zenml-nightly 0.61.0.dev20240714__py3-none-any.whl → 0.62.0.dev20240719__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- README.md +1 -1
- RELEASE_NOTES.md +40 -0
- zenml/VERSION +1 -1
- zenml/__init__.py +2 -0
- zenml/cli/stack.py +87 -228
- zenml/cli/stack_components.py +5 -3
- zenml/constants.py +2 -0
- zenml/entrypoints/entrypoint.py +3 -1
- zenml/integrations/__init__.py +1 -0
- zenml/integrations/constants.py +1 -0
- zenml/integrations/databricks/__init__.py +52 -0
- zenml/integrations/databricks/flavors/__init__.py +30 -0
- zenml/integrations/databricks/flavors/databricks_model_deployer_flavor.py +118 -0
- zenml/integrations/databricks/flavors/databricks_orchestrator_flavor.py +147 -0
- zenml/integrations/databricks/model_deployers/__init__.py +20 -0
- zenml/integrations/databricks/model_deployers/databricks_model_deployer.py +249 -0
- zenml/integrations/databricks/orchestrators/__init__.py +20 -0
- zenml/integrations/databricks/orchestrators/databricks_orchestrator.py +498 -0
- zenml/integrations/databricks/orchestrators/databricks_orchestrator_entrypoint_config.py +97 -0
- zenml/integrations/databricks/services/__init__.py +19 -0
- zenml/integrations/databricks/services/databricks_deployment.py +407 -0
- zenml/integrations/databricks/utils/__init__.py +14 -0
- zenml/integrations/databricks/utils/databricks_utils.py +87 -0
- zenml/integrations/great_expectations/data_validators/ge_data_validator.py +12 -8
- zenml/integrations/huggingface/materializers/huggingface_datasets_materializer.py +88 -3
- zenml/integrations/huggingface/steps/accelerate_runner.py +1 -7
- zenml/integrations/kubernetes/orchestrators/manifest_utils.py +7 -0
- zenml/integrations/kubernetes/pod_settings.py +2 -0
- zenml/integrations/lightgbm/__init__.py +1 -0
- zenml/integrations/mlflow/__init__.py +1 -1
- zenml/integrations/mlflow/model_registries/mlflow_model_registry.py +6 -2
- zenml/integrations/mlflow/services/mlflow_deployment.py +1 -1
- zenml/integrations/skypilot_lambda/__init__.py +1 -1
- zenml/materializers/built_in_materializer.py +1 -1
- zenml/materializers/cloudpickle_materializer.py +1 -1
- zenml/model/model.py +1 -1
- zenml/models/v2/core/component.py +29 -0
- zenml/models/v2/misc/full_stack.py +32 -0
- zenml/orchestrators/__init__.py +4 -0
- zenml/orchestrators/wheeled_orchestrator.py +147 -0
- zenml/service_connectors/service_connector_utils.py +349 -0
- zenml/stack_deployments/gcp_stack_deployment.py +2 -4
- zenml/steps/base_step.py +7 -5
- zenml/utils/function_utils.py +1 -1
- zenml/utils/pipeline_docker_image_builder.py +8 -0
- zenml/zen_server/dashboard/assets/{404-DpJaNHKF.js → 404-B_YdvmwS.js} +1 -1
- zenml/zen_server/dashboard/assets/{@reactflow-DJfzkHO1.js → @reactflow-l_1hUr1S.js} +1 -1
- zenml/zen_server/dashboard/assets/{AwarenessChannel-BYDLT2xC.js → AwarenessChannel-CFg5iX4Z.js} +1 -1
- zenml/zen_server/dashboard/assets/{CodeSnippet-BkOuRmyq.js → CodeSnippet-Dvkx_82E.js} +1 -1
- zenml/zen_server/dashboard/assets/CollapsibleCard-opiuBHHc.js +1 -0
- zenml/zen_server/dashboard/assets/{Commands-ZvWR1BRs.js → Commands-DoN1xrEq.js} +1 -1
- zenml/zen_server/dashboard/assets/{CopyButton-DVwLkafa.js → CopyButton-Cr7xYEPb.js} +1 -1
- zenml/zen_server/dashboard/assets/{CsvVizualization-C2IiqX4I.js → CsvVizualization-Ck-nZ43m.js} +3 -3
- zenml/zen_server/dashboard/assets/{Error-CqX0VqW_.js → Error-kLtljEOM.js} +1 -1
- zenml/zen_server/dashboard/assets/{ExecutionStatus-BoLUXR9t.js → ExecutionStatus-DguLLgTK.js} +1 -1
- zenml/zen_server/dashboard/assets/{Helpbox-LFydyVwh.js → Helpbox-BXUMP21n.js} +1 -1
- zenml/zen_server/dashboard/assets/{Infobox-DnENC0sh.js → Infobox-DSt0O-dm.js} +1 -1
- zenml/zen_server/dashboard/assets/{InlineAvatar-CbJtYr0t.js → InlineAvatar-xsrsIGE-.js} +1 -1
- zenml/zen_server/dashboard/assets/Pagination-C6X-mifw.js +1 -0
- zenml/zen_server/dashboard/assets/{SetPassword-BYBdbQDo.js → SetPassword-BXGTWiwj.js} +1 -1
- zenml/zen_server/dashboard/assets/{SuccessStep-Nx743hll.js → SuccessStep-DZC60t0x.js} +1 -1
- zenml/zen_server/dashboard/assets/{UpdatePasswordSchemas-DF9gSzE0.js → UpdatePasswordSchemas-DGvwFWO1.js} +1 -1
- zenml/zen_server/dashboard/assets/{chevron-right-double-BiEMg7rd.js → chevron-right-double-CZBOf6JM.js} +1 -1
- zenml/zen_server/dashboard/assets/cloud-only-C_yFCAkP.js +1 -0
- zenml/zen_server/dashboard/assets/index-BczVOqUf.js +55 -0
- zenml/zen_server/dashboard/assets/index-EpMIKgrI.css +1 -0
- zenml/zen_server/dashboard/assets/{login-mutation-BUnVASxp.js → login-mutation-CrHrndTI.js} +1 -1
- zenml/zen_server/dashboard/assets/logs-D8k8BVFf.js +1 -0
- zenml/zen_server/dashboard/assets/{not-found-B4VnX8gK.js → not-found-DYa4pC-C.js} +1 -1
- zenml/zen_server/dashboard/assets/{package-CsUhPmou.js → package-B3fWP-Dh.js} +1 -1
- zenml/zen_server/dashboard/assets/page-1h_sD1jz.js +1 -0
- zenml/zen_server/dashboard/assets/{page-Sxn82W-5.js → page-1iL8aMqs.js} +1 -1
- zenml/zen_server/dashboard/assets/{page-DMOYZppS.js → page-2grKx_MY.js} +1 -1
- zenml/zen_server/dashboard/assets/page-5NCOHOsy.js +1 -0
- zenml/zen_server/dashboard/assets/{page-JyfeDUfu.js → page-8a4UMKXZ.js} +1 -1
- zenml/zen_server/dashboard/assets/{page-Bx6o0ARS.js → page-B6h3iaHJ.js} +1 -1
- zenml/zen_server/dashboard/assets/page-BDns21Iz.js +1 -0
- zenml/zen_server/dashboard/assets/{page-3efNCDeb.js → page-BhgCDInH.js} +2 -2
- zenml/zen_server/dashboard/assets/{page-DKlIdAe5.js → page-Bi-wtWiO.js} +2 -2
- zenml/zen_server/dashboard/assets/{page-7zTHbhhI.js → page-BkeAAYwp.js} +1 -1
- zenml/zen_server/dashboard/assets/{page-CRTJ0UuR.js → page-BkuQDIf-.js} +1 -1
- zenml/zen_server/dashboard/assets/page-BnaevhnB.js +1 -0
- zenml/zen_server/dashboard/assets/{page-BEs6jK71.js → page-Bq0YxkLV.js} +1 -1
- zenml/zen_server/dashboard/assets/page-Bs2F4eoD.js +2 -0
- zenml/zen_server/dashboard/assets/{page-CUZIGO-3.js → page-C6-UGEbH.js} +1 -1
- zenml/zen_server/dashboard/assets/{page-Xu8JEjSU.js → page-CCNRIt_f.js} +1 -1
- zenml/zen_server/dashboard/assets/{page-DvCvroOM.js → page-CHNxpz3n.js} +1 -1
- zenml/zen_server/dashboard/assets/{page-BpSqIf4B.js → page-DgorQFqi.js} +1 -1
- zenml/zen_server/dashboard/assets/page-K8ebxVIs.js +1 -0
- zenml/zen_server/dashboard/assets/{page-Cx67M0QT.js → page-MFQyIJd3.js} +1 -1
- zenml/zen_server/dashboard/assets/page-TgCF0P_U.js +1 -0
- zenml/zen_server/dashboard/assets/page-ZnCEe-eK.js +9 -0
- zenml/zen_server/dashboard/assets/{page-Dc_7KMQE.js → page-uA5prJGY.js} +1 -1
- zenml/zen_server/dashboard/assets/persist-D7HJNBWx.js +1 -0
- zenml/zen_server/dashboard/assets/plus-C8WOyCzt.js +1 -0
- zenml/zen_server/dashboard/assets/stack-detail-query-Cficsl6d.js +1 -0
- zenml/zen_server/dashboard/assets/update-server-settings-mutation-7d8xi1tS.js +1 -0
- zenml/zen_server/dashboard/assets/{url-DuQMeqYA.js → url-D7mAQGUM.js} +1 -1
- zenml/zen_server/dashboard/index.html +4 -4
- zenml/zen_server/dashboard_legacy/asset-manifest.json +4 -4
- zenml/zen_server/dashboard_legacy/index.html +1 -1
- zenml/zen_server/dashboard_legacy/{precache-manifest.c8c57fb0d2132b1d3c2119e776b7dfb3.js → precache-manifest.12246c7548e71e2c4438e496360de80c.js} +4 -4
- zenml/zen_server/dashboard_legacy/service-worker.js +1 -1
- zenml/zen_server/dashboard_legacy/static/js/main.3b27024b.chunk.js +2 -0
- zenml/zen_server/dashboard_legacy/static/js/{main.382439a7.chunk.js.map → main.3b27024b.chunk.js.map} +1 -1
- zenml/zen_server/deploy/helm/Chart.yaml +1 -1
- zenml/zen_server/deploy/helm/README.md +2 -2
- zenml/zen_server/routers/service_connectors_endpoints.py +57 -0
- zenml/zen_stores/migrations/versions/0.62.0_release.py +23 -0
- zenml/zen_stores/rest_zen_store.py +4 -0
- zenml/zen_stores/schemas/component_schemas.py +14 -0
- {zenml_nightly-0.61.0.dev20240714.dist-info → zenml_nightly-0.62.0.dev20240719.dist-info}/METADATA +2 -2
- {zenml_nightly-0.61.0.dev20240714.dist-info → zenml_nightly-0.62.0.dev20240719.dist-info}/RECORD +116 -98
- zenml/zen_server/dashboard/assets/Pagination-DEbVUupy.js +0 -1
- zenml/zen_server/dashboard/assets/chevron-down-D_ZlKMqH.js +0 -1
- zenml/zen_server/dashboard/assets/cloud-only-DVbIeckv.js +0 -1
- zenml/zen_server/dashboard/assets/index-C_CrU4vI.js +0 -1
- zenml/zen_server/dashboard/assets/index-DK1ynKjA.js +0 -55
- zenml/zen_server/dashboard/assets/index-inApY3KQ.css +0 -1
- zenml/zen_server/dashboard/assets/page-C43QGHTt.js +0 -9
- zenml/zen_server/dashboard/assets/page-CR0OG7ss.js +0 -1
- zenml/zen_server/dashboard/assets/page-CaopxiU1.js +0 -1
- zenml/zen_server/dashboard/assets/page-D7Z399xy.js +0 -1
- zenml/zen_server/dashboard/assets/page-D93kd7Xj.js +0 -1
- zenml/zen_server/dashboard/assets/page-DMsSn3dv.js +0 -2
- zenml/zen_server/dashboard/assets/page-Hus2pr9T.js +0 -1
- zenml/zen_server/dashboard/assets/page-TKXERe16.js +0 -1
- zenml/zen_server/dashboard/assets/plus-DOeLmm7C.js +0 -1
- zenml/zen_server/dashboard/assets/update-server-settings-mutation-CR8e3Sir.js +0 -1
- zenml/zen_server/dashboard_legacy/static/js/main.382439a7.chunk.js +0 -2
- {zenml_nightly-0.61.0.dev20240714.dist-info → zenml_nightly-0.62.0.dev20240719.dist-info}/LICENSE +0 -0
- {zenml_nightly-0.61.0.dev20240714.dist-info → zenml_nightly-0.62.0.dev20240719.dist-info}/WHEEL +0 -0
- {zenml_nightly-0.61.0.dev20240714.dist-info → zenml_nightly-0.62.0.dev20240719.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,498 @@
|
|
1
|
+
# Copyright (c) ZenML GmbH 2023. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
12
|
+
# or implied. See the License for the specific language governing
|
13
|
+
# permissions and limitations under the License.
|
14
|
+
"""Implementation of the Databricks orchestrator."""
|
15
|
+
|
16
|
+
import itertools
|
17
|
+
import os
|
18
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type, cast
|
19
|
+
from uuid import UUID
|
20
|
+
|
21
|
+
from databricks.sdk import WorkspaceClient as DatabricksClient
|
22
|
+
from databricks.sdk.service.compute import (
|
23
|
+
AutoScale,
|
24
|
+
ClientsTypes,
|
25
|
+
ClusterSpec,
|
26
|
+
WorkloadType,
|
27
|
+
)
|
28
|
+
from databricks.sdk.service.jobs import CronSchedule, JobCluster
|
29
|
+
from databricks.sdk.service.jobs import Task as DatabricksTask
|
30
|
+
|
31
|
+
from zenml.client import Client
|
32
|
+
from zenml.constants import (
|
33
|
+
ENV_ZENML_CUSTOM_SOURCE_ROOT,
|
34
|
+
METADATA_ORCHESTRATOR_URL,
|
35
|
+
)
|
36
|
+
from zenml.integrations.databricks.flavors.databricks_orchestrator_flavor import (
|
37
|
+
DatabricksOrchestratorConfig,
|
38
|
+
DatabricksOrchestratorSettings,
|
39
|
+
)
|
40
|
+
from zenml.integrations.databricks.orchestrators.databricks_orchestrator_entrypoint_config import (
|
41
|
+
ENV_ZENML_DATABRICKS_ORCHESTRATOR_RUN_ID,
|
42
|
+
DatabricksEntrypointConfiguration,
|
43
|
+
)
|
44
|
+
from zenml.integrations.databricks.utils.databricks_utils import (
|
45
|
+
convert_step_to_task,
|
46
|
+
)
|
47
|
+
from zenml.io import fileio
|
48
|
+
from zenml.logger import get_logger
|
49
|
+
from zenml.metadata.metadata_types import MetadataType, Uri
|
50
|
+
from zenml.models.v2.core.schedule import ScheduleResponse
|
51
|
+
from zenml.orchestrators.utils import get_orchestrator_run_name
|
52
|
+
from zenml.orchestrators.wheeled_orchestrator import WheeledOrchestrator
|
53
|
+
from zenml.stack import StackValidator
|
54
|
+
from zenml.utils import io_utils
|
55
|
+
from zenml.utils.pipeline_docker_image_builder import (
|
56
|
+
PipelineDockerImageBuilder,
|
57
|
+
)
|
58
|
+
|
59
|
+
if TYPE_CHECKING:
|
60
|
+
from zenml.models import PipelineDeploymentResponse
|
61
|
+
from zenml.stack import Stack
|
62
|
+
|
63
|
+
|
64
|
+
logger = get_logger(__name__)
|
65
|
+
|
66
|
+
ZENML_STEP_DEFAULT_ENTRYPOINT_COMMAND = "entrypoint.main"
|
67
|
+
DATABRICKS_WHEELS_DIRECTORY_PREFIX = "dbfs:/FileStore/zenml"
|
68
|
+
DATABRICKS_LOCAL_FILESYSTEM_PREFIX = "file:/"
|
69
|
+
DATABRICKS_CLUSTER_DEFAULT_NAME = "zenml-databricks-cluster"
|
70
|
+
DATABRICKS_SPARK_DEFAULT_VERSION = "15.3.x-scala2.12"
|
71
|
+
DATABRICKS_JOB_ID_PARAMETER_REFERENCE = "{{job.id}}"
|
72
|
+
DATABRICKS_ZENML_DEFAULT_CUSTOM_REPOSITORY_PATH = "."
|
73
|
+
|
74
|
+
|
75
|
+
class DatabricksOrchestrator(WheeledOrchestrator):
|
76
|
+
"""Base class for Orchestrator responsible for running pipelines remotely in a VM.
|
77
|
+
|
78
|
+
This orchestrator does not support running on a schedule.
|
79
|
+
"""
|
80
|
+
|
81
|
+
# The default instance type to use if none is specified in settings
|
82
|
+
DEFAULT_INSTANCE_TYPE: Optional[str] = None
|
83
|
+
|
84
|
+
@property
|
85
|
+
def validator(self) -> Optional[StackValidator]:
|
86
|
+
"""Validates the stack.
|
87
|
+
|
88
|
+
In the remote case, checks that the stack contains a container registry,
|
89
|
+
image builder and only remote components.
|
90
|
+
|
91
|
+
Returns:
|
92
|
+
A `StackValidator` instance.
|
93
|
+
"""
|
94
|
+
|
95
|
+
def _validate_remote_components(
|
96
|
+
stack: "Stack",
|
97
|
+
) -> Tuple[bool, str]:
|
98
|
+
for component in stack.components.values():
|
99
|
+
continue # TODO: Remove this line
|
100
|
+
if not component.config.is_local:
|
101
|
+
continue
|
102
|
+
|
103
|
+
return False, (
|
104
|
+
f"The Databricks orchestrator runs pipelines remotely, "
|
105
|
+
f"but the '{component.name}' {component.type.value} is "
|
106
|
+
"a local stack component and will not be available in "
|
107
|
+
"the Databricks step.\nPlease ensure that you always "
|
108
|
+
"use non-local stack components with the Databricks "
|
109
|
+
"orchestrator."
|
110
|
+
)
|
111
|
+
|
112
|
+
return True, ""
|
113
|
+
|
114
|
+
return StackValidator(
|
115
|
+
custom_validation_function=_validate_remote_components,
|
116
|
+
)
|
117
|
+
|
118
|
+
def _get_databricks_client(
|
119
|
+
self,
|
120
|
+
) -> DatabricksClient:
|
121
|
+
"""Creates a Databricks client.
|
122
|
+
|
123
|
+
Returns:
|
124
|
+
The Databricks client.
|
125
|
+
"""
|
126
|
+
return DatabricksClient(
|
127
|
+
host=self.config.host,
|
128
|
+
client_id=self.config.client_id,
|
129
|
+
client_secret=self.config.client_secret,
|
130
|
+
)
|
131
|
+
|
132
|
+
@property
|
133
|
+
def config(self) -> DatabricksOrchestratorConfig:
|
134
|
+
"""Returns the `DatabricksOrchestratorConfig` config.
|
135
|
+
|
136
|
+
Returns:
|
137
|
+
The configuration.
|
138
|
+
"""
|
139
|
+
return cast(DatabricksOrchestratorConfig, self._config)
|
140
|
+
|
141
|
+
@property
|
142
|
+
def settings_class(self) -> Type[DatabricksOrchestratorSettings]:
|
143
|
+
"""Settings class for the Databricks orchestrator.
|
144
|
+
|
145
|
+
Returns:
|
146
|
+
The settings class.
|
147
|
+
"""
|
148
|
+
return DatabricksOrchestratorSettings
|
149
|
+
|
150
|
+
def get_orchestrator_run_id(self) -> str:
|
151
|
+
"""Returns the active orchestrator run id.
|
152
|
+
|
153
|
+
Raises:
|
154
|
+
RuntimeError: If no run id exists. This happens when this method
|
155
|
+
gets called while the orchestrator is not running a pipeline.
|
156
|
+
|
157
|
+
Returns:
|
158
|
+
The orchestrator run id.
|
159
|
+
|
160
|
+
Raises:
|
161
|
+
RuntimeError: If the run id cannot be read from the environment.
|
162
|
+
"""
|
163
|
+
try:
|
164
|
+
return os.environ[ENV_ZENML_DATABRICKS_ORCHESTRATOR_RUN_ID]
|
165
|
+
except KeyError:
|
166
|
+
raise RuntimeError(
|
167
|
+
"Unable to read run id from environment variable "
|
168
|
+
f"{ENV_ZENML_DATABRICKS_ORCHESTRATOR_RUN_ID}."
|
169
|
+
)
|
170
|
+
|
171
|
+
@property
|
172
|
+
def root_directory(self) -> str:
|
173
|
+
"""Path to the root directory for all files concerning this orchestrator.
|
174
|
+
|
175
|
+
Returns:
|
176
|
+
Path to the root directory.
|
177
|
+
"""
|
178
|
+
return os.path.join(
|
179
|
+
io_utils.get_global_config_directory(),
|
180
|
+
"databricks",
|
181
|
+
str(self.id),
|
182
|
+
)
|
183
|
+
|
184
|
+
@property
|
185
|
+
def pipeline_directory(self) -> str:
|
186
|
+
"""Returns path to a directory in which the kubeflow pipeline files are stored.
|
187
|
+
|
188
|
+
Returns:
|
189
|
+
Path to the pipeline directory.
|
190
|
+
"""
|
191
|
+
return os.path.join(self.root_directory, "pipelines")
|
192
|
+
|
193
|
+
def setup_credentials(self) -> None:
|
194
|
+
"""Set up credentials for the orchestrator."""
|
195
|
+
connector = self.get_connector()
|
196
|
+
assert connector is not None
|
197
|
+
connector.configure_local_client()
|
198
|
+
|
199
|
+
def prepare_or_run_pipeline(
|
200
|
+
self,
|
201
|
+
deployment: "PipelineDeploymentResponse",
|
202
|
+
stack: "Stack",
|
203
|
+
environment: Dict[str, str],
|
204
|
+
) -> Any:
|
205
|
+
"""Creates a wheel and uploads the pipeline to Databricks.
|
206
|
+
|
207
|
+
This functions as an intermediary representation of the pipeline which
|
208
|
+
is then deployed to the kubeflow pipelines instance.
|
209
|
+
|
210
|
+
How it works:
|
211
|
+
-------------
|
212
|
+
Before this method is called the `prepare_pipeline_deployment()`
|
213
|
+
method builds a docker image that contains the code for the
|
214
|
+
pipeline, all steps the context around these files.
|
215
|
+
|
216
|
+
Based on this docker image a callable is created which builds
|
217
|
+
task for each step (`_construct_databricks_pipeline`).
|
218
|
+
To do this the entrypoint of the docker image is configured to
|
219
|
+
run the correct step within the docker image. The dependencies
|
220
|
+
between these task are then also configured onto each
|
221
|
+
task by pointing at the downstream steps.
|
222
|
+
|
223
|
+
Args:
|
224
|
+
deployment: The pipeline deployment to prepare or run.
|
225
|
+
stack: The stack the pipeline will run on.
|
226
|
+
environment: Environment variables to set in the orchestration
|
227
|
+
environment.
|
228
|
+
|
229
|
+
Raises:
|
230
|
+
ValueError: If the schedule is not set or if the cron expression
|
231
|
+
is not set.
|
232
|
+
"""
|
233
|
+
if deployment.schedule:
|
234
|
+
if (
|
235
|
+
deployment.schedule.catchup
|
236
|
+
or deployment.schedule.interval_second
|
237
|
+
):
|
238
|
+
logger.warning(
|
239
|
+
"Databricks orchestrator only uses schedules with the "
|
240
|
+
"`cron_expression` property, with optional `start_time` and/or `end_time`. "
|
241
|
+
"All other properties are ignored."
|
242
|
+
)
|
243
|
+
if deployment.schedule.cron_expression is None:
|
244
|
+
raise ValueError(
|
245
|
+
"Property `cron_expression` must be set when passing "
|
246
|
+
"schedule to a Databricks orchestrator."
|
247
|
+
)
|
248
|
+
if (
|
249
|
+
deployment.schedule.cron_expression
|
250
|
+
and self.settings_class().schedule_timezone is None
|
251
|
+
):
|
252
|
+
raise ValueError(
|
253
|
+
"Property `schedule_timezone` must be set when passing "
|
254
|
+
"`cron_expression` to a Databricks orchestrator."
|
255
|
+
"Databricks orchestrator requires a Java Timezone ID to run the pipeline on schedule."
|
256
|
+
"Please refer to https://docs.oracle.com/middleware/1221/wcs/tag-ref/MISC/TimeZones.html for more information."
|
257
|
+
)
|
258
|
+
|
259
|
+
# Get deployment id
|
260
|
+
deployment_id = deployment.id
|
261
|
+
|
262
|
+
# Create a callable for future compilation into a dsl.Pipeline.
|
263
|
+
def _construct_databricks_pipeline(
|
264
|
+
zenml_project_wheel: str, job_cluster_key: str
|
265
|
+
) -> List[DatabricksTask]:
|
266
|
+
"""Create a databrcks task for each step.
|
267
|
+
|
268
|
+
This should contain the name of the step or task and configures the
|
269
|
+
entrypoint of the task to run the step.
|
270
|
+
|
271
|
+
Additionally, this gives each task information about its
|
272
|
+
direct downstream steps.
|
273
|
+
|
274
|
+
Args:
|
275
|
+
zenml_project_wheel: The wheel package containing the ZenML
|
276
|
+
project.
|
277
|
+
job_cluster_key: The ID of the Databricks job cluster.
|
278
|
+
|
279
|
+
Returns:
|
280
|
+
A list of Databricks tasks.
|
281
|
+
"""
|
282
|
+
tasks = []
|
283
|
+
for step_name, step in deployment.step_configurations.items():
|
284
|
+
# The arguments are passed to configure the entrypoint of the
|
285
|
+
# docker container when the step is called.
|
286
|
+
arguments = DatabricksEntrypointConfiguration.get_entrypoint_arguments(
|
287
|
+
step_name=step_name,
|
288
|
+
deployment_id=deployment_id,
|
289
|
+
wheel_package=self.package_name,
|
290
|
+
databricks_job_id=DATABRICKS_JOB_ID_PARAMETER_REFERENCE,
|
291
|
+
)
|
292
|
+
|
293
|
+
# Find the upstream container ops of the current step and
|
294
|
+
# configure the current container op to run after them
|
295
|
+
upstream_steps = [
|
296
|
+
f"{deployment_id}_{upstream_step_name}"
|
297
|
+
for upstream_step_name in step.spec.upstream_steps
|
298
|
+
]
|
299
|
+
|
300
|
+
docker_settings = step.config.docker_settings
|
301
|
+
docker_image_builder = PipelineDockerImageBuilder()
|
302
|
+
# Gather the requirements files
|
303
|
+
requirements_files = (
|
304
|
+
docker_image_builder.gather_requirements_files(
|
305
|
+
docker_settings=docker_settings,
|
306
|
+
stack=Client().active_stack,
|
307
|
+
log=False,
|
308
|
+
)
|
309
|
+
)
|
310
|
+
|
311
|
+
# Extract and clean the requirements
|
312
|
+
requirements = list(
|
313
|
+
itertools.chain.from_iterable(
|
314
|
+
r[1].strip().split("\n") for r in requirements_files
|
315
|
+
)
|
316
|
+
)
|
317
|
+
|
318
|
+
# Remove empty items and duplicates
|
319
|
+
requirements = sorted(set(filter(None, requirements)))
|
320
|
+
|
321
|
+
task = convert_step_to_task(
|
322
|
+
f"{deployment_id}_{step_name}",
|
323
|
+
ZENML_STEP_DEFAULT_ENTRYPOINT_COMMAND,
|
324
|
+
arguments,
|
325
|
+
requirements,
|
326
|
+
depends_on=upstream_steps,
|
327
|
+
zenml_project_wheel=zenml_project_wheel,
|
328
|
+
job_cluster_key=job_cluster_key,
|
329
|
+
)
|
330
|
+
tasks.append(task)
|
331
|
+
return tasks
|
332
|
+
|
333
|
+
# Get the orchestrator run name
|
334
|
+
orchestrator_run_name = get_orchestrator_run_name(
|
335
|
+
pipeline_name=deployment.pipeline_configuration.name
|
336
|
+
)
|
337
|
+
# Get a filepath to use to save the finished yaml to
|
338
|
+
fileio.makedirs(self.pipeline_directory)
|
339
|
+
pipeline_file_path = os.path.join(
|
340
|
+
self.pipeline_directory, f"{orchestrator_run_name}.yaml"
|
341
|
+
)
|
342
|
+
|
343
|
+
# Copy the repository to a temporary directory and add a setup.py file
|
344
|
+
repository_temp_dir = (
|
345
|
+
self.copy_repository_to_temp_dir_and_add_setup_py()
|
346
|
+
)
|
347
|
+
|
348
|
+
# Create a wheel for the package in the temporary directory
|
349
|
+
wheel_path = self.create_wheel(temp_dir=repository_temp_dir)
|
350
|
+
|
351
|
+
databricks_client = self._get_databricks_client()
|
352
|
+
|
353
|
+
# Create an empty folder in a volume.
|
354
|
+
deployment_name = (
|
355
|
+
deployment.pipeline.name if deployment.pipeline else "default"
|
356
|
+
)
|
357
|
+
databricks_directory = f"{DATABRICKS_WHEELS_DIRECTORY_PREFIX}/{deployment_name}/{orchestrator_run_name}"
|
358
|
+
databricks_wheel_path = (
|
359
|
+
f"{databricks_directory}/{wheel_path.rsplit('/', 1)[-1]}"
|
360
|
+
)
|
361
|
+
|
362
|
+
databricks_client.dbutils.fs.mkdirs(databricks_directory)
|
363
|
+
databricks_client.dbutils.fs.cp(
|
364
|
+
f"{DATABRICKS_LOCAL_FILESYSTEM_PREFIX}/{wheel_path}",
|
365
|
+
databricks_wheel_path,
|
366
|
+
)
|
367
|
+
|
368
|
+
# Construct the env variables for the pipeline
|
369
|
+
env_vars = environment.copy()
|
370
|
+
spark_env_vars = self.settings_class().spark_env_vars
|
371
|
+
if spark_env_vars:
|
372
|
+
for key, value in spark_env_vars.items():
|
373
|
+
env_vars[key] = value
|
374
|
+
env_vars[ENV_ZENML_CUSTOM_SOURCE_ROOT] = (
|
375
|
+
DATABRICKS_ZENML_DEFAULT_CUSTOM_REPOSITORY_PATH
|
376
|
+
)
|
377
|
+
|
378
|
+
fileio.rmtree(repository_temp_dir)
|
379
|
+
|
380
|
+
logger.info(
|
381
|
+
"Writing Databricks workflow definition to `%s`.",
|
382
|
+
pipeline_file_path,
|
383
|
+
)
|
384
|
+
|
385
|
+
# using the databricks client uploads the pipeline to databricks
|
386
|
+
job_cluster_key = self.sanitize_name(f"{deployment_id}")
|
387
|
+
self._upload_and_run_pipeline(
|
388
|
+
pipeline_name=orchestrator_run_name,
|
389
|
+
tasks=_construct_databricks_pipeline(
|
390
|
+
databricks_wheel_path, job_cluster_key
|
391
|
+
),
|
392
|
+
env_vars=env_vars,
|
393
|
+
job_cluster_key=job_cluster_key,
|
394
|
+
schedule=deployment.schedule,
|
395
|
+
)
|
396
|
+
|
397
|
+
def _upload_and_run_pipeline(
|
398
|
+
self,
|
399
|
+
pipeline_name: str,
|
400
|
+
tasks: List[DatabricksTask],
|
401
|
+
env_vars: Dict[str, str],
|
402
|
+
job_cluster_key: str,
|
403
|
+
schedule: Optional["ScheduleResponse"] = None,
|
404
|
+
) -> None:
|
405
|
+
"""Uploads and run the pipeline on the Databricks jobs.
|
406
|
+
|
407
|
+
Args:
|
408
|
+
pipeline_name: The name of the pipeline.
|
409
|
+
tasks: The list of tasks to run.
|
410
|
+
env_vars: The environment variables.
|
411
|
+
job_cluster_key: The ID of the Databricks job cluster.
|
412
|
+
schedule: The schedule to run the pipeline
|
413
|
+
|
414
|
+
Raises:
|
415
|
+
ValueError: If the `Job Compute` policy is not found.
|
416
|
+
ValueError: If the `schedule_timezone` is not set when passing
|
417
|
+
|
418
|
+
"""
|
419
|
+
databricks_client = self._get_databricks_client()
|
420
|
+
spark_conf = self.settings_class().spark_conf or {}
|
421
|
+
spark_conf[
|
422
|
+
"spark.databricks.driver.dbfsLibraryInstallationAllowed"
|
423
|
+
] = "true"
|
424
|
+
|
425
|
+
policy_id = self.settings_class().policy_id or None
|
426
|
+
for policy in databricks_client.cluster_policies.list():
|
427
|
+
if policy.name == "Job Compute":
|
428
|
+
policy_id = policy.policy_id
|
429
|
+
if policy_id is None:
|
430
|
+
raise ValueError(
|
431
|
+
"Could not find the `Job Compute` policy in Databricks."
|
432
|
+
)
|
433
|
+
job_cluster = JobCluster(
|
434
|
+
job_cluster_key=job_cluster_key,
|
435
|
+
new_cluster=ClusterSpec(
|
436
|
+
spark_version=self.settings_class().spark_version
|
437
|
+
or DATABRICKS_SPARK_DEFAULT_VERSION,
|
438
|
+
num_workers=self.settings_class().num_workers,
|
439
|
+
node_type_id=self.settings_class().node_type_id
|
440
|
+
or "Standard_D4s_v5",
|
441
|
+
policy_id=policy_id,
|
442
|
+
autoscale=AutoScale(
|
443
|
+
min_workers=self.settings_class().autoscale[0],
|
444
|
+
max_workers=self.settings_class().autoscale[1],
|
445
|
+
),
|
446
|
+
single_user_name=self.settings_class().single_user_name,
|
447
|
+
spark_env_vars=env_vars,
|
448
|
+
spark_conf=spark_conf,
|
449
|
+
workload_type=WorkloadType(
|
450
|
+
clients=ClientsTypes(jobs=True, notebooks=False)
|
451
|
+
),
|
452
|
+
),
|
453
|
+
)
|
454
|
+
if schedule and schedule.cron_expression:
|
455
|
+
schedule_timezone = self.settings_class().schedule_timezone
|
456
|
+
if schedule_timezone:
|
457
|
+
databricks_schedule = CronSchedule(
|
458
|
+
quartz_cron_expression=schedule.cron_expression,
|
459
|
+
timezone_id=schedule_timezone,
|
460
|
+
)
|
461
|
+
else:
|
462
|
+
raise ValueError(
|
463
|
+
"Property `schedule_timezone` must be set when passing "
|
464
|
+
"`cron_expression` to a Databricks orchestrator. "
|
465
|
+
"Databricks orchestrator requires a Java Timezone ID to run the pipeline on schedule. "
|
466
|
+
"Please refer to https://docs.oracle.com/middleware/1221/wcs/tag-ref/MISC/TimeZones.html for more information."
|
467
|
+
)
|
468
|
+
else:
|
469
|
+
databricks_schedule = None
|
470
|
+
|
471
|
+
job = databricks_client.jobs.create(
|
472
|
+
name=pipeline_name,
|
473
|
+
tasks=tasks,
|
474
|
+
job_clusters=[job_cluster],
|
475
|
+
schedule=databricks_schedule,
|
476
|
+
)
|
477
|
+
if job.job_id:
|
478
|
+
databricks_client.jobs.run_now(job_id=job.job_id)
|
479
|
+
else:
|
480
|
+
raise ValueError("An error occurred while getting the job id.")
|
481
|
+
|
482
|
+
def get_pipeline_run_metadata(
|
483
|
+
self, run_id: UUID
|
484
|
+
) -> Dict[str, "MetadataType"]:
|
485
|
+
"""Get general component-specific metadata for a pipeline run.
|
486
|
+
|
487
|
+
Args:
|
488
|
+
run_id: The ID of the pipeline run.
|
489
|
+
|
490
|
+
Returns:
|
491
|
+
A dictionary of metadata.
|
492
|
+
"""
|
493
|
+
run_url = (
|
494
|
+
f"{self.config.host}/jobs/" f"{self.get_orchestrator_run_id()}"
|
495
|
+
)
|
496
|
+
return {
|
497
|
+
METADATA_ORCHESTRATOR_URL: Uri(run_url),
|
498
|
+
}
|
@@ -0,0 +1,97 @@
|
|
1
|
+
# Copyright (c) ZenML GmbH 2023. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
12
|
+
# or implied. See the License for the specific language governing
|
13
|
+
# permissions and limitations under the License.
|
14
|
+
"""Entrypoint configuration for ZenML Databricks pipeline steps."""
|
15
|
+
|
16
|
+
import os
|
17
|
+
import sys
|
18
|
+
from typing import Any, List, Set
|
19
|
+
|
20
|
+
import pkg_resources
|
21
|
+
|
22
|
+
from zenml.entrypoints.step_entrypoint_configuration import (
|
23
|
+
StepEntrypointConfiguration,
|
24
|
+
)
|
25
|
+
|
26
|
+
WHEEL_PACKAGE_OPTION = "wheel_package"
|
27
|
+
DATABRICKS_JOB_ID_OPTION = "databricks_job_id"
|
28
|
+
ENV_ZENML_DATABRICKS_ORCHESTRATOR_RUN_ID = (
|
29
|
+
"ZENML_DATABRICKS_ORCHESTRATOR_RUN_ID"
|
30
|
+
)
|
31
|
+
|
32
|
+
|
33
|
+
class DatabricksEntrypointConfiguration(StepEntrypointConfiguration):
|
34
|
+
"""Entrypoint configuration for ZenML Databricks pipeline steps.
|
35
|
+
|
36
|
+
The only purpose of this entrypoint configuration is to reconstruct the
|
37
|
+
environment variables that exceed the maximum length of 256 characters
|
38
|
+
allowed for Databricks Processor steps from their individual components.
|
39
|
+
"""
|
40
|
+
|
41
|
+
@classmethod
|
42
|
+
def get_entrypoint_options(cls) -> Set[str]:
|
43
|
+
"""Gets all options required for running with this configuration.
|
44
|
+
|
45
|
+
Returns:
|
46
|
+
The superclass options as well as an option for the wheel package.
|
47
|
+
"""
|
48
|
+
return (
|
49
|
+
super().get_entrypoint_options()
|
50
|
+
| {WHEEL_PACKAGE_OPTION}
|
51
|
+
| {DATABRICKS_JOB_ID_OPTION}
|
52
|
+
)
|
53
|
+
|
54
|
+
@classmethod
|
55
|
+
def get_entrypoint_arguments(
|
56
|
+
cls,
|
57
|
+
**kwargs: Any,
|
58
|
+
) -> List[str]:
|
59
|
+
"""Gets all arguments that the entrypoint command should be called with.
|
60
|
+
|
61
|
+
The argument list should be something that
|
62
|
+
`argparse.ArgumentParser.parse_args(...)` can handle (e.g.
|
63
|
+
`["--some_option", "some_value"]` or `["--some_option=some_value"]`).
|
64
|
+
It needs to provide values for all options returned by the
|
65
|
+
`get_entrypoint_options()` method of this class.
|
66
|
+
|
67
|
+
Args:
|
68
|
+
**kwargs: Kwargs, must include the step name.
|
69
|
+
|
70
|
+
Returns:
|
71
|
+
The superclass arguments as well as arguments for the wheel package.
|
72
|
+
"""
|
73
|
+
return super().get_entrypoint_arguments(**kwargs) + [
|
74
|
+
f"--{WHEEL_PACKAGE_OPTION}",
|
75
|
+
kwargs[WHEEL_PACKAGE_OPTION],
|
76
|
+
f"--{DATABRICKS_JOB_ID_OPTION}",
|
77
|
+
kwargs[DATABRICKS_JOB_ID_OPTION],
|
78
|
+
]
|
79
|
+
|
80
|
+
def run(self) -> None:
|
81
|
+
"""Runs the step."""
|
82
|
+
# Get the wheel package and add it to the sys path
|
83
|
+
wheel_package = self.entrypoint_args[WHEEL_PACKAGE_OPTION]
|
84
|
+
distribution = pkg_resources.get_distribution(wheel_package)
|
85
|
+
project_root = os.path.join(distribution.location, wheel_package)
|
86
|
+
if project_root not in sys.path:
|
87
|
+
sys.path.insert(0, project_root)
|
88
|
+
sys.path.insert(-1, project_root)
|
89
|
+
|
90
|
+
# Get the job id and add it to the environment
|
91
|
+
databricks_job_id = self.entrypoint_args[DATABRICKS_JOB_ID_OPTION]
|
92
|
+
os.environ[ENV_ZENML_DATABRICKS_ORCHESTRATOR_RUN_ID] = (
|
93
|
+
databricks_job_id
|
94
|
+
)
|
95
|
+
|
96
|
+
# Run the step
|
97
|
+
super().run()
|
@@ -0,0 +1,19 @@
|
|
1
|
+
# Copyright (c) ZenML GmbH 2023. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
12
|
+
# or implied. See the License for the specific language governing
|
13
|
+
# permissions and limitations under the License.
|
14
|
+
"""Initialization of the Databricks Service."""
|
15
|
+
|
16
|
+
from zenml.integrations.databricks.services.databricks_deployment import ( # noqa
|
17
|
+
DatabricksDeploymentConfig,
|
18
|
+
DatabricksDeploymentService,
|
19
|
+
)
|