126
|
+
elif issubclass(data_type, JSONString):
|
127
|
+
return VisualizationType.JSON
|
123
128
|
else:
|
124
129
|
raise ValueError(
|
125
130
|
f"Data type {data_type} is not supported by this materializer."
|
zenml/model/model.py
CHANGED
@@ -57,7 +57,9 @@ class Model(BaseModel):
|
|
57
57
|
ethics: The ethical implications of the model.
|
58
58
|
tags: Tags associated with the model.
|
59
59
|
version: The version name, version number or stage is optional and points model context
|
60
|
-
to a specific version/stage. If skipped new version will be created.
|
60
|
+
to a specific version/stage. If skipped new version will be created. `version`
|
61
|
+
also supports placeholders: standard `{date}` and `{time}` and any custom placeholders
|
62
|
+
that are passed as substitutions in the pipeline or step decorators.
|
61
63
|
save_models_to_registry: Whether to save all ModelArtifacts to Model Registry,
|
62
64
|
if available in active stack.
|
63
65
|
"""
|
@@ -534,6 +536,8 @@ class Model(BaseModel):
|
|
534
536
|
from zenml.models import ModelRequest
|
535
537
|
|
536
538
|
zenml_client = Client()
|
539
|
+
# backup logic, if the Model class is used directly from the code
|
540
|
+
self.name = format_name_template(self.name, substitutions={})
|
537
541
|
if self.model_version_id:
|
538
542
|
mv = zenml_client.get_model_version(
|
539
543
|
model_version_name_or_number_or_id=self.model_version_id,
|
@@ -663,7 +667,7 @@ class Model(BaseModel):
|
|
663
667
|
|
664
668
|
# backup logic, if the Model class is used directly from the code
|
665
669
|
if isinstance(self.version, str):
|
666
|
-
self.version = format_name_template(self.version)
|
670
|
+
self.version = format_name_template(self.version, substitutions={})
|
667
671
|
|
668
672
|
try:
|
669
673
|
if self.version or self.model_version_id:
|
@@ -237,6 +237,10 @@ class PipelineRunResponseMetadata(WorkspaceScopedResponseMetadata):
|
|
237
237
|
default=False,
|
238
238
|
description="Whether a template can be created from this run.",
|
239
239
|
)
|
240
|
+
steps_substitutions: Dict[str, Dict[str, str]] = Field(
|
241
|
+
title="Substitutions used in the step runs of this pipeline run.",
|
242
|
+
default_factory=dict,
|
243
|
+
)
|
240
244
|
|
241
245
|
|
242
246
|
class PipelineRunResponseResources(WorkspaceScopedResponseResources):
|
zenml/models/v2/core/step_run.py
CHANGED
@@ -142,7 +142,7 @@ class StepRunRequest(WorkspaceScopedRequest):
|
|
142
142
|
class StepRunUpdate(BaseModel):
|
143
143
|
"""Update model for step runs."""
|
144
144
|
|
145
|
-
outputs: Dict[str, UUID] = Field(
|
145
|
+
outputs: Dict[str, List[UUID]] = Field(
|
146
146
|
title="The IDs of the output artifact versions of the step run.",
|
147
147
|
default={},
|
148
148
|
)
|
@@ -32,7 +32,7 @@ if TYPE_CHECKING:
|
|
32
32
|
|
33
33
|
|
34
34
|
def publish_successful_step_run(
|
35
|
-
step_run_id: "UUID", output_artifact_ids: Dict[str, "UUID"]
|
35
|
+
step_run_id: "UUID", output_artifact_ids: Dict[str, List["UUID"]]
|
36
36
|
) -> "StepRunResponse":
|
37
37
|
"""Publishes a successful step run.
|
38
38
|
|
@@ -309,8 +309,12 @@ class StepLauncher:
|
|
309
309
|
The created or existing pipeline run,
|
310
310
|
and a boolean indicating whether the run was created or reused.
|
311
311
|
"""
|
312
|
+
start_time = datetime.utcnow()
|
312
313
|
run_name = orchestrator_utils.get_run_name(
|
313
|
-
run_name_template=self._deployment.run_name_template
|
314
|
+
run_name_template=self._deployment.run_name_template,
|
315
|
+
substitutions=self._deployment.pipeline_configuration._get_full_substitutions(
|
316
|
+
start_time
|
317
|
+
),
|
314
318
|
)
|
315
319
|
|
316
320
|
logger.debug("Creating pipeline run %s", run_name)
|
@@ -329,7 +333,7 @@ class StepLauncher:
|
|
329
333
|
),
|
330
334
|
status=ExecutionStatus.RUNNING,
|
331
335
|
orchestrator_environment=get_run_environment_dict(),
|
332
|
-
start_time=
|
336
|
+
start_time=start_time,
|
333
337
|
tags=self._deployment.pipeline_configuration.tags,
|
334
338
|
)
|
335
339
|
return client.zen_store.get_or_create_run(pipeline_run)
|
@@ -354,13 +354,16 @@ def create_cached_step_runs(
|
|
354
354
|
|
355
355
|
|
356
356
|
def get_or_create_model_version_for_pipeline_run(
|
357
|
-
model: "Model",
|
357
|
+
model: "Model",
|
358
|
+
pipeline_run: PipelineRunResponse,
|
359
|
+
substitutions: Dict[str, str],
|
358
360
|
) -> Tuple[ModelVersionResponse, bool]:
|
359
361
|
"""Get or create a model version as part of a pipeline run.
|
360
362
|
|
361
363
|
Args:
|
362
364
|
model: The model to get or create.
|
363
365
|
pipeline_run: The pipeline run for which the model should be created.
|
366
|
+
substitutions: Substitutions to apply to the model version name.
|
364
367
|
|
365
368
|
Returns:
|
366
369
|
The model version and a boolean indicating whether it was newly created
|
@@ -374,12 +377,14 @@ def get_or_create_model_version_for_pipeline_run(
|
|
374
377
|
return model._get_model_version(), False
|
375
378
|
elif model.version:
|
376
379
|
if isinstance(model.version, str):
|
377
|
-
start_time = pipeline_run.start_time or datetime.utcnow()
|
378
380
|
model.version = string_utils.format_name_template(
|
379
381
|
model.version,
|
380
|
-
|
381
|
-
time=start_time.strftime("%H_%M_%S_%f"),
|
382
|
+
substitutions=substitutions,
|
382
383
|
)
|
384
|
+
model.name = string_utils.format_name_template(
|
385
|
+
model.name,
|
386
|
+
substitutions=substitutions,
|
387
|
+
)
|
383
388
|
|
384
389
|
return (
|
385
390
|
model._get_or_create_model_version(),
|
@@ -460,7 +465,9 @@ def prepare_pipeline_run_model_version(
|
|
460
465
|
model_version = pipeline_run.model_version
|
461
466
|
elif config_model := pipeline_run.config.model:
|
462
467
|
model_version, _ = get_or_create_model_version_for_pipeline_run(
|
463
|
-
model=config_model,
|
468
|
+
model=config_model,
|
469
|
+
pipeline_run=pipeline_run,
|
470
|
+
substitutions=pipeline_run.config.substitutions,
|
464
471
|
)
|
465
472
|
pipeline_run = Client().zen_store.update_run(
|
466
473
|
run_id=pipeline_run.id,
|
@@ -492,7 +499,9 @@ def prepare_step_run_model_version(
|
|
492
499
|
model_version = step_run.model_version
|
493
500
|
elif config_model := step_run.config.model:
|
494
501
|
model_version, created = get_or_create_model_version_for_pipeline_run(
|
495
|
-
model=config_model,
|
502
|
+
model=config_model,
|
503
|
+
pipeline_run=pipeline_run,
|
504
|
+
substitutions=step_run.config.substitutions,
|
496
505
|
)
|
497
506
|
step_run = Client().zen_store.update_run_step(
|
498
507
|
step_run_id=step_run.id,
|
@@ -152,6 +152,15 @@ class StepRunner:
|
|
152
152
|
func=step_instance.entrypoint
|
153
153
|
)
|
154
154
|
|
155
|
+
self._evaluate_artifact_names_in_collections(
|
156
|
+
step_run,
|
157
|
+
output_annotations,
|
158
|
+
[
|
159
|
+
output_artifact_uris,
|
160
|
+
output_materializers,
|
161
|
+
],
|
162
|
+
)
|
163
|
+
|
155
164
|
self._stack.prepare_step_run(info=step_run_info)
|
156
165
|
|
157
166
|
# Initialize the step context singleton
|
@@ -257,7 +266,9 @@ class StepRunner:
|
|
257
266
|
|
258
267
|
# Update the status and output artifacts of the step run.
|
259
268
|
output_artifact_ids = {
|
260
|
-
output_name:
|
269
|
+
output_name: [
|
270
|
+
artifact.id,
|
271
|
+
]
|
261
272
|
for output_name, artifact in output_artifacts.items()
|
262
273
|
}
|
263
274
|
publish_successful_step_run(
|
@@ -265,6 +276,33 @@ class StepRunner:
|
|
265
276
|
output_artifact_ids=output_artifact_ids,
|
266
277
|
)
|
267
278
|
|
279
|
+
def _evaluate_artifact_names_in_collections(
|
280
|
+
self,
|
281
|
+
step_run: "StepRunResponse",
|
282
|
+
output_annotations: Dict[str, OutputSignature],
|
283
|
+
collections: List[Dict[str, Any]],
|
284
|
+
) -> None:
|
285
|
+
"""Evaluates the artifact names in the collections.
|
286
|
+
|
287
|
+
Args:
|
288
|
+
step_run: The step run.
|
289
|
+
output_annotations: The output annotations of the step function
|
290
|
+
(also evaluated).
|
291
|
+
collections: The collections to evaluate.
|
292
|
+
"""
|
293
|
+
collections.append(output_annotations)
|
294
|
+
for k, v in list(output_annotations.items()):
|
295
|
+
_evaluated_name = None
|
296
|
+
if v.artifact_config:
|
297
|
+
_evaluated_name = v.artifact_config._evaluated_name(
|
298
|
+
step_run.config.substitutions
|
299
|
+
)
|
300
|
+
if _evaluated_name is None:
|
301
|
+
_evaluated_name = k
|
302
|
+
|
303
|
+
for d in collections:
|
304
|
+
d[_evaluated_name] = d.pop(k)
|
305
|
+
|
268
306
|
def _load_step(self) -> "BaseStep":
|
269
307
|
"""Load the step instance.
|
270
308
|
|
@@ -400,7 +438,7 @@ class StepRunner:
|
|
400
438
|
**artifact.get_hydrated_version().model_dump()
|
401
439
|
)
|
402
440
|
|
403
|
-
if data_type
|
441
|
+
if data_type in (None, Any) or is_union(get_origin(data_type)):
|
404
442
|
# Entrypoint function does not define a specific type for the input,
|
405
443
|
# we use the datatype of the stored artifact
|
406
444
|
data_type = source_utils.load(artifact.data_type)
|