yu-mcal 0.1.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mcal/__init__.py +1 -0
- mcal/calculations/__init__.py +0 -0
- mcal/calculations/hopping_mobility_model.py +391 -0
- mcal/calculations/rcal.py +408 -0
- mcal/constants/element_properties.csv +121 -0
- mcal/mcal.py +844 -0
- mcal/utils/__init__.py +0 -0
- mcal/utils/cif_reader.py +645 -0
- mcal/utils/gaus_log_reader.py +91 -0
- mcal/utils/gjf_maker.py +267 -0
- yu_mcal-0.1.4.dist-info/METADATA +263 -0
- yu_mcal-0.1.4.dist-info/RECORD +15 -0
- yu_mcal-0.1.4.dist-info/WHEEL +4 -0
- yu_mcal-0.1.4.dist-info/entry_points.txt +2 -0
- yu_mcal-0.1.4.dist-info/licenses/LICENSE +21 -0
mcal/mcal.py
ADDED
|
@@ -0,0 +1,844 @@
|
|
|
1
|
+
"""mcal"""
|
|
2
|
+
import argparse
|
|
3
|
+
import functools
|
|
4
|
+
import pickle
|
|
5
|
+
from pathlib import Path
|
|
6
|
+
from time import time
|
|
7
|
+
from typing import Dict, List, Literal, Optional, Tuple, Union
|
|
8
|
+
|
|
9
|
+
import numpy as np
|
|
10
|
+
from numpy.typing import NDArray
|
|
11
|
+
from tcal import Tcal
|
|
12
|
+
|
|
13
|
+
from mcal.utils.cif_reader import CifReader
|
|
14
|
+
from mcal.utils.gaus_log_reader import check_normal_termination
|
|
15
|
+
from mcal.utils.gjf_maker import GjfMaker
|
|
16
|
+
from mcal.calculations.hopping_mobility_model import (
|
|
17
|
+
diffusion_coefficient_tensor,
|
|
18
|
+
diffusion_coefficient_tensor_MC,
|
|
19
|
+
diffusion_coefficient_tensor_ODE,
|
|
20
|
+
marcus_rate,
|
|
21
|
+
mobility_tensor
|
|
22
|
+
)
|
|
23
|
+
from mcal.calculations.rcal import Rcal
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
print = functools.partial(print, flush=True)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def main():
|
|
30
|
+
"""Calculate mobility tensor considering anisotropy and path continuity.
|
|
31
|
+
|
|
32
|
+
Examples
|
|
33
|
+
--------
|
|
34
|
+
Basic usage:
|
|
35
|
+
- Calculate p-type mobility for xxx crystal\n
|
|
36
|
+
$ python hop_mcal.py xxx.cif p
|
|
37
|
+
|
|
38
|
+
- Calculate n-type mobility for xxx crystal\n
|
|
39
|
+
$ python hop_mcal.py xxx.cif n
|
|
40
|
+
|
|
41
|
+
With resource options:
|
|
42
|
+
- Use 8 CPUs and 16GB memory\n
|
|
43
|
+
$ python hop_mcal.py xxx.cif p -c 8 -m 16
|
|
44
|
+
|
|
45
|
+
- Use different calculation method (default is B3LYP/6-31G(d,p))\n
|
|
46
|
+
$ python hop_mcal.py xxx.cif p -M "B3LYP/6-311G(d,p)"
|
|
47
|
+
|
|
48
|
+
High-precision calculation:
|
|
49
|
+
- Calculate all transfer integrals without speedup using moment of inertia and distance between centers of weight\n
|
|
50
|
+
$ python hop_mcal.py xxx.cif p --fullcal
|
|
51
|
+
|
|
52
|
+
- Expand calculation range to 3x3x3 supercell\n
|
|
53
|
+
$ python hop_mcal.py xxx.cif p --cellsize 1
|
|
54
|
+
|
|
55
|
+
- Expand calculation range to 5x5x5 supercell to widen transfer integral calculation range\n
|
|
56
|
+
$ python hop_mcal.py xxx.cif p --cellsize 2
|
|
57
|
+
|
|
58
|
+
Resume and save results:
|
|
59
|
+
- Resume from existing calculations\n
|
|
60
|
+
$ python hop_mcal.py xxx.cif p --resume
|
|
61
|
+
|
|
62
|
+
- Save results to pickle file\n
|
|
63
|
+
$ python hop_mcal.py xxx.cif p --pickle
|
|
64
|
+
|
|
65
|
+
- Read results from existing pickle file\n
|
|
66
|
+
$ python hop_mcal.py xxx_result.pkl p -rp
|
|
67
|
+
|
|
68
|
+
- Read results from existing log files without running Gaussian\n
|
|
69
|
+
$ python hop_mcal.py xxx.cif p -r
|
|
70
|
+
|
|
71
|
+
Compare calculation methods:
|
|
72
|
+
- Compare results using kinetic Monte Carlo and ODE methods\n
|
|
73
|
+
$ python hop_mcal.py xxx.cif p --mc --ode
|
|
74
|
+
"""
|
|
75
|
+
# Error range for skipping calculation of transfer integrals using moment of inertia and distance between centers of weight.
|
|
76
|
+
CENTER_OF_WEIGHT_ERROR = 1.0e-7
|
|
77
|
+
MOMENT_OF_INERTIA_ERROR = np.array([[1.0e-3, 1.0e-3, 1.0e-3]])
|
|
78
|
+
|
|
79
|
+
"""This code is to execute hop_mcal for command line."""
|
|
80
|
+
parser = argparse.ArgumentParser()
|
|
81
|
+
parser.add_argument('file', help='cif file name or pickle file name if you want to use -rp option', type=str)
|
|
82
|
+
parser.add_argument('osc_type', help='organic semiconductor type', type=str)
|
|
83
|
+
parser.add_argument(
|
|
84
|
+
'-M', '--method',
|
|
85
|
+
help='calculation method used in Gaussian calculations (default is B3LYP/6-31G(d,p))',
|
|
86
|
+
type=str,
|
|
87
|
+
default='B3LYP/6-31G(d,p)',
|
|
88
|
+
)
|
|
89
|
+
parser.add_argument('-c', '--cpu', help='setting the number of cpu (default is 4)', type=int, default=4)
|
|
90
|
+
parser.add_argument(
|
|
91
|
+
'-m', '--mem',
|
|
92
|
+
help='setting the number of memory [GB] (default is 10 GB)',
|
|
93
|
+
type=int,
|
|
94
|
+
default=10,
|
|
95
|
+
)
|
|
96
|
+
parser.add_argument('-g', '--g09', help='use Gaussian 09 (default is Gaussian 16)', action='store_true')
|
|
97
|
+
parser.add_argument('-r', '--read', help='read log files without executing Gaussian', action='store_true')
|
|
98
|
+
parser.add_argument(
|
|
99
|
+
'-rp', '--read_pickle',
|
|
100
|
+
help='read results from existing pickle file',
|
|
101
|
+
action='store_true'
|
|
102
|
+
)
|
|
103
|
+
parser.add_argument('-p', '--pickle', help='save to pickle the result of calculation', action='store_true')
|
|
104
|
+
parser.add_argument(
|
|
105
|
+
'--cellsize',
|
|
106
|
+
help='number of unit cells to expand in each direction around the central unit cell '
|
|
107
|
+
'(Examples: 1 creates 3x3x3, 2 creates 5x5x5 supercell (default is 2))',
|
|
108
|
+
type=int,
|
|
109
|
+
default=2,
|
|
110
|
+
)
|
|
111
|
+
parser.add_argument(
|
|
112
|
+
'--fullcal',
|
|
113
|
+
help='do not process for speeding up using moment of inertia and distance between centers of weight',
|
|
114
|
+
action='store_true',
|
|
115
|
+
)
|
|
116
|
+
parser.add_argument('--mc', help='use Monte Carlo method to calculate diffusion coefficient', action='store_true')
|
|
117
|
+
parser.add_argument(
|
|
118
|
+
'--ode',
|
|
119
|
+
help='use Ordinary Differential Equation method to calculate diffusion coefficient',
|
|
120
|
+
action='store_true',
|
|
121
|
+
)
|
|
122
|
+
parser.add_argument(
|
|
123
|
+
'--resume',
|
|
124
|
+
help='resume calculation',
|
|
125
|
+
action='store_true',
|
|
126
|
+
)
|
|
127
|
+
args = parser.parse_args()
|
|
128
|
+
|
|
129
|
+
args.osc_type = args.osc_type.lower()
|
|
130
|
+
|
|
131
|
+
if args.g09:
|
|
132
|
+
gau_com = 'g09'
|
|
133
|
+
else:
|
|
134
|
+
gau_com = 'g16'
|
|
135
|
+
|
|
136
|
+
# file info
|
|
137
|
+
cif_file = Path(args.file)
|
|
138
|
+
directory = cif_file.parent
|
|
139
|
+
filename = cif_file.stem
|
|
140
|
+
cif_path_without_ext = f'{directory}/{filename}'
|
|
141
|
+
|
|
142
|
+
print('----------------------------------------')
|
|
143
|
+
print(' mcal 0.1.4 (2026/01/20) by Matsui Lab. ')
|
|
144
|
+
print('----------------------------------------')
|
|
145
|
+
|
|
146
|
+
if args.read_pickle:
|
|
147
|
+
read_pickle(args.file)
|
|
148
|
+
exit()
|
|
149
|
+
|
|
150
|
+
print(f'\nCalculate as {args.osc_type}-type organic semiconductor.')
|
|
151
|
+
print(f'\nInput File Name: {args.file}')
|
|
152
|
+
Tcal.print_timestamp()
|
|
153
|
+
print()
|
|
154
|
+
start_time = time()
|
|
155
|
+
|
|
156
|
+
##### Calculate reorganization energy #####
|
|
157
|
+
cif_reader = CifReader(cif_path=cif_file)
|
|
158
|
+
print(f'Export {cif_path_without_ext}_unit_cell.mol')
|
|
159
|
+
cif_reader.export_unit_cell_file(f'{cif_path_without_ext}_unit_cell.mol', format='mol')
|
|
160
|
+
print('Please verify that the created unit cell is correct.\n')
|
|
161
|
+
symbols = cif_reader.unique_symbols[0]
|
|
162
|
+
coordinates = cif_reader.unique_coords[0]
|
|
163
|
+
coordinates = cif_reader.convert_frac_to_cart(coordinates)
|
|
164
|
+
|
|
165
|
+
if not args.read:
|
|
166
|
+
print('Create gjf for reorganization energy.')
|
|
167
|
+
create_reorg_gjf(
|
|
168
|
+
symbols,
|
|
169
|
+
coordinates,
|
|
170
|
+
filename,
|
|
171
|
+
directory,
|
|
172
|
+
args.cpu,
|
|
173
|
+
args.mem,
|
|
174
|
+
args.method,
|
|
175
|
+
)
|
|
176
|
+
|
|
177
|
+
if args.osc_type == 'p':
|
|
178
|
+
rcal = Rcal(gjf_file=f'{cif_path_without_ext}_opt_n.gjf')
|
|
179
|
+
elif args.osc_type == 'n':
|
|
180
|
+
rcal = Rcal(gjf_file=f'{cif_path_without_ext}_opt_n.gjf', osc_type='n')
|
|
181
|
+
else:
|
|
182
|
+
raise OSCTypeError
|
|
183
|
+
|
|
184
|
+
skip_specified_cal = []
|
|
185
|
+
if args.read:
|
|
186
|
+
print('Skip calculation of reorganization energy.')
|
|
187
|
+
elif args.resume:
|
|
188
|
+
rcal.check_extension_log(f'{cif_path_without_ext}_opt_n.gjf')
|
|
189
|
+
skip_specified_cal = check_reorganization_energy_completion(cif_path_without_ext, args.osc_type, extension_log=rcal._extension_log)
|
|
190
|
+
else:
|
|
191
|
+
print('Calculate reorganization energy.')
|
|
192
|
+
|
|
193
|
+
reorg_energy = rcal.calc_reorganization(gau_com=gau_com, only_read=args.read, is_output_detail=True, skip_specified_cal=skip_specified_cal)
|
|
194
|
+
|
|
195
|
+
print_reorg_energy(args.osc_type, reorg_energy)
|
|
196
|
+
|
|
197
|
+
##### Calculate transfer integrals #####
|
|
198
|
+
transfer_integrals = []
|
|
199
|
+
mom_dis_ti = [] # Store moment of inertia, distance between centers of weight and transfer integral
|
|
200
|
+
|
|
201
|
+
expand_mols = cif_reader.expand_mols(args.cellsize)
|
|
202
|
+
for s in range(len(cif_reader.unique_symbols.keys())):
|
|
203
|
+
unique_symbols = cif_reader.unique_symbols[s]
|
|
204
|
+
unique_coords = cif_reader.unique_coords[s]
|
|
205
|
+
unique_coords = cif_reader.convert_frac_to_cart(unique_coords)
|
|
206
|
+
for (i, j, k), expand_mol in expand_mols.items():
|
|
207
|
+
for t, (symbols, coordinates) in expand_mol.items():
|
|
208
|
+
# Skip creating gjf for transfer integrals because they are molecules with translation symmetry
|
|
209
|
+
if s > t:
|
|
210
|
+
continue
|
|
211
|
+
elif s == t:
|
|
212
|
+
if (i, j, k) == (0, 0, 0):
|
|
213
|
+
continue
|
|
214
|
+
elif i < 0 or (i == 0 and (j < 0 or (j == 0 and k < 0))):
|
|
215
|
+
continue
|
|
216
|
+
|
|
217
|
+
coordinates = cif_reader.convert_frac_to_cart(coordinates)
|
|
218
|
+
|
|
219
|
+
min_distance = cal_min_distance(
|
|
220
|
+
unique_symbols, unique_coords,
|
|
221
|
+
symbols, coordinates
|
|
222
|
+
)
|
|
223
|
+
if min_distance > 5:
|
|
224
|
+
print()
|
|
225
|
+
print(f'Skip calculation of transfer integral from {s}-th in (0,0,0) cell to {t}-th in ({i},{j},{k}) cell because the minimum distance is over 5 \u212B.\n')
|
|
226
|
+
continue
|
|
227
|
+
|
|
228
|
+
moment, _ = cal_moment_of_inertia(
|
|
229
|
+
unique_symbols, unique_coords,
|
|
230
|
+
symbols, coordinates
|
|
231
|
+
)
|
|
232
|
+
|
|
233
|
+
distance = cal_distance_between_cen_of_weight(
|
|
234
|
+
unique_symbols, unique_coords,
|
|
235
|
+
symbols, coordinates
|
|
236
|
+
)
|
|
237
|
+
|
|
238
|
+
is_run_ti = True
|
|
239
|
+
same_ti = 0
|
|
240
|
+
|
|
241
|
+
# skip calculation of transfer integrals using moment of inertia and distance between centers of weight.
|
|
242
|
+
if not args.fullcal:
|
|
243
|
+
for m, d, ti in mom_dis_ti:
|
|
244
|
+
if (np.all(m - MOMENT_OF_INERTIA_ERROR < moment) and np.all(moment < m + MOMENT_OF_INERTIA_ERROR)) and (d - CENTER_OF_WEIGHT_ERROR < distance < d + CENTER_OF_WEIGHT_ERROR):
|
|
245
|
+
is_run_ti = False
|
|
246
|
+
same_ti = ti
|
|
247
|
+
break
|
|
248
|
+
|
|
249
|
+
if is_run_ti:
|
|
250
|
+
gjf_name = f'{filename}-({s}_{t}_{i}_{j}_{k})'
|
|
251
|
+
gjf_file = f'{directory}/{gjf_name}'
|
|
252
|
+
|
|
253
|
+
tcal = Tcal(gjf_file)
|
|
254
|
+
|
|
255
|
+
is_normal_term = False
|
|
256
|
+
if args.resume:
|
|
257
|
+
tcal.check_extension_log()
|
|
258
|
+
is_normal_term = check_transfer_integral_completion(gjf_file, extension_log=tcal._extension_log)
|
|
259
|
+
|
|
260
|
+
if not args.read and not is_normal_term:
|
|
261
|
+
print()
|
|
262
|
+
print('Create gjf for transfer integral.')
|
|
263
|
+
create_ti_gjf(
|
|
264
|
+
{'symbols': unique_symbols, 'coordinates': unique_coords},
|
|
265
|
+
{'symbols': symbols, 'coordinates': coordinates},
|
|
266
|
+
gjf_basename=gjf_name,
|
|
267
|
+
save_dir=directory,
|
|
268
|
+
cpu=args.cpu,
|
|
269
|
+
mem=args.mem,
|
|
270
|
+
method=args.method,
|
|
271
|
+
)
|
|
272
|
+
tcal.create_monomer_file()
|
|
273
|
+
|
|
274
|
+
if args.g09:
|
|
275
|
+
gaussian_command = 'g09'
|
|
276
|
+
else:
|
|
277
|
+
gaussian_command = 'g16'
|
|
278
|
+
print(f'Calculate transfer integral from {s}-th in (0,0,0) cell to {t}-th in ({i},{j},{k}) cell.')
|
|
279
|
+
tcal.run_gaussian(gaussian_command)
|
|
280
|
+
else:
|
|
281
|
+
print()
|
|
282
|
+
print(f'Skip calculation of transfer integral from {s}-th in (0,0,0) cell to {t}-th in ({i},{j},{k}) cell.')
|
|
283
|
+
|
|
284
|
+
tcal.check_extension_log()
|
|
285
|
+
tcal.read_monomer1()
|
|
286
|
+
tcal.read_monomer2()
|
|
287
|
+
tcal.read_dimer()
|
|
288
|
+
|
|
289
|
+
if args.osc_type == 'p':
|
|
290
|
+
transfer = Tcal.cal_transfer_integrals(
|
|
291
|
+
tcal.mo1[tcal.n_elect1-1], tcal.overlap, tcal.fock, tcal.mo2[tcal.n_elect2-1]
|
|
292
|
+
)
|
|
293
|
+
elif args.osc_type == 'n':
|
|
294
|
+
transfer = Tcal.cal_transfer_integrals(
|
|
295
|
+
tcal.mo1[tcal.n_elect1], tcal.overlap, tcal.fock, tcal.mo2[tcal.n_elect2]
|
|
296
|
+
)
|
|
297
|
+
|
|
298
|
+
transfer = transfer * 1e-3 # meV to eV
|
|
299
|
+
print_transfer_integral(args.osc_type, transfer)
|
|
300
|
+
transfer_integrals.append((s, t, i, j, k, transfer))
|
|
301
|
+
mom_dis_ti.append((moment, distance, transfer))
|
|
302
|
+
else:
|
|
303
|
+
print()
|
|
304
|
+
print(f'Skip calculation of transfer integral from {s}-th in (0,0,0) cell to {t}-th in ({i},{j},{k}) cell due to identical moment of inertia and distance between centers of weight.')
|
|
305
|
+
print_transfer_integral(args.osc_type, same_ti)
|
|
306
|
+
transfer_integrals.append((s, t, i, j, k, same_ti))
|
|
307
|
+
|
|
308
|
+
##### Calculate mobility tensor considering anisotropy. #####
|
|
309
|
+
hop = []
|
|
310
|
+
|
|
311
|
+
for s, t, i, j, k, ti in transfer_integrals:
|
|
312
|
+
hop.append((s, t, i, j, k, marcus_rate(ti, reorg_energy)))
|
|
313
|
+
|
|
314
|
+
diffusion_coef_tensor = diffusion_coefficient_tensor(cif_reader.lattice * 1e-8, hop)
|
|
315
|
+
print_tensor(diffusion_coef_tensor, msg="Diffusion coefficient tensor (cm^2/s)")
|
|
316
|
+
mu = mobility_tensor(diffusion_coef_tensor)
|
|
317
|
+
print_tensor(mu, msg="Mobility tensor (cm^2/Vs)")
|
|
318
|
+
value, vector = cal_eigenvalue_decomposition(mu)
|
|
319
|
+
print_mobility(value, vector)
|
|
320
|
+
|
|
321
|
+
##### Simulate mobility tensor calculation using Monte Carlo method #####
|
|
322
|
+
if args.mc:
|
|
323
|
+
D_MC = diffusion_coefficient_tensor_MC(cif_reader.lattice * 1e-8, hop)
|
|
324
|
+
print_tensor(D_MC, msg="Diffusion coefficient tensor (cm^2/s) (MC)")
|
|
325
|
+
mu_MC = mobility_tensor(D_MC)
|
|
326
|
+
print_tensor(mu_MC, msg="Mobility tensor (cm^2/Vs) (MC)")
|
|
327
|
+
value_MC, vector_MC = cal_eigenvalue_decomposition(mu_MC)
|
|
328
|
+
print_mobility(value_MC, vector_MC, sim_type='MC')
|
|
329
|
+
|
|
330
|
+
##### Simulate mobility tensor calculation using Ordinary Differential Equation method #####
|
|
331
|
+
if args.ode:
|
|
332
|
+
D_ODE = diffusion_coefficient_tensor_ODE(cif_reader.lattice * 1e-8, hop)
|
|
333
|
+
print_tensor(D_ODE, msg="Diffusion coefficient tensor (cm^2/s) (ODE)")
|
|
334
|
+
mu_ODE = mobility_tensor(D_ODE)
|
|
335
|
+
print_tensor(mu_ODE, msg="Mobility tensor (cm^2/Vs) (ODE)")
|
|
336
|
+
value_ODE, vector_ODE = cal_eigenvalue_decomposition(mu_ODE)
|
|
337
|
+
print_mobility(value_ODE, vector_ODE, sim_type='ODE')
|
|
338
|
+
|
|
339
|
+
# Save reorganization, transfer integrals, hop, mobility tensor
|
|
340
|
+
if args.pickle:
|
|
341
|
+
with open(f'{cif_path_without_ext}_result.pkl', 'wb') as f:
|
|
342
|
+
pickle.dump({
|
|
343
|
+
'osc_type': args.osc_type,
|
|
344
|
+
'lattice': cif_reader.lattice,
|
|
345
|
+
'z_value': cif_reader.z_value,
|
|
346
|
+
'reorganization': reorg_energy,
|
|
347
|
+
'transfer_integrals': transfer_integrals,
|
|
348
|
+
'hop': hop,
|
|
349
|
+
'diffusion_coefficient_tensor': diffusion_coef_tensor,
|
|
350
|
+
'mobility_tensor': mu,
|
|
351
|
+
'mobility_value': value,
|
|
352
|
+
'mobility_vector': vector
|
|
353
|
+
}, f)
|
|
354
|
+
|
|
355
|
+
Tcal.print_timestamp()
|
|
356
|
+
end_time = time()
|
|
357
|
+
elapsed_time = end_time - start_time
|
|
358
|
+
elapsed_time_h = int(elapsed_time // 3600)
|
|
359
|
+
elapsed_time_min = int((elapsed_time - elapsed_time_h * 3600) // 60)
|
|
360
|
+
elapsed_time_sec = int(elapsed_time - elapsed_time_h * 3600 - elapsed_time_min * 60)
|
|
361
|
+
elapsed_time_ms = (elapsed_time - elapsed_time_h * 3600 - elapsed_time_min * 60 - elapsed_time_sec) * 1000
|
|
362
|
+
if elapsed_time < 1:
|
|
363
|
+
print(f'Elapsed Time: {elapsed_time_ms:.0f} ms')
|
|
364
|
+
elif elapsed_time < 60:
|
|
365
|
+
print(f'Elapsed Time: {elapsed_time_sec} sec')
|
|
366
|
+
elif elapsed_time < 3600:
|
|
367
|
+
print(f'Elapsed Time: {elapsed_time_min} min {elapsed_time_sec} sec')
|
|
368
|
+
else:
|
|
369
|
+
print(f'Elapsed Time: {elapsed_time_h} h {elapsed_time_min} min {elapsed_time_sec} sec')
|
|
370
|
+
|
|
371
|
+
|
|
372
|
+
def atom_weight(symbol: str) -> float:
|
|
373
|
+
"""Get atom weight
|
|
374
|
+
|
|
375
|
+
Parameters
|
|
376
|
+
----------
|
|
377
|
+
symbol : str
|
|
378
|
+
Symbol of atom
|
|
379
|
+
|
|
380
|
+
Returns
|
|
381
|
+
-------
|
|
382
|
+
float
|
|
383
|
+
Atomic weight
|
|
384
|
+
"""
|
|
385
|
+
ELEMENT_PROP = CifReader.ELEMENT_PROP
|
|
386
|
+
weight = ELEMENT_PROP[ELEMENT_PROP['symbol'] == symbol]['weight'].values[0]
|
|
387
|
+
|
|
388
|
+
return weight
|
|
389
|
+
|
|
390
|
+
|
|
391
|
+
def cal_cen_of_weight(
|
|
392
|
+
symbols1: NDArray[str],
|
|
393
|
+
coordinates1: NDArray[np.float64],
|
|
394
|
+
symbols2: Optional[NDArray[str]] = None,
|
|
395
|
+
coordinates2: Optional[NDArray[np.float64]] = None,
|
|
396
|
+
) -> NDArray[np.float64]:
|
|
397
|
+
"""Calculate center of weight
|
|
398
|
+
|
|
399
|
+
Parameters
|
|
400
|
+
----------
|
|
401
|
+
symbols1 : NDArray[str]
|
|
402
|
+
Symbols of atoms in one monomer
|
|
403
|
+
coordinates1 : NDArray[np.float64]
|
|
404
|
+
Coordinates of atoms in one monomer
|
|
405
|
+
symbols2 : Optional[NDArray[str]], optional
|
|
406
|
+
Symbols of atoms in another monomer, by default None
|
|
407
|
+
coordinates2 : Optional[NDArray[np.float64]], optional
|
|
408
|
+
Coordinates of atoms in another monomer, by default None
|
|
409
|
+
|
|
410
|
+
Returns
|
|
411
|
+
-------
|
|
412
|
+
NDArray[np.float64]
|
|
413
|
+
Center of weight
|
|
414
|
+
"""
|
|
415
|
+
if symbols2 is not None and coordinates2 is not None:
|
|
416
|
+
symbols1 = np.concatenate((symbols1, symbols2), axis=0)
|
|
417
|
+
coordinates1 = np.concatenate((coordinates1, coordinates2), axis=0)
|
|
418
|
+
|
|
419
|
+
weights = np.array([atom_weight(sym) for sym in symbols1])
|
|
420
|
+
total_weight = np.sum(weights)
|
|
421
|
+
|
|
422
|
+
weighted_coords = weights[:, np.newaxis] * coordinates1
|
|
423
|
+
weighted_sum = np.sum(weighted_coords, axis=0)
|
|
424
|
+
|
|
425
|
+
cen_of_weight = weighted_sum / total_weight
|
|
426
|
+
|
|
427
|
+
return cen_of_weight
|
|
428
|
+
|
|
429
|
+
|
|
430
|
+
def cal_distance_between_cen_of_weight(
|
|
431
|
+
symbols1: NDArray[str],
|
|
432
|
+
coordinates1: NDArray[np.float64],
|
|
433
|
+
symbols2: NDArray[str],
|
|
434
|
+
coordinates2: NDArray[np.float64],
|
|
435
|
+
) -> float:
|
|
436
|
+
"""Calculate distance between centers of weight
|
|
437
|
+
|
|
438
|
+
Parameters
|
|
439
|
+
----------
|
|
440
|
+
symbols1 : NDArray[str]
|
|
441
|
+
Symbols of atoms in one monomer
|
|
442
|
+
coordinates1 : NDArray[np.float64]
|
|
443
|
+
Coordinates of atoms in one monomer
|
|
444
|
+
symbols2 : NDArray[str]
|
|
445
|
+
Symbols of atoms in another monomer
|
|
446
|
+
coordinates2 : NDArray[np.float64]
|
|
447
|
+
Coordinates of atoms in another monomer
|
|
448
|
+
|
|
449
|
+
Returns
|
|
450
|
+
-------
|
|
451
|
+
float
|
|
452
|
+
Distance between centers of weight
|
|
453
|
+
"""
|
|
454
|
+
mol1_cen_coord = cal_cen_of_weight(symbols1, coordinates1)
|
|
455
|
+
mol2_cen_coord = cal_cen_of_weight(symbols2, coordinates2)
|
|
456
|
+
distance = np.sqrt(np.sum(np.square(mol1_cen_coord-mol2_cen_coord)))
|
|
457
|
+
|
|
458
|
+
return distance
|
|
459
|
+
|
|
460
|
+
|
|
461
|
+
def cal_eigenvalue_decomposition(mobility_tensor: NDArray[np.float64]) -> Tuple[NDArray[np.float64], NDArray[np.float64]]:
|
|
462
|
+
"""Calculate eigenvalue decomposition of mobility tensor
|
|
463
|
+
|
|
464
|
+
Parameters
|
|
465
|
+
----------
|
|
466
|
+
mobility_tensor : NDArray[np.float64]
|
|
467
|
+
Mobility tensor
|
|
468
|
+
|
|
469
|
+
Returns
|
|
470
|
+
-------
|
|
471
|
+
Tuple[NDArray[np.float64], NDArray[np.float64]]
|
|
472
|
+
Eigenvalue(mobility value) and eigenvector(mobility vector)
|
|
473
|
+
"""
|
|
474
|
+
value, vector = np.linalg.eig(mobility_tensor)
|
|
475
|
+
return value, vector
|
|
476
|
+
|
|
477
|
+
|
|
478
|
+
def cal_min_distance(
|
|
479
|
+
symbols1: NDArray[str],
|
|
480
|
+
coords1: NDArray[np.float64],
|
|
481
|
+
symbols2: NDArray[str],
|
|
482
|
+
coords2: NDArray[np.float64],
|
|
483
|
+
) -> float:
|
|
484
|
+
"""Calculate minimum distance between two sets of atoms.
|
|
485
|
+
|
|
486
|
+
Parameters
|
|
487
|
+
----------
|
|
488
|
+
symbols1 : NDArray[str]
|
|
489
|
+
Symbols of atoms in one monomer
|
|
490
|
+
coords1 : NDArray[np.float64]
|
|
491
|
+
Coordinates of atoms in one monomer
|
|
492
|
+
symbols2 : NDArray[str]
|
|
493
|
+
Symbols of atoms in another monomer
|
|
494
|
+
coords2 : NDArray[np.float64]
|
|
495
|
+
Coordinates of atoms in another monomer
|
|
496
|
+
|
|
497
|
+
Returns
|
|
498
|
+
-------
|
|
499
|
+
float
|
|
500
|
+
Minimum distance between two sets of atoms
|
|
501
|
+
"""
|
|
502
|
+
ELEMENT_PROP = CifReader.ELEMENT_PROP
|
|
503
|
+
VDW_RADII = ELEMENT_PROP[['symbol', 'vdw_radius']].set_index('symbol').to_dict()['vdw_radius']
|
|
504
|
+
|
|
505
|
+
radii1 = np.array(
|
|
506
|
+
[VDW_RADII[symbol] for symbol in symbols1]
|
|
507
|
+
)
|
|
508
|
+
radii2 = np.array(
|
|
509
|
+
[VDW_RADII[symbol] for symbol in symbols2]
|
|
510
|
+
)
|
|
511
|
+
|
|
512
|
+
distances = np.sqrt(np.sum((coords1[:, np.newaxis] - coords2)**2, axis=2)) - radii1[:, np.newaxis] - radii2
|
|
513
|
+
|
|
514
|
+
min_distance = np.min(distances)
|
|
515
|
+
|
|
516
|
+
return min_distance
|
|
517
|
+
|
|
518
|
+
|
|
519
|
+
def cal_moment_of_inertia(
|
|
520
|
+
symbols1: NDArray[str],
|
|
521
|
+
coordinates1: NDArray[np.float64],
|
|
522
|
+
symbols2: NDArray[str],
|
|
523
|
+
coordinates2: NDArray[np.float64],
|
|
524
|
+
) -> Tuple[NDArray[np.float64], NDArray[np.float64]]:
|
|
525
|
+
"""Calculate moment of inertia and eigenvectors of the inertia tensor.
|
|
526
|
+
|
|
527
|
+
Parameters
|
|
528
|
+
----------
|
|
529
|
+
symbols1 : NDArray[str]
|
|
530
|
+
Symbols of atoms in one monomer
|
|
531
|
+
coordinates1 : NDArray[np.float64]
|
|
532
|
+
Coordinates of atoms in one monomer
|
|
533
|
+
symbols2 : NDArray[str]
|
|
534
|
+
Symbols of atoms in another monomer
|
|
535
|
+
coordinates2 : NDArray[np.float64]
|
|
536
|
+
Coordinates of atoms in another monomer
|
|
537
|
+
|
|
538
|
+
Returns
|
|
539
|
+
-------
|
|
540
|
+
Tuple[NDArray[np.float64], NDArray[np.float64]]
|
|
541
|
+
Moment of inertia and eigenvectors of the inertia tensor
|
|
542
|
+
"""
|
|
543
|
+
symbols1 = np.concatenate((symbols1, symbols2), axis=0)
|
|
544
|
+
coordinates1 = np.concatenate((coordinates1, coordinates2), axis=0)
|
|
545
|
+
|
|
546
|
+
cen_of_weight = cal_cen_of_weight(symbols1, coordinates1)
|
|
547
|
+
|
|
548
|
+
weights = np.array([atom_weight(sym) for sym in symbols1])
|
|
549
|
+
|
|
550
|
+
xi = coordinates1[:, 0] - cen_of_weight[0]
|
|
551
|
+
yi = coordinates1[:, 1] - cen_of_weight[1]
|
|
552
|
+
zi = coordinates1[:, 2] - cen_of_weight[2]
|
|
553
|
+
|
|
554
|
+
tmp_coords = np.column_stack((xi, yi, zi))
|
|
555
|
+
|
|
556
|
+
moment = np.zeros((3, 3))
|
|
557
|
+
|
|
558
|
+
for i in range(3):
|
|
559
|
+
moment[i, i] = np.sum(weights * (tmp_coords[:, (i+1)%3]**2 + tmp_coords[:, (i+2)%3]**2))
|
|
560
|
+
|
|
561
|
+
for i in range(3):
|
|
562
|
+
for j in range(i+1, 3):
|
|
563
|
+
moment[i, j] = moment[j, i] = -np.sum(weights * tmp_coords[:, i] * tmp_coords[:, j])
|
|
564
|
+
|
|
565
|
+
moment, p = np.linalg.eig(moment)
|
|
566
|
+
|
|
567
|
+
return moment, p
|
|
568
|
+
|
|
569
|
+
|
|
570
|
+
def check_reorganization_energy_completion(
|
|
571
|
+
cif_path_without_ext: str,
|
|
572
|
+
osc_type: Literal['p', 'n'],
|
|
573
|
+
extension_log: str = '.log'
|
|
574
|
+
) -> List[Literal['opt_neutral', 'opt_ion', 'neutral', 'ion']]:
|
|
575
|
+
"""Check if all reorganization energy calculations are completed normally.
|
|
576
|
+
|
|
577
|
+
Parameters
|
|
578
|
+
----------
|
|
579
|
+
cif_path_without_ext : str
|
|
580
|
+
Base path of cif file (without extension)
|
|
581
|
+
osc_type : Literal['p', 'n']
|
|
582
|
+
Semiconductor type (p-type or n-type)
|
|
583
|
+
extension_log : str
|
|
584
|
+
Extension of log file
|
|
585
|
+
|
|
586
|
+
Returns
|
|
587
|
+
-------
|
|
588
|
+
List[Literal['opt_neutral', 'opt_ion', 'neutral', 'ion']]
|
|
589
|
+
List of calculations to skip
|
|
590
|
+
"""
|
|
591
|
+
skip_specified_cal = []
|
|
592
|
+
if check_normal_termination(f'{cif_path_without_ext}_opt_n{extension_log}'):
|
|
593
|
+
skip_specified_cal.append('opt_neutral')
|
|
594
|
+
if check_normal_termination(f'{cif_path_without_ext}_n{extension_log}'):
|
|
595
|
+
skip_specified_cal.append('neutral')
|
|
596
|
+
|
|
597
|
+
if osc_type == 'p':
|
|
598
|
+
if check_normal_termination(f'{cif_path_without_ext}_opt_c{extension_log}'):
|
|
599
|
+
skip_specified_cal.append('opt_ion')
|
|
600
|
+
if check_normal_termination(f'{cif_path_without_ext}_c{extension_log}'):
|
|
601
|
+
skip_specified_cal.append('ion')
|
|
602
|
+
elif osc_type == 'n':
|
|
603
|
+
if check_normal_termination(f'{cif_path_without_ext}_opt_a{extension_log}'):
|
|
604
|
+
skip_specified_cal.append('opt_ion')
|
|
605
|
+
if check_normal_termination(f'{cif_path_without_ext}_a{extension_log}'):
|
|
606
|
+
skip_specified_cal.append('ion')
|
|
607
|
+
|
|
608
|
+
return skip_specified_cal
|
|
609
|
+
|
|
610
|
+
|
|
611
|
+
def check_transfer_integral_completion(gjf_file: str, extension_log: str = '.log') -> bool:
|
|
612
|
+
"""Check if all transfer integral calculations are completed normally.
|
|
613
|
+
|
|
614
|
+
Parameters
|
|
615
|
+
----------
|
|
616
|
+
gjf_file : str
|
|
617
|
+
Base path of gjf file (without extension)
|
|
618
|
+
|
|
619
|
+
Returns
|
|
620
|
+
-------
|
|
621
|
+
bool
|
|
622
|
+
True if all calculations (dimer, monomer1, monomer2) terminated normally
|
|
623
|
+
"""
|
|
624
|
+
required_files = ['', '_m1', '_m2']
|
|
625
|
+
return all(
|
|
626
|
+
check_normal_termination(f'{gjf_file}{suffix}{extension_log}')
|
|
627
|
+
for suffix in required_files
|
|
628
|
+
)
|
|
629
|
+
|
|
630
|
+
|
|
631
|
+
def create_reorg_gjf(
|
|
632
|
+
symbols: NDArray[str],
|
|
633
|
+
coordinates: NDArray[np.float64],
|
|
634
|
+
basename: str,
|
|
635
|
+
save_dir: str,
|
|
636
|
+
cpu: int,
|
|
637
|
+
mem: int,
|
|
638
|
+
method: str,
|
|
639
|
+
) -> None:
|
|
640
|
+
"""Create gjf file for reorganization energy calculation.
|
|
641
|
+
|
|
642
|
+
Parameters
|
|
643
|
+
----------
|
|
644
|
+
symbols : NDArray[str]
|
|
645
|
+
Symbols of atoms
|
|
646
|
+
coordinates : NDArray[np.float64]
|
|
647
|
+
Coordinates of atoms
|
|
648
|
+
basename : str
|
|
649
|
+
Base name of gjf file
|
|
650
|
+
save_dir : str
|
|
651
|
+
Directory to save gjf file
|
|
652
|
+
cpu : int
|
|
653
|
+
Number of cpu
|
|
654
|
+
mem : int
|
|
655
|
+
Number of memory [GB]
|
|
656
|
+
method : str
|
|
657
|
+
Calculation method used in Gaussian calculations
|
|
658
|
+
"""
|
|
659
|
+
gjf_maker = GjfMaker()
|
|
660
|
+
gjf_maker.set_function(method)
|
|
661
|
+
gjf_maker.create_chk_file()
|
|
662
|
+
gjf_maker.output_detail()
|
|
663
|
+
gjf_maker.opt()
|
|
664
|
+
|
|
665
|
+
gjf_maker.set_symbols(symbols)
|
|
666
|
+
gjf_maker.set_coordinates(coordinates)
|
|
667
|
+
gjf_maker.set_resource(cpu_num=cpu, mem_num=mem)
|
|
668
|
+
|
|
669
|
+
gjf_maker.export_gjf(
|
|
670
|
+
file_name=f'{basename}_opt_n',
|
|
671
|
+
save_dir=save_dir,
|
|
672
|
+
chk_rwf_name=f'{save_dir}/{basename}_opt_n'
|
|
673
|
+
)
|
|
674
|
+
|
|
675
|
+
|
|
676
|
+
def create_ti_gjf(
|
|
677
|
+
unique_mol: Dict[str, Union[NDArray[str], NDArray[np.float64]]],
|
|
678
|
+
neighbor_mol: Dict[str, Union[NDArray[str], NDArray[np.float64]]],
|
|
679
|
+
gjf_basename: str,
|
|
680
|
+
save_dir: str = '.',
|
|
681
|
+
cpu: int = 4,
|
|
682
|
+
mem: int = 16,
|
|
683
|
+
method: str = 'B3LYP/6-31G*',
|
|
684
|
+
) -> None:
|
|
685
|
+
"""Create gjf file for transfer integral calculation.
|
|
686
|
+
|
|
687
|
+
Parameters
|
|
688
|
+
----------
|
|
689
|
+
unique_mol : Dict[str, Union[NDArray[str], NDArray[np.float64]]]
|
|
690
|
+
Dictionary containing symbols and coordinates of unique monomer
|
|
691
|
+
neighbor_mol : Dict[str, Union[NDArray[str], NDArray[np.float64]]]
|
|
692
|
+
Dictionary containing symbols and coordinates of neighbor monomer
|
|
693
|
+
gjf_basename : str
|
|
694
|
+
Base name of gjf file
|
|
695
|
+
save_dir : str
|
|
696
|
+
Directory to save gjf file, by default '.'
|
|
697
|
+
cpu : int
|
|
698
|
+
Number of cpu, by default 4
|
|
699
|
+
mem : int
|
|
700
|
+
Number of memory [GB], by default 16
|
|
701
|
+
method : str
|
|
702
|
+
Calculation method used in Gaussian calculations, by default 'B3LYP/6-31G(d,p)'
|
|
703
|
+
"""
|
|
704
|
+
gjf_maker = GjfMaker()
|
|
705
|
+
gjf_maker.set_resource(cpu_num=cpu, mem_num=mem)
|
|
706
|
+
gjf_maker.set_function(method)
|
|
707
|
+
gjf_maker.create_chk_file()
|
|
708
|
+
gjf_maker.add_root('Symmetry=None')
|
|
709
|
+
|
|
710
|
+
gjf_maker.set_symbols(unique_mol['symbols'])
|
|
711
|
+
gjf_maker.set_coordinates(unique_mol['coordinates'])
|
|
712
|
+
gjf_maker.set_symbols(neighbor_mol['symbols'])
|
|
713
|
+
gjf_maker.set_coordinates(neighbor_mol['coordinates'])
|
|
714
|
+
|
|
715
|
+
gjf_maker.add_link()
|
|
716
|
+
gjf_maker.add_root('Symmetry=None')
|
|
717
|
+
gjf_maker.add_root('Pop=Full')
|
|
718
|
+
gjf_maker.add_root('IOp(3/33=4,5/33=3)')
|
|
719
|
+
|
|
720
|
+
gjf_maker.export_gjf(file_name=gjf_basename, save_dir=save_dir)
|
|
721
|
+
|
|
722
|
+
|
|
723
|
+
def print_mobility(value: NDArray[np.float64], vector: NDArray[np.float64], sim_type: Literal['MC', 'ODE'] = ''):
|
|
724
|
+
"""Print mobility and mobility vector
|
|
725
|
+
|
|
726
|
+
Parameters
|
|
727
|
+
----------
|
|
728
|
+
value : NDArray[np.float64]
|
|
729
|
+
Mobility value
|
|
730
|
+
vector : NDArray[np.float64]
|
|
731
|
+
Mobility vector
|
|
732
|
+
sim_type : str
|
|
733
|
+
Simulation type (MC or ODE)
|
|
734
|
+
"""
|
|
735
|
+
msg_value = 'Mobility eigenvalues (cm^2/Vs)'
|
|
736
|
+
msg_vector = 'Mobility eigenvectors'
|
|
737
|
+
direction = ['x', 'y', 'z']
|
|
738
|
+
|
|
739
|
+
if sim_type:
|
|
740
|
+
msg_value += f' ({sim_type})'
|
|
741
|
+
msg_vector += f' ({sim_type})'
|
|
742
|
+
|
|
743
|
+
print()
|
|
744
|
+
print('-' * (len(msg_value)+2))
|
|
745
|
+
print(f' {msg_value} ')
|
|
746
|
+
print('-' * (len(msg_value)+2))
|
|
747
|
+
print(f"{value[0]:12.6g} {value[1]:12.6g} {value[2]:12.6g}")
|
|
748
|
+
print()
|
|
749
|
+
|
|
750
|
+
print()
|
|
751
|
+
print('-' * (len(msg_vector)+2))
|
|
752
|
+
print(f' {msg_vector} ')
|
|
753
|
+
print('-' * (len(msg_vector)+2))
|
|
754
|
+
print(' vector1 vector2 vector3')
|
|
755
|
+
for v, d in zip(vector, direction):
|
|
756
|
+
print(f'{d} {v[0]:12.6g} {v[1]:12.6g} {v[2]:12.6g}')
|
|
757
|
+
print()
|
|
758
|
+
|
|
759
|
+
|
|
760
|
+
def print_reorg_energy(osc_type: Literal['p', 'n'], reorg_energy: float):
|
|
761
|
+
"""Print reorganization energy
|
|
762
|
+
|
|
763
|
+
Parameters
|
|
764
|
+
----------
|
|
765
|
+
osc_type : Literal['p', 'n']
|
|
766
|
+
Semiconductor type (p-type or n-type)
|
|
767
|
+
reorg_energy : float
|
|
768
|
+
Reorganization energy [eV]
|
|
769
|
+
"""
|
|
770
|
+
print()
|
|
771
|
+
print('-----------------------')
|
|
772
|
+
print(' Reorganization energy ')
|
|
773
|
+
print('-----------------------')
|
|
774
|
+
print(f'{osc_type}-type: {reorg_energy:10.6g} eV\n')
|
|
775
|
+
|
|
776
|
+
|
|
777
|
+
def print_tensor(mu: NDArray[np.float64], msg: str = 'Mobility tensor'):
|
|
778
|
+
"""Print mobility tensor
|
|
779
|
+
|
|
780
|
+
Parameters
|
|
781
|
+
----------
|
|
782
|
+
mu : NDArray[np.float64]
|
|
783
|
+
Mobility tensor
|
|
784
|
+
msg : str
|
|
785
|
+
Message, by default 'Mobility tensor'
|
|
786
|
+
"""
|
|
787
|
+
print()
|
|
788
|
+
print('-' * (len(msg)+2))
|
|
789
|
+
print(f' {msg} ')
|
|
790
|
+
print('-' * (len(msg)+2))
|
|
791
|
+
for a in mu:
|
|
792
|
+
print(f"{a[0]:12.6g} {a[1]:12.6g} {a[2]:12.6g}")
|
|
793
|
+
print()
|
|
794
|
+
|
|
795
|
+
|
|
796
|
+
def print_transfer_integral(osc_type: Literal['p', 'n'], transfer: float):
|
|
797
|
+
"""Print transfer integral
|
|
798
|
+
|
|
799
|
+
Parameters
|
|
800
|
+
----------
|
|
801
|
+
osc_type : Literal['p', 'n']
|
|
802
|
+
Semiconductor type (p-type or n-type)
|
|
803
|
+
transfer : float
|
|
804
|
+
Transfer integral [eV]
|
|
805
|
+
"""
|
|
806
|
+
mol_orb = {'p': 'HOMO', 'n': 'LUMO'}
|
|
807
|
+
print()
|
|
808
|
+
print('-------------------')
|
|
809
|
+
print(' Transfer integral ')
|
|
810
|
+
print('-------------------')
|
|
811
|
+
print(f'{mol_orb[osc_type]}: {transfer:12.6g} eV\n')
|
|
812
|
+
|
|
813
|
+
|
|
814
|
+
def read_pickle(file_name: str):
|
|
815
|
+
print(f'\nInput File Name: {file_name}')
|
|
816
|
+
|
|
817
|
+
with open(file_name, 'rb') as f:
|
|
818
|
+
results = pickle.load(f)
|
|
819
|
+
|
|
820
|
+
# print(results)
|
|
821
|
+
|
|
822
|
+
print(f'\nCalculate as {results["osc_type"]}-type organic semiconductor.')
|
|
823
|
+
|
|
824
|
+
print_reorg_energy(results['osc_type'], results['reorganization'])
|
|
825
|
+
|
|
826
|
+
for s, t, i, j, k, ti in results['transfer_integrals']:
|
|
827
|
+
print()
|
|
828
|
+
print(f'{s}-th in (0,0,0) cell to {t}-th in ({i},{j},{k}) cell')
|
|
829
|
+
print_transfer_integral(results['osc_type'], ti)
|
|
830
|
+
|
|
831
|
+
print_tensor(results['diffusion_coefficient_tensor'], msg="Diffusion coefficient tensor (cm^2/s)")
|
|
832
|
+
|
|
833
|
+
print_tensor(results['mobility_tensor'], msg="Mobility tensor (cm^2/Vs)")
|
|
834
|
+
|
|
835
|
+
print_mobility(results['mobility_value'], results['mobility_vector'])
|
|
836
|
+
|
|
837
|
+
|
|
838
|
+
class OSCTypeError(Exception):
|
|
839
|
+
"""Exception for semiconductor type"""
|
|
840
|
+
pass
|
|
841
|
+
|
|
842
|
+
|
|
843
|
+
if __name__ == '__main__':
|
|
844
|
+
main()
|