yomitoku 0.9.0__py3-none-any.whl → 0.9.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
yomitoku/cli/main.py CHANGED
@@ -92,7 +92,7 @@ def process_single_file(args, analyzer, path, format):
92
92
 
93
93
  if ocr is not None:
94
94
  out_path = os.path.join(
95
- args.outdir, f"{dirname}_{filename}_p{page+1}_ocr.jpg"
95
+ args.outdir, f"{dirname}_{filename}_p{page + 1}_ocr.jpg"
96
96
  )
97
97
 
98
98
  save_image(ocr, out_path)
@@ -100,13 +100,15 @@ def process_single_file(args, analyzer, path, format):
100
100
 
101
101
  if layout is not None:
102
102
  out_path = os.path.join(
103
- args.outdir, f"{dirname}_{filename}_p{page+1}_layout.jpg"
103
+ args.outdir, f"{dirname}_{filename}_p{page + 1}_layout.jpg"
104
104
  )
105
105
 
106
106
  save_image(layout, out_path)
107
107
  logger.info(f"Output file: {out_path}")
108
108
 
109
- out_path = os.path.join(args.outdir, f"{dirname}_{filename}_p{page+1}.{format}")
109
+ out_path = os.path.join(
110
+ args.outdir, f"{dirname}_{filename}_p{page + 1}.{format}"
111
+ )
110
112
 
111
113
  if format == "json":
112
114
  if args.combine:
@@ -341,6 +343,12 @@ def main():
341
343
  action="store_true",
342
344
  help="if set, ignore meta information(header, footer) in the output",
343
345
  )
346
+ parser.add_argument(
347
+ "--reading_order",
348
+ default="auto",
349
+ type=str,
350
+ choices=["auto", "left2right", "top2bottom", "right2left"],
351
+ )
344
352
 
345
353
  args = parser.parse_args()
346
354
 
@@ -394,6 +402,7 @@ def main():
394
402
  visualize=args.vis,
395
403
  device=args.device,
396
404
  ignore_meta=args.ignore_meta,
405
+ reading_order=args.reading_order,
397
406
  )
398
407
 
399
408
  os.makedirs(args.outdir, exist_ok=True)
@@ -408,7 +417,7 @@ def main():
408
417
  logger.info(f"Processing file: {file_path}")
409
418
  process_single_file(args, analyzer, file_path, format)
410
419
  end = time.time()
411
- logger.info(f"Total Processing time: {end-start:.2f} sec")
420
+ logger.info(f"Total Processing time: {end - start:.2f} sec")
412
421
  except Exception:
413
422
  continue
414
423
  else:
@@ -416,7 +425,7 @@ def main():
416
425
  logger.info(f"Processing file: {path}")
417
426
  process_single_file(args, analyzer, path, format)
418
427
  end = time.time()
419
- logger.info(f"Total Processing time: {end-start:.2f} sec")
428
+ logger.info(f"Total Processing time: {end - start:.2f} sec")
420
429
 
421
430
 
422
431
  if __name__ == "__main__":
yomitoku/data/dataset.py CHANGED
@@ -8,9 +8,11 @@ from .functions import (
8
8
  validate_quads,
9
9
  )
10
10
 
11
+ from concurrent.futures import ThreadPoolExecutor
12
+
11
13
 
12
14
  class ParseqDataset(Dataset):
13
- def __init__(self, cfg, img, quads):
15
+ def __init__(self, cfg, img, quads, num_workers=8):
14
16
  self.img = img[:, :, ::-1]
15
17
  self.quads = quads
16
18
  self.cfg = cfg
@@ -22,19 +24,27 @@ class ParseqDataset(Dataset):
22
24
  ]
23
25
  )
24
26
 
25
- validate_quads(self.img, self.quads)
27
+ with ThreadPoolExecutor(max_workers=num_workers) as executor:
28
+ data = list(executor.map(self.preprocess, self.quads))
26
29
 
27
- def __len__(self):
28
- return len(self.quads)
30
+ self.data = [tensor for tensor in data if tensor is not None]
31
+
32
+ def preprocess(self, quad):
33
+ if validate_quads(self.img, quad) is None:
34
+ return None
35
+
36
+ roi_img = extract_roi_with_perspective(self.img, quad)
29
37
 
30
- def __getitem__(self, index):
31
- polygon = self.quads[index]
32
- roi_img = extract_roi_with_perspective(self.img, polygon)
33
38
  if roi_img is None:
34
- return
39
+ return None
35
40
 
36
41
  roi_img = rotate_text_image(roi_img, thresh_aspect=2)
37
42
  resized = resize_with_padding(roi_img, self.cfg.data.img_size)
38
- tensor = self.transform(resized)
39
43
 
40
- return tensor
44
+ return resized
45
+
46
+ def __len__(self):
47
+ return len(self.data)
48
+
49
+ def __getitem__(self, index):
50
+ return self.transform(self.data[index])
@@ -191,7 +191,7 @@ def array_to_tensor(img: np.ndarray) -> torch.Tensor:
191
191
  return tensor
192
192
 
193
193
 
194
- def validate_quads(img: np.ndarray, quads: list[list[list[int]]]):
194
+ def validate_quads(img: np.ndarray, quad: list[list[list[int]]]):
195
195
  """
196
196
  Validate the vertices of the quadrilateral.
197
197
 
@@ -204,23 +204,23 @@ def validate_quads(img: np.ndarray, quads: list[list[list[int]]]):
204
204
  """
205
205
 
206
206
  h, w = img.shape[:2]
207
- for quad in quads:
208
- if len(quad) != 4:
209
- raise ValueError("The number of vertices must be 4.")
210
-
211
- for point in quad:
212
- if len(point) != 2:
213
- raise ValueError("The number of coordinates must be 2.")
214
-
215
- quad = np.array(quad, dtype=int)
216
- x1 = np.min(quad[:, 0])
217
- x2 = np.max(quad[:, 0])
218
- y1 = np.min(quad[:, 1])
219
- y2 = np.max(quad[:, 1])
220
- h, w = img.shape[:2]
207
+ if len(quad) != 4:
208
+ # raise ValueError("The number of vertices must be 4.")
209
+ return None
210
+
211
+ for point in quad:
212
+ if len(point) != 2:
213
+ return None
214
+
215
+ quad = np.array(quad, dtype=int)
216
+ x1 = np.min(quad[:, 0])
217
+ x2 = np.max(quad[:, 0])
218
+ y1 = np.min(quad[:, 1])
219
+ y2 = np.max(quad[:, 1])
220
+ h, w = img.shape[:2]
221
221
 
222
- if x1 < 0 or x2 > w or y1 < 0 or y2 > h:
223
- raise ValueError(f"The vertices are out of the image. {quad.tolist()}")
222
+ if x1 < 0 or x2 > w or y1 < 0 or y2 > h:
223
+ return None
224
224
 
225
225
  return True
226
226
 
@@ -237,19 +237,18 @@ def extract_roi_with_perspective(img, quad):
237
237
  np.ndarray: extracted image
238
238
  """
239
239
  dst = img.copy()
240
- quad = np.array(quad, dtype=np.float32)
240
+ quad = np.array(quad, dtype=np.int64)
241
+
241
242
  width = np.linalg.norm(quad[0] - quad[1])
242
243
  height = np.linalg.norm(quad[1] - quad[2])
243
244
 
244
245
  width = int(width)
245
246
  height = int(height)
246
-
247
247
  pts1 = np.float32(quad)
248
248
  pts2 = np.float32([[0, 0], [width, 0], [width, height], [0, height]])
249
249
 
250
250
  M = cv2.getPerspectiveTransform(pts1, pts2)
251
251
  dst = cv2.warpPerspective(dst, M, (width, height))
252
-
253
252
  return dst
254
253
 
255
254
 
@@ -86,8 +86,12 @@ def extract_paragraph_within_figure(paragraphs, figures):
86
86
  check_list[i] = True
87
87
 
88
88
  figure["direction"] = judge_page_direction(contained_paragraphs)
89
+ reading_order = (
90
+ "left2right" if figure["direction"] == "horizontal" else "right2left"
91
+ )
92
+
89
93
  figure_paragraphs = prediction_reading_order(
90
- contained_paragraphs, figure["direction"]
94
+ contained_paragraphs, reading_order
91
95
  )
92
96
  figure["paragraphs"] = sorted(figure_paragraphs, key=lambda x: x.order)
93
97
  figure = FigureSchema(**figure)
@@ -126,8 +130,8 @@ def extract_words_within_element(pred_words, element):
126
130
  cnt_vertical = word_direction.count("vertical")
127
131
 
128
132
  element_direction = "horizontal" if cnt_horizontal > cnt_vertical else "vertical"
129
-
130
- prediction_reading_order(contained_words, element_direction)
133
+ order = "left2right" if element_direction == "horizontal" else "right2left"
134
+ prediction_reading_order(contained_words, order)
131
135
  contained_words = sorted(contained_words, key=lambda x: x.order)
132
136
 
133
137
  contained_words = "\n".join([content.contents for content in contained_words])
@@ -328,6 +332,7 @@ class DocumentAnalyzer:
328
332
  device="cuda",
329
333
  visualize=False,
330
334
  ignore_meta=False,
335
+ reading_order="auto",
331
336
  ):
332
337
  default_configs = {
333
338
  "ocr": {
@@ -352,6 +357,8 @@ class DocumentAnalyzer:
352
357
  },
353
358
  }
354
359
 
360
+ self.reading_order = reading_order
361
+
355
362
  if isinstance(configs, dict):
356
363
  recursive_update(default_configs, configs)
357
364
  else:
@@ -452,9 +459,17 @@ class DocumentAnalyzer:
452
459
 
453
460
  elements = page_contents + layout_res.tables + figures
454
461
 
455
- prediction_reading_order(headers, page_direction)
456
- prediction_reading_order(footers, page_direction)
457
- prediction_reading_order(elements, page_direction, self.img)
462
+ prediction_reading_order(headers, "left2right")
463
+ prediction_reading_order(footers, "left2right")
464
+
465
+ if self.reading_order == "auto":
466
+ reading_order = (
467
+ "right2left" if page_direction == "vertical" else "top2bottom"
468
+ )
469
+ else:
470
+ reading_order = self.reading_order
471
+
472
+ prediction_reading_order(elements, reading_order, self.img)
458
473
 
459
474
  for i, element in enumerate(elements):
460
475
  element.order += len(headers)
yomitoku/reading_order.py CHANGED
@@ -17,7 +17,6 @@ def _priority_dfs(nodes, direction):
17
17
 
18
18
  pending_nodes = sorted(nodes, key=lambda x: x.prop["distance"])
19
19
  visited = [False] * len(nodes)
20
-
21
20
  start = pending_nodes.pop(0)
22
21
  stack = [start]
23
22
 
@@ -53,11 +52,11 @@ def _priority_dfs(nodes, direction):
53
52
  children.append(node)
54
53
  stack.remove(node)
55
54
 
56
- if direction == "horizontal":
55
+ if direction in "top2bottom":
57
56
  children = sorted(
58
57
  children, key=lambda x: x.prop["box"][0], reverse=True
59
58
  )
60
- else:
59
+ elif direction in ["right2left", "left2right"]:
61
60
  children = sorted(
62
61
  children, key=lambda x: x.prop["box"][1], reverse=True
63
62
  )
@@ -121,7 +120,7 @@ def _exist_other_node_between_horizontal(node, other_node, nodes):
121
120
  return False
122
121
 
123
122
 
124
- def _create_graph_horizontal(nodes):
123
+ def _create_graph_top2bottom(nodes):
125
124
  for i, node in enumerate(nodes):
126
125
  for j, other_node in enumerate(nodes):
127
126
  if i == j:
@@ -146,7 +145,7 @@ def _create_graph_horizontal(nodes):
146
145
  node.children = sorted(node.children, key=lambda x: x.prop["box"][0])
147
146
 
148
147
 
149
- def _create_graph_vertical(nodes):
148
+ def _create_graph_right2left(nodes):
150
149
  max_x = max([node.prop["box"][2] for node in nodes])
151
150
 
152
151
  for i, node in enumerate(nodes):
@@ -172,15 +171,46 @@ def _create_graph_vertical(nodes):
172
171
  node.children = sorted(node.children, key=lambda x: x.prop["box"][1])
173
172
 
174
173
 
174
+ def _create_graph_left2right(nodes, x_weight=1, y_weight=5):
175
+ for i, node in enumerate(nodes):
176
+ for j, other_node in enumerate(nodes):
177
+ if i == j:
178
+ continue
179
+
180
+ if is_intersected_horizontal(node.prop["box"], other_node.prop["box"]):
181
+ tx = node.prop["box"][2]
182
+ ox = other_node.prop["box"][2]
183
+
184
+ if _exist_other_node_between_horizontal(node, other_node, nodes):
185
+ continue
186
+
187
+ if ox < tx:
188
+ other_node.add_link(node)
189
+ else:
190
+ node.add_link(other_node)
191
+
192
+ node_distance = (
193
+ node.prop["box"][0] * x_weight + node.prop["box"][1] * y_weight
194
+ )
195
+ node.prop["distance"] = node_distance
196
+
197
+ for node in nodes:
198
+ node.children = sorted(node.children, key=lambda x: x.prop["box"][1])
199
+
200
+
175
201
  def prediction_reading_order(elements, direction, img=None):
176
202
  if len(elements) < 2:
177
203
  return elements
178
204
 
179
205
  nodes = [Node(i, element.dict()) for i, element in enumerate(elements)]
180
- if direction == "horizontal":
181
- _create_graph_horizontal(nodes)
206
+ if direction == "top2bottom":
207
+ _create_graph_top2bottom(nodes)
208
+ elif direction == "right2left":
209
+ _create_graph_right2left(nodes)
210
+ elif direction == "left2right":
211
+ _create_graph_left2right(nodes)
182
212
  else:
183
- _create_graph_vertical(nodes)
213
+ raise ValueError(f"Invalid direction: {direction}")
184
214
 
185
215
  # For debugging
186
216
  # if img is not None:
yomitoku/utils/misc.py CHANGED
@@ -80,7 +80,7 @@ def calc_intersection(rect_a, rect_b):
80
80
  return [ix1, iy1, ix2, iy2]
81
81
 
82
82
 
83
- def is_intersected_horizontal(rect_a, rect_b):
83
+ def is_intersected_horizontal(rect_a, rect_b, threshold=0.5):
84
84
  _, ay1, _, ay2 = map(int, rect_a)
85
85
  _, by1, _, by2 = map(int, rect_b)
86
86
 
@@ -88,9 +88,11 @@ def is_intersected_horizontal(rect_a, rect_b):
88
88
  iy1 = max(ay1, by1)
89
89
  iy2 = min(ay2, by2)
90
90
 
91
+ min_height = min(ay2 - ay1, by2 - by1)
92
+
91
93
  overlap_height = max(0, iy2 - iy1)
92
94
 
93
- if overlap_height == 0:
95
+ if (overlap_height / min_height) < threshold:
94
96
  return False
95
97
 
96
98
  return True
@@ -119,3 +121,48 @@ def quad_to_xyxy(quad):
119
121
  y2 = max([y for _, y in quad])
120
122
 
121
123
  return x1, y1, x2, y2
124
+
125
+
126
+ def convert_table_array(table):
127
+ n_rows = table.n_row
128
+ n_cols = table.n_col
129
+
130
+ table_array = [["" for _ in range(n_cols)] for _ in range(n_rows)]
131
+
132
+ for cell in table.cells:
133
+ row = cell.row - 1
134
+ col = cell.col - 1
135
+ row_span = cell.row_span
136
+ col_span = cell.col_span
137
+ contents = cell.contents
138
+
139
+ for i in range(row, row + row_span):
140
+ for j in range(col, col + col_span):
141
+ table_array[i][j] = contents
142
+
143
+ return table_array
144
+
145
+
146
+ def convert_table_array_to_dict(table_array, header_row=1):
147
+ n_cols = len(table_array[0])
148
+ n_rows = len(table_array)
149
+
150
+ header_cols = []
151
+ for i in range(n_cols):
152
+ header = []
153
+ for j in range(header_row):
154
+ header.append(table_array[j][i])
155
+
156
+ if len(header) > 0:
157
+ header_cols.append("_".join(header))
158
+ else:
159
+ header_cols.append(f"col_{i}")
160
+
161
+ table_dict = []
162
+ for i in range(header_row, n_rows):
163
+ row_dict = {}
164
+ for j in range(n_cols):
165
+ row_dict[header_cols[j]] = table_array[i][j]
166
+ table_dict.append(row_dict)
167
+
168
+ return table_dict
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: yomitoku
3
- Version: 0.9.0
3
+ Version: 0.9.1
4
4
  Summary: Yomitoku is an AI-powered document image analysis package designed specifically for the Japanese language.
5
5
  Author-email: Kotaro Kinoshita <kotaro.kinoshita@mlism.com>
6
6
  License: CC BY-NC-SA 4.0
@@ -66,6 +66,7 @@ Markdown でエクスポートした結果は関してはリポジトリ内の[s
66
66
 
67
67
  ## 📣 リリース情報
68
68
 
69
+ - 2025 年 4 月 4 日 YomiToku v0.8.0 手書き文字認識のサポート
69
70
  - 2024 年 11 月 26 日 YomiToku v0.5.1 (beta) を公開
70
71
 
71
72
  ## 💡 インストールの方法
@@ -1,16 +1,16 @@
1
1
  yomitoku/__init__.py,sha256=kXOM8RbpwwLABG3p3vPT3dJWBk4JX2MFGrOeBEW0hKM,543
2
2
  yomitoku/base.py,sha256=9U3sfe69O6vuO430JzzKQQNkgPsLM9WdLfOUUhp3Ljs,3878
3
3
  yomitoku/constants.py,sha256=zlW5QRc_u_F3C2RAgBFWyHJZexBnJT5N15GC-9d3iLo,686
4
- yomitoku/document_analyzer.py,sha256=wQMmXACDsDmyaxg2OnG9Og5Nx53WPUkQdUmgYtljACQ,16412
4
+ yomitoku/document_analyzer.py,sha256=xliAelQdfsK64FtVuFvstDBr9uf2TwhqW31g2g91_CY,16888
5
5
  yomitoku/layout_analyzer.py,sha256=VhNf1ZQFoozj6WUGk5ll1p2p1jk5X3j-JPcDbTAoSl4,1856
6
6
  yomitoku/layout_parser.py,sha256=0MgbCsD90srQdsxkGEL0TgKm4rkmGzsQYx0sjKQ03yc,7718
7
7
  yomitoku/ocr.py,sha256=JSTjkupcxHITQm6ERnzU7As0c3KWf8-oxc0AqNoWHXo,2272
8
- yomitoku/reading_order.py,sha256=OfhOS9ttPDoPSuHrIRKyOzG19GGeRufbuSKDqhsohh4,6404
8
+ yomitoku/reading_order.py,sha256=_T09PqT7guk57zWo4HdSazLSQTwM91piyELA_wNHQAQ,7521
9
9
  yomitoku/table_structure_recognizer.py,sha256=tHjex6deT_FjRK5ePz9bUXA_QIhgv_vYtK-ynm4ALxg,9625
10
10
  yomitoku/text_detector.py,sha256=6IwEJJKp_F8YH0Oki0QV-Mqi--P2LGbNKo-_kxBB_eo,4383
11
11
  yomitoku/text_recognizer.py,sha256=eaxozNu-Ms6iv8efbKZzn8pJNW1Wo4f86bGhzSMtv3s,5992
12
12
  yomitoku/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
- yomitoku/cli/main.py,sha256=9X8QWwsTAv82uNn5Ns9T_laGJPKHDyeEwenaQxnAmn4,12062
13
+ yomitoku/cli/main.py,sha256=VZG8DZf-k_QytlDZtB91eBNY69MRpbryQg1rkn3fs20,12304
14
14
  yomitoku/cli/mcp.py,sha256=5h704SsUGNAqVnoO_5S-HY2-bApy_Rf8ajDxl1pkT2k,4888
15
15
  yomitoku/configs/__init__.py,sha256=x5-ccjGiP6xxRtDPT7f1Enl7SsE0hSk0G8f7eF9V85I,886
16
16
  yomitoku/configs/cfg_layout_parser_rtdtrv2.py,sha256=8PRxB2Ar9UF7-DLtbgSokhrzdXb0veWI6Wc-X8qigRw,2329
@@ -22,8 +22,8 @@ yomitoku/configs/cfg_text_recognizer_parseq.py,sha256=hpFs3nKqh4XdU3BZMTultegtLE
22
22
  yomitoku/configs/cfg_text_recognizer_parseq_small.py,sha256=uCm_VC_G79IbZpOiK8fgYzAJ4b98H5pf328wyQomtfo,1259
23
23
  yomitoku/configs/cfg_text_recognizer_parseq_v2.py,sha256=GfHzbByOKjH21PRTxT8x_fU4r4Mda6F750Z8pjNeb8g,1249
24
24
  yomitoku/data/__init__.py,sha256=KAofFc9rk9ZdTKBjemu9RM8Vj9XnKbWC2MPZ2RWtOdE,82
25
- yomitoku/data/dataset.py,sha256=-I4f-FDtgsPnJ2MnXB7FtwihMW3koDaSI1OEoqKneIg,1014
26
- yomitoku/data/functions.py,sha256=HIrffs0zCJOq8IvQiI_z-b4MwTb-H2wmZjEE_5VpxFs,8040
25
+ yomitoku/data/dataset.py,sha256=lpBcpkMuQzRIyLJ4_mqtuhR9s2ZmzgBgc-XYuE_b2Sc,1326
26
+ yomitoku/data/functions.py,sha256=RExCUxI3-gccIMw-H0ribX2jeGKkrJWhS4fNn_12c3Y,7878
27
27
  yomitoku/export/__init__.py,sha256=gmlikMHRXfzfJ_8q4fyDlnpGms-x1oggQOwJEWHMgBU,508
28
28
  yomitoku/export/export_csv.py,sha256=VY8mntUCPDbDco_dyvq5O0_Q4wga9_GTyjHCS-y4UiQ,3399
29
29
  yomitoku/export/export_html.py,sha256=LQDyZgbzmI0qJ0-FEK-54r9816H3L9hD10ChMcw0KyA,5620
@@ -50,9 +50,9 @@ yomitoku/resource/charset.txt,sha256=sU91kSi-9Wk4733bCXy4j_UDmvcsj96sHOq1ppUJlOY
50
50
  yomitoku/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
51
  yomitoku/utils/graph.py,sha256=LKNB8ZhSQwOZMfeAimPMF5UCVVr2ZaUWoGDkz8z-uGU,456
52
52
  yomitoku/utils/logger.py,sha256=uOmtQDr0A0JD7wyFshedL08BiNrQorHnpktRXba8bjU,424
53
- yomitoku/utils/misc.py,sha256=cIUrvSJwfWwTui7ueYistf9XPapPR3XgqD2wQjWit40,2901
53
+ yomitoku/utils/misc.py,sha256=r92x45kQR8lC5jO1MZaHBDtcCWBkQXg_WS9H4RXJzSY,4127
54
54
  yomitoku/utils/visualizer.py,sha256=DjDwHiAu1iFRKh96H3Egq4vuI2s_-9dLCDeykhKi8jo,5251
55
- yomitoku-0.9.0.dist-info/METADATA,sha256=vUbrNm2w-7OIqEEXNzFQBDm8y57mTuh1UeJYHBGRo9U,8622
56
- yomitoku-0.9.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
57
- yomitoku-0.9.0.dist-info/entry_points.txt,sha256=N3PzzSo-fdgri5liPpZ3ItMmRH6oVX14pIU_5pUJiAs,99
58
- yomitoku-0.9.0.dist-info/RECORD,,
55
+ yomitoku-0.9.1.dist-info/METADATA,sha256=ozEkYekTPuEP1GwnCCQKgJC9DzEQpyActU_DltQGMHc,8700
56
+ yomitoku-0.9.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
57
+ yomitoku-0.9.1.dist-info/entry_points.txt,sha256=N3PzzSo-fdgri5liPpZ3ItMmRH6oVX14pIU_5pUJiAs,99
58
+ yomitoku-0.9.1.dist-info/RECORD,,