yostlabs 2025.9.17__py3-none-any.whl → 2025.10.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- yostlabs/math/quaternion.py +9 -0
- yostlabs/tss3/utils/calibration.py +211 -1
- yostlabs/tss3/utils/parser.py +1 -1
- {yostlabs-2025.9.17.dist-info → yostlabs-2025.10.6.dist-info}/METADATA +2 -1
- {yostlabs-2025.9.17.dist-info → yostlabs-2025.10.6.dist-info}/RECORD +7 -7
- {yostlabs-2025.9.17.dist-info → yostlabs-2025.10.6.dist-info}/WHEEL +0 -0
- {yostlabs-2025.9.17.dist-info → yostlabs-2025.10.6.dist-info}/licenses/LICENSE +0 -0
yostlabs/math/quaternion.py
CHANGED
|
@@ -51,6 +51,15 @@ def quat_from_axis_angle(axis: list[float], angle: float):
|
|
|
51
51
|
quat.append(math.cos(angle / 2))
|
|
52
52
|
return quat
|
|
53
53
|
|
|
54
|
+
#There are multiple valid quats that can be returned by this. The intention of this function
|
|
55
|
+
#is to be able to rotate an arrow by the quat such that it points the correct direction. The rotation
|
|
56
|
+
#of that arrow along its axis may differ though
|
|
57
|
+
def quat_from_one_vector(vec: list[float]):
|
|
58
|
+
vec = _vec.vec_normalize(vec)
|
|
59
|
+
perpendicular = _vec.vec_normalize(_vec.vec_cross([0, 0, 1], vec))
|
|
60
|
+
angle = math.acos(_vec.vec_dot([0, 0, 1], vec))
|
|
61
|
+
return quat_from_axis_angle(perpendicular, angle)
|
|
62
|
+
|
|
54
63
|
def quat_from_two_vectors(forward: list[float], down: list[float]):
|
|
55
64
|
"""
|
|
56
65
|
This function requires two orthogonal vectors to work
|
|
@@ -150,4 +150,214 @@ class ThreespaceGradientDescentCalibration:
|
|
|
150
150
|
print(f"Final Rating: {best_rating}")
|
|
151
151
|
print(f"Final Params: {best_params}")
|
|
152
152
|
|
|
153
|
-
return best_params
|
|
153
|
+
return best_params
|
|
154
|
+
|
|
155
|
+
def fibonacci_sphere(samples=1000):
|
|
156
|
+
points = []
|
|
157
|
+
phi = np.pi * (3. - np.sqrt(5.)) # golden angle
|
|
158
|
+
|
|
159
|
+
for i in range(samples):
|
|
160
|
+
y = 1 - (i / float(samples - 1)) * 2 # y goes from 1 to -1
|
|
161
|
+
radius = np.sqrt(1 - y * y)
|
|
162
|
+
theta = phi * i
|
|
163
|
+
x = np.cos(theta) * radius
|
|
164
|
+
z = np.sin(theta) * radius
|
|
165
|
+
points.append((x, y, z))
|
|
166
|
+
|
|
167
|
+
return np.array(points)
|
|
168
|
+
|
|
169
|
+
class ThreespaceSphereCalibration:
|
|
170
|
+
|
|
171
|
+
def __init__(self, max_comparison_points=500):
|
|
172
|
+
self.buffer = 0.1
|
|
173
|
+
self.test_points = fibonacci_sphere(samples=max_comparison_points)
|
|
174
|
+
self.clear()
|
|
175
|
+
|
|
176
|
+
def process_point(self, raw_mag: list[float]):
|
|
177
|
+
if len(self.samples) == 0:
|
|
178
|
+
self.samples = np.array([raw_mag])
|
|
179
|
+
return True
|
|
180
|
+
|
|
181
|
+
raw_mag = np.array(raw_mag, dtype=np.float64)
|
|
182
|
+
new_len = np.linalg.norm(raw_mag)
|
|
183
|
+
|
|
184
|
+
avg_len = np.linalg.norm(self.samples, axis=1)
|
|
185
|
+
avg_len = (avg_len + new_len) / 2 * self.buffer
|
|
186
|
+
|
|
187
|
+
dist = np.linalg.norm(self.samples - raw_mag, axis=1)
|
|
188
|
+
if np.any(dist < avg_len):
|
|
189
|
+
return False
|
|
190
|
+
|
|
191
|
+
self.samples = np.concatenate((self.samples, [raw_mag]))
|
|
192
|
+
self.__update_density(raw_mag / new_len)
|
|
193
|
+
return True
|
|
194
|
+
|
|
195
|
+
def __update_density(self, normalized_point: np.ndarray):
|
|
196
|
+
#First check to see if the new point is the closest point for any of the previous points
|
|
197
|
+
dots = np.sum(self.test_points * normalized_point, axis=1)
|
|
198
|
+
self.closest_dot = np.maximum(self.closest_dot, dots)
|
|
199
|
+
self.largest_delta_index = np.argmin(self.closest_dot)
|
|
200
|
+
self.largest_delta = np.rad2deg(np.acos(self.closest_dot[self.largest_delta_index]))
|
|
201
|
+
|
|
202
|
+
def clear(self):
|
|
203
|
+
self.samples = np.array([])
|
|
204
|
+
self.closest_dot = np.array([-1] * len(self.test_points))
|
|
205
|
+
self.largest_delta = 180
|
|
206
|
+
self.largest_delta_index = 0
|
|
207
|
+
|
|
208
|
+
@property
|
|
209
|
+
def sparsest_vector(self):
|
|
210
|
+
return self.test_points[self.largest_delta_index]
|
|
211
|
+
|
|
212
|
+
def calculate(self):
|
|
213
|
+
"""
|
|
214
|
+
Returns matrix and bias
|
|
215
|
+
"""
|
|
216
|
+
comp_A, comp_b, comp_d = ThreespaceSphereCalibration.alternating_least_squares(np.array(self.samples))
|
|
217
|
+
comp_A, comp_b = ThreespaceSphereCalibration.make_calibration_params(comp_A, comp_b, comp_d, 1)
|
|
218
|
+
|
|
219
|
+
comp_scale: float = comp_A[0][0] + comp_A[1][1] + comp_A[2][2]
|
|
220
|
+
comp_scale /= 3
|
|
221
|
+
|
|
222
|
+
comp_A /= comp_scale
|
|
223
|
+
|
|
224
|
+
return comp_A.flatten().tolist(), comp_b.tolist()
|
|
225
|
+
|
|
226
|
+
@staticmethod
|
|
227
|
+
def alternating_least_squares(data: np.ndarray[np.ndarray]) -> tuple[np.ndarray, np.ndarray, float]:
|
|
228
|
+
n = 3
|
|
229
|
+
m = len(data)
|
|
230
|
+
|
|
231
|
+
#Step 1
|
|
232
|
+
noise_variance = 0.1
|
|
233
|
+
sigma2 = noise_variance ** 2
|
|
234
|
+
rotini = data.T
|
|
235
|
+
rotini2 = rotini ** 2
|
|
236
|
+
|
|
237
|
+
T = np.zeros((5,n,m))
|
|
238
|
+
T[0,:,:] = 1
|
|
239
|
+
T[1,:,:] = rotini
|
|
240
|
+
T[2,:,:] = rotini2 - sigma2
|
|
241
|
+
T[3,:,:] = rotini2 * rotini - 3 * rotini * sigma2
|
|
242
|
+
T[4,:,:] = rotini2 * rotini2 - 6 * rotini2 * sigma2 + 3 * sigma2 * sigma2
|
|
243
|
+
|
|
244
|
+
#Step 2
|
|
245
|
+
one = np.ones((n+1,))
|
|
246
|
+
i = np.arange(1, n+1)
|
|
247
|
+
i = np.append(i, 0)
|
|
248
|
+
|
|
249
|
+
m1 = np.outer(i.T, one)
|
|
250
|
+
m2 = np.outer(one.T, i)
|
|
251
|
+
|
|
252
|
+
M = np.array([ThreespaceSphereCalibration.vec_s(m1), ThreespaceSphereCalibration.vec_s(m2)])
|
|
253
|
+
|
|
254
|
+
#Step 3
|
|
255
|
+
nb = int((n + 1) * n / 2 + n + 1)
|
|
256
|
+
R = np.zeros((nb,nb,n), dtype=np.int32)
|
|
257
|
+
|
|
258
|
+
for p in range(nb):
|
|
259
|
+
for q in range(p, nb):
|
|
260
|
+
for i in range(1, n+1):
|
|
261
|
+
R[p,q,i-1] = int(M[0,p] == i) + int(M[1,p] == i) + int(M[0,q] == i) + int(M[1,q] == i)
|
|
262
|
+
|
|
263
|
+
#Step 4
|
|
264
|
+
nals = np.zeros((nb, nb))
|
|
265
|
+
for p in range(nb):
|
|
266
|
+
for q in range(p, nb):
|
|
267
|
+
sum = 0
|
|
268
|
+
for l in range(m):
|
|
269
|
+
prod = 1
|
|
270
|
+
for i in range(n):
|
|
271
|
+
prod *= T[R[p,q,i],i,l]
|
|
272
|
+
sum += prod
|
|
273
|
+
nals[p,q] = sum
|
|
274
|
+
|
|
275
|
+
#Step 5
|
|
276
|
+
D2 = [i * (i + 1) / 2 for i in range(1, n+1)]
|
|
277
|
+
D = [d for d in range(1, (n+1) * n // 2 + 1) if not d in D2]
|
|
278
|
+
|
|
279
|
+
#Step 6
|
|
280
|
+
menorah_als = np.zeros((nb, nb))
|
|
281
|
+
|
|
282
|
+
for p in range(nb):
|
|
283
|
+
for q in range(p, nb):
|
|
284
|
+
coeff = 2
|
|
285
|
+
if p + 1 in D and q + 1 in D:
|
|
286
|
+
coeff = 4
|
|
287
|
+
elif not p + 1 in D and not q + 1 in D:
|
|
288
|
+
coeff = 1
|
|
289
|
+
menorah_als[p,q] = coeff * nals[p,q]
|
|
290
|
+
|
|
291
|
+
# Fill the lower triangle with the upper triangle values
|
|
292
|
+
i_lower, j_lower = np.tril_indices(nb, k=-1)
|
|
293
|
+
menorah_als[i_lower, j_lower] = menorah_als[j_lower, i_lower]
|
|
294
|
+
|
|
295
|
+
#Step 7
|
|
296
|
+
eigenmat = menorah_als
|
|
297
|
+
|
|
298
|
+
#It is unclear if this is correct, there are differences in sign and positions
|
|
299
|
+
eigenvalues, eigenvectors = np.linalg.eig(eigenmat)
|
|
300
|
+
eigenvectors = eigenvectors.T
|
|
301
|
+
|
|
302
|
+
#Looks like this section gets the eigen vector with the largest eigen value?
|
|
303
|
+
combinedmatr = [[abs(eigenvalues[i]), eigenvectors[i]] for i in range(len(eigenvalues))]
|
|
304
|
+
combinedmatr.sort(key=lambda a: a[0], reverse=True)
|
|
305
|
+
|
|
306
|
+
bals = combinedmatr[-1][1]
|
|
307
|
+
|
|
308
|
+
#Step 8 : ensure normalized
|
|
309
|
+
bals = bals / np.linalg.norm(bals)
|
|
310
|
+
|
|
311
|
+
#Step 9:
|
|
312
|
+
triangle = n*(n+1)//2
|
|
313
|
+
A = ThreespaceSphereCalibration.inv_vec_s(bals[:triangle])
|
|
314
|
+
b = bals[triangle:nb-1]
|
|
315
|
+
d = bals[-1]
|
|
316
|
+
|
|
317
|
+
return A, b, d
|
|
318
|
+
|
|
319
|
+
@staticmethod
|
|
320
|
+
def make_calibration_params(Q: np.ndarray, u: np.ndarray, k: float, H_m: float) -> tuple[np.ndarray,np.ndarray]:
|
|
321
|
+
pa = np.linalg.inv(Q)
|
|
322
|
+
pb = u.T
|
|
323
|
+
b = np.dot(pa, pb) * 0.5
|
|
324
|
+
|
|
325
|
+
eigenvalues, V = np.linalg.eig(Q)
|
|
326
|
+
D = np.diag(eigenvalues)
|
|
327
|
+
|
|
328
|
+
vu_prod = np.dot(V.T, u.T)
|
|
329
|
+
p1a = np.dot(vu_prod.T, np.linalg.inv(D))
|
|
330
|
+
p1b = np.dot(p1a, vu_prod)
|
|
331
|
+
p1 = p1b - (4 * k)
|
|
332
|
+
|
|
333
|
+
alpha = 4 * (H_m ** 2) / p1
|
|
334
|
+
|
|
335
|
+
aD = np.diag(abs(alpha * eigenvalues) ** 0.5)
|
|
336
|
+
|
|
337
|
+
A = np.dot(np.dot(V, aD), V.T)
|
|
338
|
+
|
|
339
|
+
return A, b
|
|
340
|
+
|
|
341
|
+
@staticmethod
|
|
342
|
+
def vec_s(matrix: np.ndarray):
|
|
343
|
+
rows, cols = np.tril_indices(matrix.shape[0])
|
|
344
|
+
return matrix[rows, cols]
|
|
345
|
+
|
|
346
|
+
@staticmethod
|
|
347
|
+
def inv_vec_s(vec: np.ndarray):
|
|
348
|
+
#Its unclear if this function works as intended. But this is how the suite does it.
|
|
349
|
+
size = int((-1 + (1 + 8 * len(vec)) ** 0.5) / 2)
|
|
350
|
+
matr = np.zeros((size,size))
|
|
351
|
+
base = 0
|
|
352
|
+
for i in range(size):
|
|
353
|
+
for j in range(i):
|
|
354
|
+
matr[i,j] = vec[base + j]
|
|
355
|
+
matr[j,i] = vec[base + j]
|
|
356
|
+
matr[i,i] = vec[base + i]
|
|
357
|
+
base += i + 1
|
|
358
|
+
|
|
359
|
+
return matr
|
|
360
|
+
|
|
361
|
+
@property
|
|
362
|
+
def num_points(self):
|
|
363
|
+
return len(self.samples)
|
yostlabs/tss3/utils/parser.py
CHANGED
|
@@ -27,7 +27,7 @@ class ThreespaceBufferInputStream(ThreespaceInputStream):
|
|
|
27
27
|
length = self.buffer.index(expected) + len(expected)
|
|
28
28
|
result = self.buffer[:length]
|
|
29
29
|
del self.buffer[:length]
|
|
30
|
-
|
|
30
|
+
return result
|
|
31
31
|
|
|
32
32
|
"""Allows reading without removing the data from the buffer"""
|
|
33
33
|
def peek(self, num_bytes) -> bytes:
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: yostlabs
|
|
3
|
-
Version: 2025.
|
|
3
|
+
Version: 2025.10.6
|
|
4
4
|
Summary: Python resources and API for 3Space sensors from Yost Labs Inc.
|
|
5
5
|
Project-URL: Homepage, https://yostlabs.com/
|
|
6
6
|
Project-URL: Repository, https://github.com/YostLabs/3SpacePythonPackage/tree/main
|
|
@@ -13,6 +13,7 @@ Classifier: License :: OSI Approved :: MIT License
|
|
|
13
13
|
Classifier: Operating System :: OS Independent
|
|
14
14
|
Classifier: Programming Language :: Python :: 3
|
|
15
15
|
Requires-Python: >=3.10
|
|
16
|
+
Requires-Dist: async-timeout
|
|
16
17
|
Requires-Dist: bleak
|
|
17
18
|
Requires-Dist: numpy
|
|
18
19
|
Requires-Dist: pyserial
|
|
@@ -4,18 +4,18 @@ yostlabs/communication/base.py,sha256=ahAIQndfo9ifX6Lf2NeEaHpIhRJ_uBv6jv9P7N3Rbh
|
|
|
4
4
|
yostlabs/communication/ble.py,sha256=UwbUDEp0lU6CQv-BWmqB3mzEUJrwwRH78eeJUmFO9c4,15498
|
|
5
5
|
yostlabs/communication/serial.py,sha256=j7SksPhd2mCvcMIGVvPcAAhYOE29K6uGLwZCwD-b21E,5685
|
|
6
6
|
yostlabs/math/__init__.py,sha256=JFzsPQ4AbsX1AH1brBpn1c_Pa_ItF43__D3mlPvA2a4,34
|
|
7
|
-
yostlabs/math/quaternion.py,sha256=
|
|
7
|
+
yostlabs/math/quaternion.py,sha256=CUIh4RHUcoSt2RUyPPh7Vw-xJfcUP2Z_mAkA0EHwyn4,6865
|
|
8
8
|
yostlabs/math/vector.py,sha256=9vfVFSahHa0ZZRZ_SgAU5ucVplt7J-fHQ0s8ymOanj4,2725
|
|
9
9
|
yostlabs/tss3/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
10
10
|
yostlabs/tss3/api.py,sha256=h8K1VsWZutTE-Vu5k2xJbz-OBwKxR-IKnFOJ5qBW0xs,86165
|
|
11
11
|
yostlabs/tss3/consts.py,sha256=RwhqmKIXRGpRdusss3q17ukCuRS96ZsvBl6y0mjF0b4,2404
|
|
12
12
|
yostlabs/tss3/eepts.py,sha256=7A7sCyOfDiJgw5Y9pGneg-5YgNvcfKtqeS9FoVWfJO8,9540
|
|
13
13
|
yostlabs/tss3/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
14
|
-
yostlabs/tss3/utils/calibration.py,sha256=
|
|
15
|
-
yostlabs/tss3/utils/parser.py,sha256=
|
|
14
|
+
yostlabs/tss3/utils/calibration.py,sha256=J7RnY23MUUo4lmfapHavUqrTArFo4PxGKw68sL4DfOM,14070
|
|
15
|
+
yostlabs/tss3/utils/parser.py,sha256=ij_kQpB3EukOq3O8wQTYhkqBP-OneiHMUcsHLuL6m-8,11347
|
|
16
16
|
yostlabs/tss3/utils/streaming.py,sha256=G2OjSIL9zub0EbkgDGDWaqSXoRY6MJzMD4mazWOCUOA,22419
|
|
17
17
|
yostlabs/tss3/utils/version.py,sha256=NT2H9l-oIRCYhV_yjf5UjkadoJQ0IN4eLl8y__pyTPc,3001
|
|
18
|
-
yostlabs-2025.
|
|
19
|
-
yostlabs-2025.
|
|
20
|
-
yostlabs-2025.
|
|
21
|
-
yostlabs-2025.
|
|
18
|
+
yostlabs-2025.10.6.dist-info/METADATA,sha256=vChqVP1GJ13Cje3O40RtkMKppBYWz1olZPaHyYxJMiE,2751
|
|
19
|
+
yostlabs-2025.10.6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
20
|
+
yostlabs-2025.10.6.dist-info/licenses/LICENSE,sha256=PtF8EXRlVhm1_ve52_3GHixSPwMn0tGajFxF3xKS-j0,1090
|
|
21
|
+
yostlabs-2025.10.6.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|