ytcollector 1.0.8__py3-none-any.whl → 1.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ytcollector/__init__.py +36 -11
- ytcollector/analyzer.py +239 -0
- ytcollector/cli.py +186 -218
- ytcollector/config.py +79 -61
- ytcollector/dataset_builder.py +71 -0
- ytcollector/downloader.py +315 -470
- ytcollector/utils.py +116 -134
- ytcollector-1.1.1.dist-info/METADATA +207 -0
- ytcollector-1.1.1.dist-info/RECORD +12 -0
- ytcollector-1.1.1.dist-info/entry_points.txt +4 -0
- {ytcollector-1.0.8.dist-info → ytcollector-1.1.1.dist-info}/top_level.txt +0 -1
- config/settings.py +0 -39
- ytcollector/verifier.py +0 -187
- ytcollector-1.0.8.dist-info/METADATA +0 -105
- ytcollector-1.0.8.dist-info/RECORD +0 -12
- ytcollector-1.0.8.dist-info/entry_points.txt +0 -2
- {ytcollector-1.0.8.dist-info → ytcollector-1.1.1.dist-info}/WHEEL +0 -0
ytcollector/utils.py
CHANGED
|
@@ -1,144 +1,126 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
def timestamp_to_seconds(minutes: int, seconds: int) -> int:
|
|
11
|
-
"""분:초를 총 초로 변환"""
|
|
12
|
-
return minutes * 60 + seconds
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
def seconds_to_timestamp(total_seconds: int) -> str:
|
|
16
|
-
"""초를 MM:SS 형식으로 변환"""
|
|
17
|
-
minutes = total_seconds // 60
|
|
18
|
-
seconds = total_seconds % 60
|
|
19
|
-
return f"{minutes:02d}:{seconds:02d}"
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
def extract_video_id(url: str) -> str:
|
|
23
|
-
"""YouTube URL에서 video ID 추출"""
|
|
24
|
-
patterns = [
|
|
25
|
-
r'(?:v=|/)([0-9A-Za-z_-]{11}).*',
|
|
26
|
-
r'(?:embed/)([0-9A-Za-z_-]{11})',
|
|
27
|
-
r'(?:youtu\.be/)([0-9A-Za-z_-]{11})',
|
|
1
|
+
import os
|
|
2
|
+
import subprocess
|
|
3
|
+
|
|
4
|
+
def get_video_duration(file_path):
|
|
5
|
+
"""영상 전체 길이를 초 단위로 반환"""
|
|
6
|
+
cmd = [
|
|
7
|
+
'ffprobe', '-v', 'error', '-show_entries', 'format=duration',
|
|
8
|
+
'-of', 'default=noprint_wrappers=1:nokey=1', file_path
|
|
28
9
|
]
|
|
29
|
-
|
|
30
|
-
for pattern in patterns:
|
|
31
|
-
match = re.search(pattern, url)
|
|
32
|
-
if match:
|
|
33
|
-
return match.group(1)
|
|
34
|
-
|
|
35
|
-
return url[-11:] if len(url) >= 11 else url
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
def ensure_dir(path: Path) -> Path:
|
|
39
|
-
"""디렉토리 생성 (없으면)"""
|
|
40
10
|
try:
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
11
|
+
output = subprocess.check_output(cmd).decode('utf-8').strip()
|
|
12
|
+
return float(output)
|
|
13
|
+
except:
|
|
14
|
+
return 0.0
|
|
15
|
+
|
|
16
|
+
def timestamp_to_seconds(timestamp):
|
|
17
|
+
"""MM:SS 또는 SS 형식을 초 단위로 변환"""
|
|
18
|
+
if isinstance(timestamp, (int, float)):
|
|
19
|
+
return float(timestamp)
|
|
20
|
+
try:
|
|
21
|
+
parts = str(timestamp).split(':')
|
|
22
|
+
if len(parts) == 2:
|
|
23
|
+
return int(parts[0]) * 60 + int(parts[1])
|
|
24
|
+
return float(parts[0])
|
|
25
|
+
except:
|
|
26
|
+
return 0.0
|
|
27
|
+
|
|
28
|
+
def seconds_to_timestamp(seconds):
|
|
29
|
+
"""초 단위를 MM:SS 형식으로 변환"""
|
|
30
|
+
m = int(seconds // 60)
|
|
31
|
+
s = int(seconds % 60)
|
|
32
|
+
return f"{m:02d}:{s:02d}"
|
|
33
|
+
|
|
34
|
+
def clip_video(input_path, output_path, center_sec, window_seconds=90):
|
|
35
|
+
"""center_sec를 기준으로 앞뒤 window_seconds만큼 자름"""
|
|
36
|
+
duration = get_video_duration(input_path)
|
|
37
|
+
if duration == 0:
|
|
38
|
+
return False
|
|
69
39
|
|
|
70
|
-
|
|
40
|
+
start_sec = max(0, center_sec - window_seconds)
|
|
41
|
+
end_sec = min(duration, start_sec + (window_seconds * 2))
|
|
71
42
|
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
if match:
|
|
75
|
-
num = int(match.group(1))
|
|
76
|
-
if num > max_num:
|
|
77
|
-
max_num = num
|
|
43
|
+
if (end_sec - start_sec) < (window_seconds * 2) and start_sec > 0:
|
|
44
|
+
start_sec = max(0, end_sec - (window_seconds * 2))
|
|
78
45
|
|
|
79
|
-
|
|
80
|
-
return f"{task_type}_{next_num:04d}"
|
|
81
|
-
|
|
46
|
+
actual_duration = end_sec - start_sec
|
|
82
47
|
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
# filename이 None이면 순차적 이름 생성
|
|
86
|
-
output_dir = get_output_dir(base_dir)
|
|
48
|
+
# 임시 파일 경로
|
|
49
|
+
temp_output = output_path + ".tmp.mp4"
|
|
87
50
|
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
51
|
+
cmd = [
|
|
52
|
+
'ffmpeg', '-y', '-ss', f"{start_sec:.2f}", '-t', f"{actual_duration:.2f}",
|
|
53
|
+
'-i', input_path, '-c', 'copy', temp_output
|
|
54
|
+
]
|
|
91
55
|
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
output_dir = get_output_dir(base_dir)
|
|
102
|
-
return len(list(output_dir.glob(f"{task_type}_*.mp4")))
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
def load_history(base_dir: Path) -> dict:
|
|
106
|
-
"""다운로드 히스토리 로드 (URL 중복 방지용)"""
|
|
107
|
-
# 히스토리 파일은 항상 프로젝트 로컬 폴더에 저장 (네트워크 공유 X)
|
|
108
|
-
history_path = base_dir / "download_history.json"
|
|
109
|
-
if history_path.exists():
|
|
56
|
+
try:
|
|
57
|
+
subprocess.run(cmd, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
|
58
|
+
if os.path.exists(output_path):
|
|
59
|
+
os.remove(output_path)
|
|
60
|
+
os.rename(temp_output, output_path)
|
|
61
|
+
return True
|
|
62
|
+
except:
|
|
63
|
+
# copy 실패 시 재인코딩
|
|
64
|
+
cmd[7:9] = ['-c:v', 'libx264', '-crf', '23', '-c:a', 'aac']
|
|
110
65
|
try:
|
|
111
|
-
|
|
66
|
+
subprocess.run(cmd, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
|
67
|
+
if os.path.exists(temp_output):
|
|
68
|
+
if os.path.exists(output_path): os.remove(output_path)
|
|
69
|
+
os.rename(temp_output, output_path)
|
|
70
|
+
return True
|
|
112
71
|
except:
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
"
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
return
|
|
72
|
+
if os.path.exists(temp_output): os.remove(temp_output)
|
|
73
|
+
return False
|
|
74
|
+
|
|
75
|
+
def append_to_url_list(file_path, url, timestamp, task):
|
|
76
|
+
"""youtube_url.txt에 데이터 추가"""
|
|
77
|
+
line = f"{url}, {timestamp}, {task}\n"
|
|
78
|
+
# 파일이 없으면 헤더 추가
|
|
79
|
+
exists = os.path.exists(file_path)
|
|
80
|
+
with open(file_path, 'a', encoding='utf-8') as f:
|
|
81
|
+
if not exists:
|
|
82
|
+
f.write("# URL, MM:SS, TaskName\n")
|
|
83
|
+
f.write(line)
|
|
84
|
+
|
|
85
|
+
def get_url_list(file_path):
|
|
86
|
+
"""youtube_url.txt 파일을 읽어서 리스트로 반환"""
|
|
87
|
+
if not os.path.exists(file_path):
|
|
88
|
+
return []
|
|
89
|
+
|
|
90
|
+
urls = []
|
|
91
|
+
with open(file_path, 'r', encoding='utf-8') as f:
|
|
92
|
+
for line in f:
|
|
93
|
+
line = line.strip()
|
|
94
|
+
if not line or line.startswith('#'):
|
|
95
|
+
continue
|
|
96
|
+
parts = [p.strip() for p in line.split(',')]
|
|
97
|
+
if len(parts) >= 3:
|
|
98
|
+
urls.append({
|
|
99
|
+
'url': parts[0],
|
|
100
|
+
'timestamp': parts[1],
|
|
101
|
+
'task': parts[2]
|
|
102
|
+
})
|
|
103
|
+
return urls
|
|
104
|
+
|
|
105
|
+
def get_next_index(directory, prefix):
|
|
106
|
+
"""
|
|
107
|
+
directory 내에서 {prefix}_{index:04d}.mp4 형식의 파일들을 찾아
|
|
108
|
+
가장 높은 index + 1을 반환함. 파일이 없으면 1 반환.
|
|
109
|
+
"""
|
|
110
|
+
if not os.path.exists(directory):
|
|
111
|
+
return 1
|
|
112
|
+
|
|
113
|
+
max_idx = 0
|
|
114
|
+
pattern = f"{prefix}_"
|
|
115
|
+
for filename in os.listdir(directory):
|
|
116
|
+
if filename.startswith(pattern) and filename.endswith(".mp4"):
|
|
117
|
+
try:
|
|
118
|
+
# {prefix}_0001.mp4 -> 0001 추출
|
|
119
|
+
idx_part = filename[len(pattern):].split('.')[0]
|
|
120
|
+
idx = int(idx_part)
|
|
121
|
+
if idx > max_idx:
|
|
122
|
+
max_idx = idx
|
|
123
|
+
except (ValueError, IndexError):
|
|
124
|
+
continue
|
|
125
|
+
|
|
126
|
+
return max_idx + 1
|
|
@@ -0,0 +1,207 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: ytcollector
|
|
3
|
+
Version: 1.1.1
|
|
4
|
+
Summary: YouTube 콘텐츠 수집기 - 얼굴, 번호판, 타투, 텍스트 감지
|
|
5
|
+
Author: YTCollector Team
|
|
6
|
+
License: MIT
|
|
7
|
+
Project-URL: Homepage, https://github.com/yourusername/ytcollector
|
|
8
|
+
Project-URL: Documentation, https://github.com/yourusername/ytcollector#readme
|
|
9
|
+
Project-URL: Repository, https://github.com/yourusername/ytcollector
|
|
10
|
+
Keywords: youtube,downloader,video-analysis,face-detection,ocr
|
|
11
|
+
Classifier: Development Status :: 4 - Beta
|
|
12
|
+
Classifier: Intended Audience :: Developers
|
|
13
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
+
Classifier: Programming Language :: Python :: 3
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
20
|
+
Requires-Python: >=3.8
|
|
21
|
+
Description-Content-Type: text/markdown
|
|
22
|
+
Requires-Dist: yt-dlp>=2024.0.0
|
|
23
|
+
Provides-Extra: analysis
|
|
24
|
+
Requires-Dist: opencv-python>=4.5.0; extra == "analysis"
|
|
25
|
+
Requires-Dist: easyocr>=1.6.0; extra == "analysis"
|
|
26
|
+
Requires-Dist: numpy>=1.20.0; extra == "analysis"
|
|
27
|
+
Provides-Extra: dev
|
|
28
|
+
Requires-Dist: pytest>=7.0.0; extra == "dev"
|
|
29
|
+
Requires-Dist: black>=23.0.0; extra == "dev"
|
|
30
|
+
Requires-Dist: ruff>=0.1.0; extra == "dev"
|
|
31
|
+
Provides-Extra: all
|
|
32
|
+
Requires-Dist: ytcollector[analysis,dev]; extra == "all"
|
|
33
|
+
|
|
34
|
+
# YouTube 콘텐츠 수집기
|
|
35
|
+
|
|
36
|
+
유튜브에서 특정 카테고리(얼굴, 번호판, 타투, 텍스트)의 영상을 자동으로 검색, 다운로드, 분석하여 수집하는 CLI 도구입니다.
|
|
37
|
+
|
|
38
|
+
## 설치
|
|
39
|
+
|
|
40
|
+
### 필수 패키지
|
|
41
|
+
|
|
42
|
+
```bash
|
|
43
|
+
pip install yt-dlp
|
|
44
|
+
```
|
|
45
|
+
|
|
46
|
+
### 분석 기능용 패키지 (권장)
|
|
47
|
+
|
|
48
|
+
```bash
|
|
49
|
+
pip install opencv-python easyocr numpy
|
|
50
|
+
```
|
|
51
|
+
|
|
52
|
+
## 사용법
|
|
53
|
+
|
|
54
|
+
### 기본 실행
|
|
55
|
+
|
|
56
|
+
```bash
|
|
57
|
+
ytcollector
|
|
58
|
+
```
|
|
59
|
+
|
|
60
|
+
기본값: 얼굴 카테고리 5개, 최대 3분 영상
|
|
61
|
+
|
|
62
|
+
### 옵션
|
|
63
|
+
|
|
64
|
+
| 옵션 | 설명 | 기본값 |
|
|
65
|
+
|------|------|--------|
|
|
66
|
+
| `-c`, `--categories` | 수집할 카테고리 | `face` |
|
|
67
|
+
| `-n`, `--count` | 카테고리당 다운로드 수 | `5` |
|
|
68
|
+
| `-d`, `--duration` | 최대 영상 길이(분) | `3` |
|
|
69
|
+
| `-o`, `--output` | 저장 경로 | `.` (현재 폴더) |
|
|
70
|
+
| `--fast` | 고속 모드 (병렬 다운로드) | 비활성화 |
|
|
71
|
+
| `-w`, `--workers` | 병렬 다운로드 수 | `3` |
|
|
72
|
+
| `--proxy` | 프록시 주소 | 없음 |
|
|
73
|
+
|
|
74
|
+
### 카테고리 종류
|
|
75
|
+
|
|
76
|
+
| 카테고리 | 설명 | 검색 소스 |
|
|
77
|
+
|----------|------|-----------|
|
|
78
|
+
| `face` | 얼굴/인물 | SBS 인터뷰, 런닝맨, 미운우리새끼 등 |
|
|
79
|
+
| `license_plate` | 자동차 번호판 | 중고차 매물, 세차 영상, 신차 출고 등 |
|
|
80
|
+
| `tattoo` | 타투/문신 | 타투 시술, 타투이스트 작업 영상 |
|
|
81
|
+
| `text` | 텍스트/자막 | SBS 예능 (런닝맨, 골목식당 등) |
|
|
82
|
+
|
|
83
|
+
## 예시
|
|
84
|
+
|
|
85
|
+
### 단일 카테고리
|
|
86
|
+
|
|
87
|
+
```bash
|
|
88
|
+
# 얼굴 영상 10개 수집
|
|
89
|
+
ytcollector -c face -n 10
|
|
90
|
+
|
|
91
|
+
# 번호판 영상 수집 (최대 5분)
|
|
92
|
+
ytcollector -c license_plate -d 5
|
|
93
|
+
|
|
94
|
+
# 타투 영상 수집
|
|
95
|
+
ytcollector -c tattoo -n 5
|
|
96
|
+
```
|
|
97
|
+
|
|
98
|
+
### 여러 카테고리
|
|
99
|
+
|
|
100
|
+
```bash
|
|
101
|
+
# 얼굴과 텍스트 각 10개씩
|
|
102
|
+
ytcollector -c face text -n 10
|
|
103
|
+
|
|
104
|
+
# 모든 카테고리 수집
|
|
105
|
+
ytcollector -c face license_plate tattoo text -n 5
|
|
106
|
+
```
|
|
107
|
+
|
|
108
|
+
### 고속 모드
|
|
109
|
+
|
|
110
|
+
```bash
|
|
111
|
+
# 병렬 다운로드 (기본 3개 동시)
|
|
112
|
+
ytcollector -c face -n 10 --fast
|
|
113
|
+
|
|
114
|
+
# 5개 동시 다운로드
|
|
115
|
+
ytcollector -c face -n 10 --fast -w 5
|
|
116
|
+
```
|
|
117
|
+
|
|
118
|
+
### 저장 경로 지정
|
|
119
|
+
|
|
120
|
+
```bash
|
|
121
|
+
ytcollector -c face -o /path/to/save
|
|
122
|
+
```
|
|
123
|
+
|
|
124
|
+
### 프록시 사용
|
|
125
|
+
|
|
126
|
+
```bash
|
|
127
|
+
ytcollector -c face --proxy http://proxy.server:8080
|
|
128
|
+
```
|
|
129
|
+
|
|
130
|
+
## SBS Dataset 구축 (URL 리스트 기반)
|
|
131
|
+
|
|
132
|
+
URL 리스트를 기반으로 영상을 수집하고 특정 시점을 기준으로 자동으로 클리핑(3분 미만)하는 기능입니다.
|
|
133
|
+
|
|
134
|
+
### 실행 방법
|
|
135
|
+
|
|
136
|
+
```bash
|
|
137
|
+
ytc-dataset youtube_url.txt
|
|
138
|
+
```
|
|
139
|
+
|
|
140
|
+
### youtube_url.txt 형식
|
|
141
|
+
|
|
142
|
+
`URL, MM:SS, TaskName` 형식으로 작성합니다.
|
|
143
|
+
```text
|
|
144
|
+
https://www.youtube.com/watch?v=aqz-KE-bpKQ, 00:10, sample_task
|
|
145
|
+
```
|
|
146
|
+
|
|
147
|
+
### 상세 옵션
|
|
148
|
+
|
|
149
|
+
| 옵션 | 설명 | 기본값 |
|
|
150
|
+
|------|------|--------|
|
|
151
|
+
| `file` | URL 리스트 파일 경로 | (필수) |
|
|
152
|
+
| `-o`, `--output` | 저장 루트 경로 | `.` |
|
|
153
|
+
|
|
154
|
+
### 특징
|
|
155
|
+
- **자동 트리밍**: 지정된 MM:SS 시점 기준 $\pm$ 1.5분(총 3분)을 자동으로 자릅니다.
|
|
156
|
+
- **중복 방지**: 인덱스 기반으로 이미 다운로드/클리핑된 영상은 건너뜁니다.
|
|
157
|
+
- **저장 구조**: `./video/` (원본), `./video_clips/` (클립) 폴더가 생성됩니다.
|
|
158
|
+
|
|
159
|
+
## 출력 폴더 구조
|
|
160
|
+
|
|
161
|
+
```
|
|
162
|
+
저장경로/
|
|
163
|
+
├── 얼굴/ # 얼굴 감지된 영상
|
|
164
|
+
├── 번호판/ # 번호판 감지된 영상
|
|
165
|
+
├── 번호판_미감지/ # 번호판 미감지 (수동 확인용)
|
|
166
|
+
├── 타투/ # 타투 감지된 영상
|
|
167
|
+
├── 텍스트/ # 텍스트 감지된 영상
|
|
168
|
+
└── .archive.txt # 다운로드 기록 (중복 방지)
|
|
169
|
+
```
|
|
170
|
+
|
|
171
|
+
## 파일 구조
|
|
172
|
+
|
|
173
|
+
```
|
|
174
|
+
260202_test/
|
|
175
|
+
├── main.py # CLI 진입점
|
|
176
|
+
├── config.py # 설정 (검색어, UA 등)
|
|
177
|
+
├── analyzer.py # 영상 분석 (OpenCV, EasyOCR)
|
|
178
|
+
├── downloader.py # 다운로드 로직
|
|
179
|
+
└── README.md # 사용설명서
|
|
180
|
+
```
|
|
181
|
+
|
|
182
|
+
## 분석 기능
|
|
183
|
+
|
|
184
|
+
| 감지 항목 | 사용 기술 | 설명 |
|
|
185
|
+
|-----------|-----------|------|
|
|
186
|
+
| 얼굴 | OpenCV Haar Cascade | 정면 얼굴 감지 |
|
|
187
|
+
| 텍스트 | EasyOCR | 한국어/영어 문자 인식 |
|
|
188
|
+
| 번호판 | EasyOCR + 정규식 | 번호판 패턴 매칭 |
|
|
189
|
+
| 타투 | OpenCV HSV 분석 | 피부 영역 내 잉크 패턴 |
|
|
190
|
+
|
|
191
|
+
## 주의사항
|
|
192
|
+
|
|
193
|
+
- 영상은 다운로드 후 분석하여 해당 카테고리가 감지된 경우에만 저장됩니다
|
|
194
|
+
- 번호판 카테고리는 미감지 영상도 별도 폴더에 보관됩니다 (수동 확인용)
|
|
195
|
+
- 이미 다운로드한 영상은 자동으로 스킵됩니다 (`.archive.txt` 기록)
|
|
196
|
+
- 비공개/삭제/저작권 영상은 자동 스킵됩니다
|
|
197
|
+
|
|
198
|
+
## 고속 모드 vs 일반 모드
|
|
199
|
+
|
|
200
|
+
| 항목 | 일반 모드 | 고속 모드 |
|
|
201
|
+
|------|-----------|-----------|
|
|
202
|
+
| 다운로드 | 순차 | 병렬 |
|
|
203
|
+
| 딜레이 | 0.5~1.5초 | 없음 |
|
|
204
|
+
| 재시도 | 3회 | 1회 |
|
|
205
|
+
| 타임아웃 | 30초 | 10초 |
|
|
206
|
+
|
|
207
|
+
고속 모드는 빠르지만 YouTube 차단 위험이 높아질 수 있습니다.
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
ytcollector/__init__.py,sha256=OkibE8GYgt1qwOmkiBNXywkGVdnMj5sVpVzDVPSRXQg,1094
|
|
2
|
+
ytcollector/analyzer.py,sha256=d86jmykpLxZSv5lGsu642BUt1EQBJoiq9A-aIVP4RSo,7584
|
|
3
|
+
ytcollector/cli.py,sha256=xbqcCivkiqA4ixa05WsbCkDtKUIX3XAm-9WwRBT40DA,5577
|
|
4
|
+
ytcollector/config.py,sha256=WRy41EXDc5BFfN0jJmA0Xdt_YNTuSi0khka9_UL2Ktg,2561
|
|
5
|
+
ytcollector/dataset_builder.py,sha256=nfArEwszoCln48n3T0Eff_4OOaYv8FF0YH8cARBGMWQ,2608
|
|
6
|
+
ytcollector/downloader.py,sha256=ss6V3aBjNZkwLR6FRZuxAwrMkt86Xd6hZc6G2PrNt28,13253
|
|
7
|
+
ytcollector/utils.py,sha256=6XDif-e3GbMHmUvTsBT0YblxNxYnS-2I8HnmjMBZs-M,4254
|
|
8
|
+
ytcollector-1.1.1.dist-info/METADATA,sha256=2x-M9QYgRcGRMw_IaqnmJpf0qh5w_J7blLVU0IuTEkI,6169
|
|
9
|
+
ytcollector-1.1.1.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
10
|
+
ytcollector-1.1.1.dist-info/entry_points.txt,sha256=waiVuSJJYt-6_DAal-T4JkHgejo7wKYLdKrEI7tZ-ms,127
|
|
11
|
+
ytcollector-1.1.1.dist-info/top_level.txt,sha256=wozNyCUm0eMOm-9U81yTql6oGaM2O5rWVBXDb93zzyQ,12
|
|
12
|
+
ytcollector-1.1.1.dist-info/RECORD,,
|
config/settings.py
DELETED
|
@@ -1,39 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
SBS Dataset Collection Pipeline - Settings
|
|
3
|
-
"""
|
|
4
|
-
from pathlib import Path
|
|
5
|
-
|
|
6
|
-
# Base paths
|
|
7
|
-
BASE_DIR = Path(__file__).parent.parent
|
|
8
|
-
DATA_DIR = BASE_DIR / "data"
|
|
9
|
-
URLS_DIR = DATA_DIR / "urls"
|
|
10
|
-
VIDEOS_DIR = DATA_DIR / "videos"
|
|
11
|
-
CLIPS_DIR = DATA_DIR / "clips"
|
|
12
|
-
OUTPUTS_DIR = BASE_DIR / "outputs"
|
|
13
|
-
REPORTS_DIR = OUTPUTS_DIR / "reports"
|
|
14
|
-
|
|
15
|
-
# Video settings
|
|
16
|
-
CLIP_DURATION_BEFORE = 90 # 1분 30초 (초 단위)
|
|
17
|
-
CLIP_DURATION_AFTER = 90 # 1분 30초 (초 단위)
|
|
18
|
-
MAX_CLIP_DURATION = 180 # 최대 3분
|
|
19
|
-
|
|
20
|
-
# Download settings
|
|
21
|
-
VIDEO_FORMAT = "best[ext=mp4]/best"
|
|
22
|
-
DOWNLOAD_RETRIES = 3
|
|
23
|
-
|
|
24
|
-
# YOLO-World settings
|
|
25
|
-
YOLO_MODEL = "yolov8s-worldv2.pt"
|
|
26
|
-
CONFIDENCE_THRESHOLD = 0.25
|
|
27
|
-
FRAME_SAMPLE_RATE = 30 # 매 30프레임마다 샘플링 (약 1초)
|
|
28
|
-
|
|
29
|
-
# Task-specific class prompts
|
|
30
|
-
TASK_CLASSES = {
|
|
31
|
-
"face": ["human face", "person face", "close-up face"],
|
|
32
|
-
"license_plate": ["car license plate", "vehicle license plate", "korean license plate"],
|
|
33
|
-
"tattoo": ["tattoo", "body tattoo", "skin tattoo"],
|
|
34
|
-
"text": ["text on screen", "subtitle", "korean text", "caption"]
|
|
35
|
-
}
|
|
36
|
-
|
|
37
|
-
# Create directories if not exist
|
|
38
|
-
for dir_path in [URLS_DIR, VIDEOS_DIR, CLIPS_DIR, REPORTS_DIR]:
|
|
39
|
-
dir_path.mkdir(parents=True, exist_ok=True)
|