yomitoku 0.7.3__py3-none-any.whl → 0.8.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- yomitoku/cli/main.py +91 -54
- yomitoku/configs/__init__.py +7 -0
- yomitoku/configs/cfg_layout_parser_rtdtrv2_v2.py +89 -0
- yomitoku/configs/cfg_text_detector_dbnet_v2.py +49 -0
- yomitoku/configs/cfg_text_recognizer_parseq_v2.py +51 -0
- yomitoku/data/functions.py +33 -15
- yomitoku/export/__init__.py +8 -4
- yomitoku/export/export_csv.py +32 -6
- yomitoku/export/export_html.py +38 -9
- yomitoku/export/export_json.py +37 -18
- yomitoku/export/export_markdown.py +33 -5
- yomitoku/layout_parser.py +3 -2
- yomitoku/postprocessor/rtdetr_postprocessor.py +11 -1
- yomitoku/text_detector.py +6 -2
- yomitoku/text_recognizer.py +7 -2
- {yomitoku-0.7.3.dist-info → yomitoku-0.8.0.dist-info}/METADATA +2 -3
- {yomitoku-0.7.3.dist-info → yomitoku-0.8.0.dist-info}/RECORD +19 -16
- {yomitoku-0.7.3.dist-info → yomitoku-0.8.0.dist-info}/WHEEL +0 -0
- {yomitoku-0.7.3.dist-info → yomitoku-0.8.0.dist-info}/entry_points.txt +0 -0
yomitoku/cli/main.py
CHANGED
@@ -12,6 +12,7 @@ from ..document_analyzer import DocumentAnalyzer
|
|
12
12
|
from ..utils.logger import set_logger
|
13
13
|
|
14
14
|
from ..export import save_csv, save_html, save_json, save_markdown
|
15
|
+
from ..export import convert_json, convert_csv, convert_html, convert_markdown
|
15
16
|
|
16
17
|
logger = set_logger(__name__, "INFO")
|
17
18
|
|
@@ -51,13 +52,13 @@ def merge_all_pages(results):
|
|
51
52
|
|
52
53
|
def save_merged_file(out_path, args, out):
|
53
54
|
if args.format == "json":
|
54
|
-
save_json(out_path, args.encoding
|
55
|
+
save_json(out, out_path, args.encoding)
|
55
56
|
elif args.format == "csv":
|
56
|
-
save_csv(out_path, args.encoding
|
57
|
+
save_csv(out, out_path, args.encoding)
|
57
58
|
elif args.format == "html":
|
58
|
-
save_html(out_path, args.encoding
|
59
|
+
save_html(out, out_path, args.encoding)
|
59
60
|
elif args.format == "md":
|
60
|
-
save_markdown(out_path, args.encoding
|
61
|
+
save_markdown(out, out_path, args.encoding)
|
61
62
|
|
62
63
|
|
63
64
|
def validate_encoding(encoding):
|
@@ -76,7 +77,7 @@ def process_single_file(args, analyzer, path, format):
|
|
76
77
|
if path.suffix[1:].lower() in ["pdf"]:
|
77
78
|
imgs = load_pdf(path)
|
78
79
|
else:
|
79
|
-
imgs =
|
80
|
+
imgs = load_image(path)
|
80
81
|
|
81
82
|
results = []
|
82
83
|
for page, img in enumerate(imgs):
|
@@ -84,6 +85,10 @@ def process_single_file(args, analyzer, path, format):
|
|
84
85
|
dirname = path.parent.name
|
85
86
|
filename = path.stem
|
86
87
|
|
88
|
+
# cv2.imwrite(
|
89
|
+
# os.path.join(args.outdir, f"{dirname}_{filename}_p{page+1}.jpg"), img
|
90
|
+
# )
|
91
|
+
|
87
92
|
if ocr is not None:
|
88
93
|
out_path = os.path.join(
|
89
94
|
args.outdir, f"{dirname}_{filename}_p{page+1}_ocr.jpg"
|
@@ -103,34 +108,51 @@ def process_single_file(args, analyzer, path, format):
|
|
103
108
|
out_path = os.path.join(args.outdir, f"{dirname}_{filename}_p{page+1}.{format}")
|
104
109
|
|
105
110
|
if format == "json":
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
111
|
+
if args.combine:
|
112
|
+
json = convert_json(
|
113
|
+
result,
|
114
|
+
out_path,
|
115
|
+
args.ignore_line_break,
|
116
|
+
img,
|
117
|
+
args.figure,
|
118
|
+
args.figure_dir,
|
119
|
+
)
|
120
|
+
else:
|
121
|
+
json = result.to_json(
|
122
|
+
out_path,
|
123
|
+
ignore_line_break=args.ignore_line_break,
|
124
|
+
encoding=args.encoding,
|
125
|
+
img=img,
|
126
|
+
export_figure=args.figure,
|
127
|
+
figure_dir=args.figure_dir,
|
128
|
+
)
|
114
129
|
|
115
130
|
results.append(
|
116
131
|
{
|
117
132
|
"format": format,
|
118
|
-
"data": json,
|
133
|
+
"data": json.model_dump(),
|
119
134
|
}
|
120
135
|
)
|
121
136
|
|
122
|
-
if not args.combine:
|
123
|
-
save_json(out_path, args.encoding, json)
|
124
|
-
|
125
137
|
elif format == "csv":
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
138
|
+
if args.combine:
|
139
|
+
csv = convert_csv(
|
140
|
+
result,
|
141
|
+
out_path,
|
142
|
+
args.ignore_line_break,
|
143
|
+
img,
|
144
|
+
args.figure,
|
145
|
+
args.figure_dir,
|
146
|
+
)
|
147
|
+
else:
|
148
|
+
csv = result.to_csv(
|
149
|
+
out_path,
|
150
|
+
ignore_line_break=args.ignore_line_break,
|
151
|
+
encoding=args.encoding,
|
152
|
+
img=img,
|
153
|
+
export_figure=args.figure,
|
154
|
+
figure_dir=args.figure_dir,
|
155
|
+
)
|
134
156
|
|
135
157
|
results.append(
|
136
158
|
{
|
@@ -139,20 +161,29 @@ def process_single_file(args, analyzer, path, format):
|
|
139
161
|
}
|
140
162
|
)
|
141
163
|
|
142
|
-
if not args.combine:
|
143
|
-
save_csv(out_path, args.encoding, csv)
|
144
|
-
|
145
164
|
elif format == "html":
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
165
|
+
if args.combine:
|
166
|
+
html, _ = convert_html(
|
167
|
+
result,
|
168
|
+
out_path,
|
169
|
+
ignore_line_break=args.ignore_line_break,
|
170
|
+
img=img,
|
171
|
+
export_figure=args.figure,
|
172
|
+
export_figure_letter=args.figure_letter,
|
173
|
+
figure_width=args.figure_width,
|
174
|
+
figure_dir=args.figure_dir,
|
175
|
+
)
|
176
|
+
else:
|
177
|
+
html = result.to_html(
|
178
|
+
out_path,
|
179
|
+
ignore_line_break=args.ignore_line_break,
|
180
|
+
img=img,
|
181
|
+
export_figure=args.figure,
|
182
|
+
export_figure_letter=args.figure_letter,
|
183
|
+
figure_width=args.figure_width,
|
184
|
+
figure_dir=args.figure_dir,
|
185
|
+
encoding=args.encoding,
|
186
|
+
)
|
156
187
|
|
157
188
|
results.append(
|
158
189
|
{
|
@@ -161,20 +192,29 @@ def process_single_file(args, analyzer, path, format):
|
|
161
192
|
}
|
162
193
|
)
|
163
194
|
|
164
|
-
if not args.combine:
|
165
|
-
save_html(out_path, args.encoding, html)
|
166
|
-
|
167
195
|
elif format == "md":
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
196
|
+
if args.combine:
|
197
|
+
md, _ = convert_markdown(
|
198
|
+
result,
|
199
|
+
out_path,
|
200
|
+
ignore_line_break=args.ignore_line_break,
|
201
|
+
img=img,
|
202
|
+
export_figure=args.figure,
|
203
|
+
export_figure_letter=args.figure_letter,
|
204
|
+
figure_width=args.figure_width,
|
205
|
+
figure_dir=args.figure_dir,
|
206
|
+
)
|
207
|
+
else:
|
208
|
+
md = result.to_markdown(
|
209
|
+
out_path,
|
210
|
+
ignore_line_break=args.ignore_line_break,
|
211
|
+
img=img,
|
212
|
+
export_figure=args.figure,
|
213
|
+
export_figure_letter=args.figure_letter,
|
214
|
+
figure_width=args.figure_width,
|
215
|
+
figure_dir=args.figure_dir,
|
216
|
+
encoding=args.encoding,
|
217
|
+
)
|
178
218
|
|
179
219
|
results.append(
|
180
220
|
{
|
@@ -183,9 +223,6 @@ def process_single_file(args, analyzer, path, format):
|
|
183
223
|
}
|
184
224
|
)
|
185
225
|
|
186
|
-
if not args.combine:
|
187
|
-
save_markdown(out_path, args.encoding, md)
|
188
|
-
|
189
226
|
out = merge_all_pages(results)
|
190
227
|
if args.combine:
|
191
228
|
out_path = os.path.join(args.outdir, f"{dirname}_{filename}.{format}")
|
yomitoku/configs/__init__.py
CHANGED
@@ -1,10 +1,14 @@
|
|
1
1
|
from .cfg_layout_parser_rtdtrv2 import LayoutParserRTDETRv2Config
|
2
|
+
from .cfg_layout_parser_rtdtrv2_v2 import LayoutParserRTDETRv2V2Config
|
2
3
|
from .cfg_table_structure_recognizer_rtdtrv2 import (
|
3
4
|
TableStructureRecognizerRTDETRv2Config,
|
4
5
|
)
|
5
6
|
from .cfg_text_detector_dbnet import TextDetectorDBNetConfig
|
7
|
+
from .cfg_text_detector_dbnet_v2 import TextDetectorDBNetV2Config
|
6
8
|
from .cfg_text_recognizer_parseq import TextRecognizerPARSeqConfig
|
7
9
|
from .cfg_text_recognizer_parseq_small import TextRecognizerPARSeqSmallConfig
|
10
|
+
from .cfg_text_recognizer_parseq_v2 import TextRecognizerPARSeqV2Config
|
11
|
+
|
8
12
|
|
9
13
|
__all__ = [
|
10
14
|
"TextDetectorDBNetConfig",
|
@@ -12,4 +16,7 @@ __all__ = [
|
|
12
16
|
"LayoutParserRTDETRv2Config",
|
13
17
|
"TableStructureRecognizerRTDETRv2Config",
|
14
18
|
"TextRecognizerPARSeqSmallConfig",
|
19
|
+
"LayoutParserRTDETRv2V2Config",
|
20
|
+
"TextDetectorDBNetV2Config",
|
21
|
+
"TextRecognizerPARSeqV2Config",
|
15
22
|
]
|
@@ -0,0 +1,89 @@
|
|
1
|
+
from dataclasses import dataclass, field
|
2
|
+
from typing import List
|
3
|
+
|
4
|
+
|
5
|
+
@dataclass
|
6
|
+
class Data:
|
7
|
+
img_size: List[int] = field(default_factory=lambda: [640, 640])
|
8
|
+
|
9
|
+
|
10
|
+
@dataclass
|
11
|
+
class BackBone:
|
12
|
+
depth: int = 50
|
13
|
+
variant: str = "d"
|
14
|
+
freeze_at: int = 0
|
15
|
+
return_idx: List[int] = field(default_factory=lambda: [1, 2, 3])
|
16
|
+
num_stages: int = 4
|
17
|
+
freeze_norm: bool = True
|
18
|
+
|
19
|
+
|
20
|
+
@dataclass
|
21
|
+
class Encoder:
|
22
|
+
in_channels: List[int] = field(default_factory=lambda: [512, 1024, 2048])
|
23
|
+
feat_strides: List[int] = field(default_factory=lambda: [8, 16, 32])
|
24
|
+
|
25
|
+
# intra
|
26
|
+
hidden_dim: int = 256
|
27
|
+
use_encoder_idx: List[int] = field(default_factory=lambda: [2])
|
28
|
+
num_encoder_layers: int = 1
|
29
|
+
nhead: int = 8
|
30
|
+
dim_feedforward: int = 1024
|
31
|
+
dropout: float = 0.0
|
32
|
+
enc_act: str = "gelu"
|
33
|
+
|
34
|
+
# cross
|
35
|
+
expansion: float = 1.0
|
36
|
+
depth_mult: int = 1
|
37
|
+
act: str = "silu"
|
38
|
+
|
39
|
+
|
40
|
+
@dataclass
|
41
|
+
class Decoder:
|
42
|
+
num_classes: int = 6
|
43
|
+
feat_channels: List[int] = field(default_factory=lambda: [256, 256, 256])
|
44
|
+
feat_strides: List[int] = field(default_factory=lambda: [8, 16, 32])
|
45
|
+
hidden_dim: int = 256
|
46
|
+
num_levels: int = 3
|
47
|
+
|
48
|
+
num_layers: int = 6
|
49
|
+
num_queries: int = 300
|
50
|
+
|
51
|
+
num_denoising: int = 100
|
52
|
+
label_noise_ratio: float = 0.5
|
53
|
+
box_noise_scale: float = 1.0
|
54
|
+
eval_spatial_size: List[int] = field(default_factory=lambda: [640, 640])
|
55
|
+
|
56
|
+
eval_idx: int = -1
|
57
|
+
|
58
|
+
num_points: List[int] = field(default_factory=lambda: [4, 4, 4])
|
59
|
+
cross_attn_method: str = "default"
|
60
|
+
query_select_method: str = "default"
|
61
|
+
|
62
|
+
|
63
|
+
@dataclass
|
64
|
+
class LayoutParserRTDETRv2V2Config:
|
65
|
+
hf_hub_repo: str = "KotaroKinoshita/yomitoku-layout-parser-rtdtrv2-v2"
|
66
|
+
thresh_score: float = 0.5
|
67
|
+
data: Data = field(default_factory=Data)
|
68
|
+
PResNet: BackBone = field(default_factory=BackBone)
|
69
|
+
HybridEncoder: Encoder = field(default_factory=Encoder)
|
70
|
+
RTDETRTransformerv2: Decoder = field(default_factory=Decoder)
|
71
|
+
|
72
|
+
category: List[str] = field(
|
73
|
+
default_factory=lambda: [
|
74
|
+
"tables",
|
75
|
+
"figures",
|
76
|
+
"paragraphs",
|
77
|
+
"section_headings",
|
78
|
+
"page_header",
|
79
|
+
"page_footer",
|
80
|
+
]
|
81
|
+
)
|
82
|
+
|
83
|
+
role: List[str] = field(
|
84
|
+
default_factory=lambda: [
|
85
|
+
"section_headings",
|
86
|
+
"page_header",
|
87
|
+
"page_footer",
|
88
|
+
]
|
89
|
+
)
|
@@ -0,0 +1,49 @@
|
|
1
|
+
from dataclasses import dataclass, field
|
2
|
+
from typing import List
|
3
|
+
|
4
|
+
|
5
|
+
@dataclass
|
6
|
+
class BackBone:
|
7
|
+
name: str = "resnet50"
|
8
|
+
dilation: bool = True
|
9
|
+
|
10
|
+
|
11
|
+
@dataclass
|
12
|
+
class Decoder:
|
13
|
+
in_channels: list[int] = field(default_factory=lambda: [256, 512, 1024, 2048])
|
14
|
+
hidden_dim: int = 256
|
15
|
+
adaptive: bool = True
|
16
|
+
serial: bool = True
|
17
|
+
smooth: bool = False
|
18
|
+
k: int = 50
|
19
|
+
|
20
|
+
|
21
|
+
@dataclass
|
22
|
+
class Data:
|
23
|
+
shortest_size: int = 1280
|
24
|
+
limit_size: int = 1600
|
25
|
+
|
26
|
+
|
27
|
+
@dataclass
|
28
|
+
class PostProcess:
|
29
|
+
min_size: int = 2
|
30
|
+
thresh: float = 0.4
|
31
|
+
box_thresh: float = 0.5
|
32
|
+
max_candidates: int = 1500
|
33
|
+
unclip_ratio: float = 6.0
|
34
|
+
|
35
|
+
|
36
|
+
@dataclass
|
37
|
+
class Visualize:
|
38
|
+
color: List[int] = field(default_factory=lambda: [0, 255, 0])
|
39
|
+
heatmap: bool = False
|
40
|
+
|
41
|
+
|
42
|
+
@dataclass
|
43
|
+
class TextDetectorDBNetV2Config:
|
44
|
+
hf_hub_repo: str = "KotaroKinoshita/yomitoku-text-detector-dbnet-v2"
|
45
|
+
backbone: BackBone = field(default_factory=BackBone)
|
46
|
+
decoder: Decoder = field(default_factory=Decoder)
|
47
|
+
data: Data = field(default_factory=Data)
|
48
|
+
post_process: PostProcess = field(default_factory=PostProcess)
|
49
|
+
visualize: Visualize = field(default_factory=Visualize)
|
@@ -0,0 +1,51 @@
|
|
1
|
+
from dataclasses import dataclass, field
|
2
|
+
from typing import List
|
3
|
+
|
4
|
+
from ..constants import ROOT_DIR
|
5
|
+
|
6
|
+
|
7
|
+
@dataclass
|
8
|
+
class Data:
|
9
|
+
num_workers: int = 4
|
10
|
+
batch_size: int = 128
|
11
|
+
img_size: List[int] = field(default_factory=lambda: [32, 800])
|
12
|
+
|
13
|
+
|
14
|
+
@dataclass
|
15
|
+
class Encoder:
|
16
|
+
patch_size: List[int] = field(default_factory=lambda: [8, 8])
|
17
|
+
num_heads: int = 8
|
18
|
+
embed_dim: int = 512
|
19
|
+
mlp_ratio: int = 4
|
20
|
+
depth: int = 12
|
21
|
+
|
22
|
+
|
23
|
+
@dataclass
|
24
|
+
class Decoder:
|
25
|
+
embed_dim: int = 512
|
26
|
+
num_heads: int = 8
|
27
|
+
mlp_ratio: int = 4
|
28
|
+
depth: int = 1
|
29
|
+
|
30
|
+
|
31
|
+
@dataclass
|
32
|
+
class Visualize:
|
33
|
+
font: str = str(ROOT_DIR + "/resource/MPLUS1p-Medium.ttf")
|
34
|
+
color: List[int] = field(default_factory=lambda: [0, 0, 255]) # RGB
|
35
|
+
font_size: int = 18
|
36
|
+
|
37
|
+
|
38
|
+
@dataclass
|
39
|
+
class TextRecognizerPARSeqV2Config:
|
40
|
+
hf_hub_repo: str = "KotaroKinoshita/yomitoku-text-recognizer-parseq-middle-v2"
|
41
|
+
charset: str = str(ROOT_DIR + "/resource/charset.txt")
|
42
|
+
num_tokens: int = 7312
|
43
|
+
max_label_length: int = 100
|
44
|
+
decode_ar: int = 1
|
45
|
+
refine_iters: int = 1
|
46
|
+
|
47
|
+
data: Data = field(default_factory=Data)
|
48
|
+
encoder: Encoder = field(default_factory=Encoder)
|
49
|
+
decoder: Decoder = field(default_factory=Decoder)
|
50
|
+
|
51
|
+
visualize: Visualize = field(default_factory=Visualize)
|
yomitoku/data/functions.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1
1
|
from pathlib import Path
|
2
2
|
|
3
3
|
import cv2
|
4
|
+
from PIL import Image
|
4
5
|
import numpy as np
|
5
6
|
import torch
|
6
7
|
import pypdfium2
|
@@ -15,6 +16,20 @@ from ..utils.logger import set_logger
|
|
15
16
|
logger = set_logger(__name__)
|
16
17
|
|
17
18
|
|
19
|
+
def validate_image(img: np.ndarray):
|
20
|
+
h, w = img.shape[:2]
|
21
|
+
if h < MIN_IMAGE_SIZE or w < MIN_IMAGE_SIZE:
|
22
|
+
raise ValueError("Image size is too small.")
|
23
|
+
|
24
|
+
if min(h, w) < WARNING_IMAGE_SIZE:
|
25
|
+
logger.warning(
|
26
|
+
"""
|
27
|
+
The image size is small, which may result in reduced OCR accuracy.
|
28
|
+
The process will continue, but it is recommended to input images with a minimum size of 720 pixels on the shorter side.
|
29
|
+
"""
|
30
|
+
)
|
31
|
+
|
32
|
+
|
18
33
|
def load_image(image_path: str) -> np.ndarray:
|
19
34
|
"""
|
20
35
|
Open an image file.
|
@@ -40,24 +55,27 @@ def load_image(image_path: str) -> np.ndarray:
|
|
40
55
|
"PDF file is not supported by load_image(). Use load_pdf() instead."
|
41
56
|
)
|
42
57
|
|
43
|
-
|
44
|
-
|
45
|
-
|
58
|
+
try:
|
59
|
+
img = Image.open(image_path)
|
60
|
+
except Exception:
|
46
61
|
raise ValueError("Invalid image data.")
|
47
62
|
|
48
|
-
|
49
|
-
if
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
63
|
+
pages = []
|
64
|
+
if ext in ["tif", "tiff"]:
|
65
|
+
try:
|
66
|
+
while True:
|
67
|
+
img_arr = np.array(img.copy().convert("RGB"))
|
68
|
+
validate_image(img_arr)
|
69
|
+
pages.append(img_arr[:, :, ::-1])
|
70
|
+
img.seek(img.tell() + 1)
|
71
|
+
except EOFError:
|
72
|
+
pass
|
73
|
+
else:
|
74
|
+
img_arr = np.array(img.convert("RGB"))
|
75
|
+
validate_image(img_arr)
|
76
|
+
pages.append(img_arr[:, :, ::-1])
|
59
77
|
|
60
|
-
return
|
78
|
+
return pages
|
61
79
|
|
62
80
|
|
63
81
|
def load_pdf(pdf_path: str, dpi=200) -> list[np.ndarray]:
|
yomitoku/export/__init__.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1
|
-
from .export_csv import export_csv, save_csv
|
2
|
-
from .export_html import export_html, save_html
|
3
|
-
from .export_json import export_json, save_json
|
4
|
-
from .export_markdown import export_markdown, save_markdown
|
1
|
+
from .export_csv import export_csv, save_csv, convert_csv
|
2
|
+
from .export_html import export_html, save_html, convert_html
|
3
|
+
from .export_json import export_json, save_json, convert_json
|
4
|
+
from .export_markdown import export_markdown, save_markdown, convert_markdown
|
5
5
|
|
6
6
|
__all__ = [
|
7
7
|
"export_html",
|
@@ -12,4 +12,8 @@ __all__ = [
|
|
12
12
|
"save_markdown",
|
13
13
|
"save_csv",
|
14
14
|
"save_json",
|
15
|
+
"convert_html",
|
16
|
+
"convert_markdown",
|
17
|
+
"convert_csv",
|
18
|
+
"convert_json",
|
15
19
|
]
|
yomitoku/export/export_csv.py
CHANGED
@@ -57,11 +57,10 @@ def save_figure(
|
|
57
57
|
cv2.imwrite(figure_path, figure_img)
|
58
58
|
|
59
59
|
|
60
|
-
def
|
60
|
+
def convert_csv(
|
61
61
|
inputs,
|
62
|
-
out_path
|
63
|
-
ignore_line_break
|
64
|
-
encoding: str = "utf-8",
|
62
|
+
out_path,
|
63
|
+
ignore_line_break,
|
65
64
|
img=None,
|
66
65
|
export_figure: bool = True,
|
67
66
|
figure_dir="figures",
|
@@ -90,6 +89,8 @@ def export_csv(
|
|
90
89
|
}
|
91
90
|
)
|
92
91
|
|
92
|
+
elements = sorted(elements, key=lambda x: x["order"])
|
93
|
+
|
93
94
|
if export_figure:
|
94
95
|
save_figure(
|
95
96
|
inputs.figures,
|
@@ -98,11 +99,36 @@ def export_csv(
|
|
98
99
|
figure_dir=figure_dir,
|
99
100
|
)
|
100
101
|
|
101
|
-
elements = sorted(elements, key=lambda x: x["order"])
|
102
102
|
return elements
|
103
103
|
|
104
104
|
|
105
|
-
def
|
105
|
+
def export_csv(
|
106
|
+
inputs,
|
107
|
+
out_path: str,
|
108
|
+
ignore_line_break: bool = False,
|
109
|
+
encoding: str = "utf-8",
|
110
|
+
img=None,
|
111
|
+
export_figure: bool = True,
|
112
|
+
figure_dir="figures",
|
113
|
+
):
|
114
|
+
elements = convert_csv(
|
115
|
+
inputs,
|
116
|
+
out_path,
|
117
|
+
ignore_line_break,
|
118
|
+
img,
|
119
|
+
export_figure,
|
120
|
+
figure_dir,
|
121
|
+
)
|
122
|
+
|
123
|
+
save_csv(elements, out_path, encoding)
|
124
|
+
return elements
|
125
|
+
|
126
|
+
|
127
|
+
def save_csv(
|
128
|
+
elements,
|
129
|
+
out_path,
|
130
|
+
encoding,
|
131
|
+
):
|
106
132
|
with open(out_path, "w", newline="", encoding=encoding, errors="ignore") as f:
|
107
133
|
writer = csv.writer(f, quoting=csv.QUOTE_MINIMAL)
|
108
134
|
for element in elements:
|
yomitoku/export/export_html.py
CHANGED
@@ -146,16 +146,15 @@ def figure_to_html(
|
|
146
146
|
return elements
|
147
147
|
|
148
148
|
|
149
|
-
def
|
149
|
+
def convert_html(
|
150
150
|
inputs,
|
151
|
-
out_path
|
152
|
-
ignore_line_break
|
153
|
-
export_figure
|
154
|
-
export_figure_letter
|
151
|
+
out_path,
|
152
|
+
ignore_line_break,
|
153
|
+
export_figure,
|
154
|
+
export_figure_letter,
|
155
155
|
img=None,
|
156
156
|
figure_width=200,
|
157
157
|
figure_dir="figures",
|
158
|
-
encoding: str = "utf-8",
|
159
158
|
):
|
160
159
|
html_string = ""
|
161
160
|
elements = []
|
@@ -181,13 +180,43 @@ def export_html(
|
|
181
180
|
elements = sorted(elements, key=lambda x: x["order"])
|
182
181
|
|
183
182
|
html_string = "".join([element["html"] for element in elements])
|
184
|
-
# html_string = add_html_tag(html_string)
|
185
|
-
|
186
183
|
parsed_html = html.fromstring(html_string)
|
187
184
|
formatted_html = etree.tostring(parsed_html, pretty_print=True, encoding="unicode")
|
185
|
+
|
186
|
+
return formatted_html, elements
|
187
|
+
|
188
|
+
|
189
|
+
def export_html(
|
190
|
+
inputs,
|
191
|
+
out_path: str,
|
192
|
+
ignore_line_break: bool = False,
|
193
|
+
export_figure: bool = True,
|
194
|
+
export_figure_letter: bool = False,
|
195
|
+
img=None,
|
196
|
+
figure_width=200,
|
197
|
+
figure_dir="figures",
|
198
|
+
encoding: str = "utf-8",
|
199
|
+
):
|
200
|
+
formatted_html, elements = convert_html(
|
201
|
+
inputs,
|
202
|
+
out_path,
|
203
|
+
ignore_line_break,
|
204
|
+
export_figure,
|
205
|
+
export_figure_letter,
|
206
|
+
img,
|
207
|
+
figure_width,
|
208
|
+
figure_dir,
|
209
|
+
)
|
210
|
+
|
211
|
+
save_html(formatted_html, out_path, encoding)
|
212
|
+
|
188
213
|
return formatted_html
|
189
214
|
|
190
215
|
|
191
|
-
def save_html(
|
216
|
+
def save_html(
|
217
|
+
html,
|
218
|
+
out_path,
|
219
|
+
encoding,
|
220
|
+
):
|
192
221
|
with open(out_path, "w", encoding=encoding, errors="ignore") as f:
|
193
222
|
f.write(html)
|
yomitoku/export/export_json.py
CHANGED
@@ -36,15 +36,7 @@ def save_figure(
|
|
36
36
|
cv2.imwrite(figure_path, figure_img)
|
37
37
|
|
38
38
|
|
39
|
-
def
|
40
|
-
inputs,
|
41
|
-
out_path,
|
42
|
-
ignore_line_break=False,
|
43
|
-
encoding: str = "utf-8",
|
44
|
-
img=None,
|
45
|
-
export_figure=False,
|
46
|
-
figure_dir="figures",
|
47
|
-
):
|
39
|
+
def convert_json(inputs, out_path, ignore_line_break, img, export_figure, figure_dir):
|
48
40
|
from yomitoku.document_analyzer import DocumentAnalyzerSchema
|
49
41
|
|
50
42
|
if isinstance(inputs, DocumentAnalyzerSchema):
|
@@ -55,18 +47,45 @@ def export_json(
|
|
55
47
|
for paragraph in inputs.paragraphs:
|
56
48
|
paragraph_to_json(paragraph, ignore_line_break)
|
57
49
|
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
50
|
+
if isinstance(inputs, DocumentAnalyzerSchema) and export_figure:
|
51
|
+
save_figure(
|
52
|
+
inputs.figures,
|
53
|
+
img,
|
54
|
+
out_path,
|
55
|
+
figure_dir=figure_dir,
|
56
|
+
)
|
57
|
+
|
58
|
+
return inputs
|
59
|
+
|
60
|
+
|
61
|
+
def export_json(
|
62
|
+
inputs,
|
63
|
+
out_path,
|
64
|
+
ignore_line_break=False,
|
65
|
+
encoding: str = "utf-8",
|
66
|
+
img=None,
|
67
|
+
export_figure=False,
|
68
|
+
figure_dir="figures",
|
69
|
+
):
|
70
|
+
inputs = convert_json(
|
71
|
+
inputs,
|
72
|
+
out_path,
|
73
|
+
ignore_line_break,
|
74
|
+
img,
|
75
|
+
export_figure,
|
76
|
+
figure_dir,
|
77
|
+
)
|
78
|
+
|
79
|
+
save_json(
|
80
|
+
inputs.model_dump(),
|
81
|
+
out_path,
|
82
|
+
encoding,
|
83
|
+
)
|
65
84
|
|
66
|
-
return inputs
|
85
|
+
return inputs
|
67
86
|
|
68
87
|
|
69
|
-
def save_json(out_path, encoding
|
88
|
+
def save_json(data, out_path, encoding):
|
70
89
|
with open(out_path, "w", encoding=encoding, errors="ignore") as f:
|
71
90
|
json.dump(
|
72
91
|
data,
|
@@ -111,16 +111,15 @@ def figure_to_md(
|
|
111
111
|
return elements
|
112
112
|
|
113
113
|
|
114
|
-
def
|
114
|
+
def convert_markdown(
|
115
115
|
inputs,
|
116
|
-
out_path
|
116
|
+
out_path,
|
117
|
+
ignore_line_break=False,
|
117
118
|
img=None,
|
118
|
-
ignore_line_break: bool = False,
|
119
119
|
export_figure_letter=False,
|
120
120
|
export_figure=True,
|
121
121
|
figure_width=200,
|
122
122
|
figure_dir="figures",
|
123
|
-
encoding: str = "utf-8",
|
124
123
|
):
|
125
124
|
elements = []
|
126
125
|
for table in inputs.tables:
|
@@ -144,10 +143,39 @@ def export_markdown(
|
|
144
143
|
|
145
144
|
elements = sorted(elements, key=lambda x: x["order"])
|
146
145
|
markdown = "\n".join([element["md"] for element in elements])
|
146
|
+
return markdown, elements
|
147
|
+
|
147
148
|
|
149
|
+
def export_markdown(
|
150
|
+
inputs,
|
151
|
+
out_path: str,
|
152
|
+
ignore_line_break: bool = False,
|
153
|
+
img=None,
|
154
|
+
export_figure_letter=False,
|
155
|
+
export_figure=True,
|
156
|
+
figure_width=200,
|
157
|
+
figure_dir="figures",
|
158
|
+
encoding: str = "utf-8",
|
159
|
+
):
|
160
|
+
markdown, elements = convert_markdown(
|
161
|
+
inputs,
|
162
|
+
out_path,
|
163
|
+
ignore_line_break,
|
164
|
+
img,
|
165
|
+
export_figure_letter,
|
166
|
+
export_figure,
|
167
|
+
figure_width,
|
168
|
+
figure_dir,
|
169
|
+
)
|
170
|
+
|
171
|
+
save_markdown(markdown, out_path, encoding)
|
148
172
|
return markdown
|
149
173
|
|
150
174
|
|
151
|
-
def save_markdown(
|
175
|
+
def save_markdown(
|
176
|
+
markdown,
|
177
|
+
out_path,
|
178
|
+
encoding,
|
179
|
+
):
|
152
180
|
with open(out_path, "w", encoding=encoding, errors="ignore") as f:
|
153
181
|
f.write(markdown)
|
yomitoku/layout_parser.py
CHANGED
@@ -12,7 +12,7 @@ from pydantic import conlist
|
|
12
12
|
from .constants import ROOT_DIR
|
13
13
|
|
14
14
|
from .base import BaseModelCatalog, BaseModule, BaseSchema
|
15
|
-
from .configs import LayoutParserRTDETRv2Config
|
15
|
+
from .configs import LayoutParserRTDETRv2Config, LayoutParserRTDETRv2V2Config
|
16
16
|
from .models import RTDETRv2
|
17
17
|
from .postprocessor import RTDETRPostProcessor
|
18
18
|
from .utils.misc import filter_by_flag, is_contained
|
@@ -35,6 +35,7 @@ class LayoutParserModelCatalog(BaseModelCatalog):
|
|
35
35
|
def __init__(self):
|
36
36
|
super().__init__()
|
37
37
|
self.register("rtdetrv2", LayoutParserRTDETRv2Config, RTDETRv2)
|
38
|
+
self.register("rtdetrv2v2", LayoutParserRTDETRv2V2Config, RTDETRv2)
|
38
39
|
|
39
40
|
|
40
41
|
def filter_contained_rectangles_within_category(category_elements):
|
@@ -91,7 +92,7 @@ class LayoutParser(BaseModule):
|
|
91
92
|
|
92
93
|
def __init__(
|
93
94
|
self,
|
94
|
-
model_name="
|
95
|
+
model_name="rtdetrv2v2",
|
95
96
|
path_cfg=None,
|
96
97
|
device="cuda",
|
97
98
|
visualize=False,
|
@@ -49,6 +49,13 @@ class RTDETRPostProcessor(nn.Module):
|
|
49
49
|
def extra_repr(self) -> str:
|
50
50
|
return f"use_focal_loss={self.use_focal_loss}, num_classes={self.num_classes}, num_top_queries={self.num_top_queries}"
|
51
51
|
|
52
|
+
def clamp(self, boxes, h, w):
|
53
|
+
boxes[:, 0] = torch.clamp(boxes[:, 0], min=torch.Tensor([0]), max=None)
|
54
|
+
boxes[:, 1] = torch.clamp(boxes[:, 1], min=torch.Tensor([0]), max=None)
|
55
|
+
boxes[:, 2] = torch.clamp(boxes[:, 2], min=torch.Tensor([0]), max=w)
|
56
|
+
boxes[:, 3] = torch.clamp(boxes[:, 3], min=torch.Tensor([0]), max=h)
|
57
|
+
return boxes
|
58
|
+
|
52
59
|
# def forward(self, outputs, orig_target_sizes):
|
53
60
|
def forward(self, outputs, orig_target_sizes: torch.Tensor, threshold):
|
54
61
|
logits, boxes = outputs["pred_logits"], outputs["pred_boxes"]
|
@@ -57,6 +64,8 @@ class RTDETRPostProcessor(nn.Module):
|
|
57
64
|
bbox_pred = torchvision.ops.box_convert(boxes, in_fmt="cxcywh", out_fmt="xyxy")
|
58
65
|
bbox_pred *= orig_target_sizes.repeat(1, 2).unsqueeze(1)
|
59
66
|
|
67
|
+
w, h = orig_target_sizes.unbind(1)
|
68
|
+
|
60
69
|
if self.use_focal_loss:
|
61
70
|
scores = F.sigmoid(logits)
|
62
71
|
scores, index = torch.topk(scores.flatten(1), self.num_top_queries, dim=-1)
|
@@ -104,9 +113,10 @@ class RTDETRPostProcessor(nn.Module):
|
|
104
113
|
sco = sco[sco > threshold]
|
105
114
|
|
106
115
|
lab = lab.cpu().numpy()
|
107
|
-
box = box.cpu().numpy()
|
108
116
|
sco = sco.cpu().numpy()
|
109
117
|
|
118
|
+
box = self.clamp(box.cpu(), h.cpu(), w.cpu()).numpy()
|
119
|
+
|
110
120
|
result = dict(labels=lab, boxes=box, scores=sco)
|
111
121
|
results.append(result)
|
112
122
|
|
yomitoku/text_detector.py
CHANGED
@@ -6,7 +6,10 @@ import os
|
|
6
6
|
from pydantic import conlist
|
7
7
|
|
8
8
|
from .base import BaseModelCatalog, BaseModule, BaseSchema
|
9
|
-
from .configs import
|
9
|
+
from .configs import (
|
10
|
+
TextDetectorDBNetConfig,
|
11
|
+
TextDetectorDBNetV2Config,
|
12
|
+
)
|
10
13
|
from .data.functions import (
|
11
14
|
array_to_tensor,
|
12
15
|
resize_shortest_edge,
|
@@ -25,6 +28,7 @@ class TextDetectorModelCatalog(BaseModelCatalog):
|
|
25
28
|
def __init__(self):
|
26
29
|
super().__init__()
|
27
30
|
self.register("dbnet", TextDetectorDBNetConfig, DBNet)
|
31
|
+
self.register("dbnetv2", TextDetectorDBNetV2Config, DBNet)
|
28
32
|
|
29
33
|
|
30
34
|
class TextDetectorSchema(BaseSchema):
|
@@ -43,7 +47,7 @@ class TextDetector(BaseModule):
|
|
43
47
|
|
44
48
|
def __init__(
|
45
49
|
self,
|
46
|
-
model_name="
|
50
|
+
model_name="dbnetv2",
|
47
51
|
path_cfg=None,
|
48
52
|
device="cuda",
|
49
53
|
visualize=False,
|
yomitoku/text_recognizer.py
CHANGED
@@ -7,7 +7,11 @@ import unicodedata
|
|
7
7
|
from pydantic import conlist
|
8
8
|
|
9
9
|
from .base import BaseModelCatalog, BaseModule, BaseSchema
|
10
|
-
from .configs import
|
10
|
+
from .configs import (
|
11
|
+
TextRecognizerPARSeqConfig,
|
12
|
+
TextRecognizerPARSeqSmallConfig,
|
13
|
+
TextRecognizerPARSeqV2Config,
|
14
|
+
)
|
11
15
|
from .data.dataset import ParseqDataset
|
12
16
|
from .models import PARSeq
|
13
17
|
from .postprocessor import ParseqTokenizer as Tokenizer
|
@@ -23,6 +27,7 @@ class TextRecognizerModelCatalog(BaseModelCatalog):
|
|
23
27
|
def __init__(self):
|
24
28
|
super().__init__()
|
25
29
|
self.register("parseq", TextRecognizerPARSeqConfig, PARSeq)
|
30
|
+
self.register("parseqv2", TextRecognizerPARSeqV2Config, PARSeq)
|
26
31
|
self.register("parseq-small", TextRecognizerPARSeqSmallConfig, PARSeq)
|
27
32
|
|
28
33
|
|
@@ -44,7 +49,7 @@ class TextRecognizer(BaseModule):
|
|
44
49
|
|
45
50
|
def __init__(
|
46
51
|
self,
|
47
|
-
model_name="
|
52
|
+
model_name="parseqv2",
|
48
53
|
path_cfg=None,
|
49
54
|
device="cuda",
|
50
55
|
visualize=False,
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: yomitoku
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.8.0
|
4
4
|
Summary: Yomitoku is an AI-powered document image analysis package designed specifically for the Japanese language.
|
5
5
|
Author-email: Kotaro Kinoshita <kotaro.kinoshita@mlism.com>
|
6
6
|
License: CC BY-NC-SA 4.0
|
@@ -37,7 +37,7 @@ Description-Content-Type: text/markdown
|
|
37
37
|
YomiToku は日本語に特化した AI 文章画像解析エンジン(Document AI)です。画像内の文字の全文 OCR およびレイアウト解析機能を有しており、画像内の文字情報や図表を認識、抽出、変換します。
|
38
38
|
|
39
39
|
- 🤖 日本語データセットで学習した 4 種類(文字位置の検知、文字列認識、レイアウト解析、表の構造認識)の AI モデルを搭載しています。4 種類のモデルはすべて独自に学習されたモデルで日本語文書に対して、高精度に推論可能です。
|
40
|
-
- 🇯🇵 各モデルは日本語の文書画像に特化して学習されており、7000
|
40
|
+
- 🇯🇵 各モデルは日本語の文書画像に特化して学習されており、7000 文字を超える日本語文字の認識をサーポート、手書き文字、縦書きなど日本語特有のレイアウト構造の文書画像の解析も可能です。(日本語以外にも英語の文書に対しても対応しています)。
|
41
41
|
- 📈 レイアウト解析、表の構造解析, 読み順推定機能により、文書画像のレイアウトの意味的構造を壊さずに情報を抽出することが可能です。
|
42
42
|
- 📄 多様な出力形式をサポートしています。html やマークダウン、json、csv のいずれかのフォーマットに変換可能です。また、文書内に含まれる図表、画像の抽出の出力も可能です。
|
43
43
|
- ⚡ GPU 環境で高速に動作し、効率的に文書の文字起こし解析が可能です。また、VRAM も 8GB 以内で動作し、ハイエンドな GPU を用意する必要はありません。
|
@@ -103,7 +103,6 @@ yomitoku --help
|
|
103
103
|
**NOTE**
|
104
104
|
|
105
105
|
- GPU での実行を推奨します。CPU を用いての推論向けに最適化されておらず、処理時間が長くなります。
|
106
|
-
- 活字のみ識別をサポートしております。手書き文字に関しては、読み取れる場合もありますが、公式にはサポートしておりません。
|
107
106
|
- Yomitoku は文書 OCR 向けに最適化されており、情景 OCR(看板など紙以外にプリントされた文字の読み取り)向けには最適化されていません。
|
108
107
|
- AI-OCR の識別精度を高めるために、入力画像の解像度が重要です。低解像度画像では識別精度が低下します。最低でも画像の短辺を 720px 以上の画像で推論することをお勧めします。
|
109
108
|
|
@@ -3,28 +3,31 @@ yomitoku/base.py,sha256=9U3sfe69O6vuO430JzzKQQNkgPsLM9WdLfOUUhp3Ljs,3878
|
|
3
3
|
yomitoku/constants.py,sha256=zlW5QRc_u_F3C2RAgBFWyHJZexBnJT5N15GC-9d3iLo,686
|
4
4
|
yomitoku/document_analyzer.py,sha256=wQMmXACDsDmyaxg2OnG9Og5Nx53WPUkQdUmgYtljACQ,16412
|
5
5
|
yomitoku/layout_analyzer.py,sha256=VhNf1ZQFoozj6WUGk5ll1p2p1jk5X3j-JPcDbTAoSl4,1856
|
6
|
-
yomitoku/layout_parser.py,sha256=
|
6
|
+
yomitoku/layout_parser.py,sha256=0MgbCsD90srQdsxkGEL0TgKm4rkmGzsQYx0sjKQ03yc,7718
|
7
7
|
yomitoku/ocr.py,sha256=JSTjkupcxHITQm6ERnzU7As0c3KWf8-oxc0AqNoWHXo,2272
|
8
8
|
yomitoku/reading_order.py,sha256=OfhOS9ttPDoPSuHrIRKyOzG19GGeRufbuSKDqhsohh4,6404
|
9
9
|
yomitoku/table_structure_recognizer.py,sha256=tHjex6deT_FjRK5ePz9bUXA_QIhgv_vYtK-ynm4ALxg,9625
|
10
|
-
yomitoku/text_detector.py,sha256=
|
11
|
-
yomitoku/text_recognizer.py,sha256=
|
10
|
+
yomitoku/text_detector.py,sha256=6IwEJJKp_F8YH0Oki0QV-Mqi--P2LGbNKo-_kxBB_eo,4383
|
11
|
+
yomitoku/text_recognizer.py,sha256=eaxozNu-Ms6iv8efbKZzn8pJNW1Wo4f86bGhzSMtv3s,5992
|
12
12
|
yomitoku/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
13
|
-
yomitoku/cli/main.py,sha256=
|
14
|
-
yomitoku/configs/__init__.py,sha256=
|
13
|
+
yomitoku/cli/main.py,sha256=jQCSwHw4oOwLQjARvaIO1yoSjz-2Rdb9c3DNShLS5OE,12038
|
14
|
+
yomitoku/configs/__init__.py,sha256=x5-ccjGiP6xxRtDPT7f1Enl7SsE0hSk0G8f7eF9V85I,886
|
15
15
|
yomitoku/configs/cfg_layout_parser_rtdtrv2.py,sha256=8PRxB2Ar9UF7-DLtbgSokhrzdXb0veWI6Wc-X8qigRw,2329
|
16
|
+
yomitoku/configs/cfg_layout_parser_rtdtrv2_v2.py,sha256=nMrL3uvoVmyzZ909Bz2zmfp9b6AEBLKhIprOvQ5yiQE,2324
|
16
17
|
yomitoku/configs/cfg_table_structure_recognizer_rtdtrv2.py,sha256=o70GMHD8k-zeBeJtuhPS8x7vVB-ffucnJXeSyn-0AXo,2116
|
17
18
|
yomitoku/configs/cfg_text_detector_dbnet.py,sha256=U9k48PON7haoOaytiELhbZRpv9RMiUm6nnfHmdxIa9Q,1153
|
19
|
+
yomitoku/configs/cfg_text_detector_dbnet_v2.py,sha256=PzdV6-f75ba-KBEBcPxyo9STWQ6m5-1Rl3MFBLl2TSc,1148
|
18
20
|
yomitoku/configs/cfg_text_recognizer_parseq.py,sha256=hpFs3nKqh4XdU3BZMTultegtLEGahEsCaZdjfKC_MO8,1247
|
19
21
|
yomitoku/configs/cfg_text_recognizer_parseq_small.py,sha256=uCm_VC_G79IbZpOiK8fgYzAJ4b98H5pf328wyQomtfo,1259
|
22
|
+
yomitoku/configs/cfg_text_recognizer_parseq_v2.py,sha256=GfHzbByOKjH21PRTxT8x_fU4r4Mda6F750Z8pjNeb8g,1249
|
20
23
|
yomitoku/data/__init__.py,sha256=KAofFc9rk9ZdTKBjemu9RM8Vj9XnKbWC2MPZ2RWtOdE,82
|
21
24
|
yomitoku/data/dataset.py,sha256=-I4f-FDtgsPnJ2MnXB7FtwihMW3koDaSI1OEoqKneIg,1014
|
22
|
-
yomitoku/data/functions.py,sha256=
|
23
|
-
yomitoku/export/__init__.py,sha256=
|
24
|
-
yomitoku/export/export_csv.py,sha256=
|
25
|
-
yomitoku/export/export_html.py,sha256=
|
26
|
-
yomitoku/export/export_json.py,sha256=
|
27
|
-
yomitoku/export/export_markdown.py,sha256=
|
25
|
+
yomitoku/data/functions.py,sha256=HIrffs0zCJOq8IvQiI_z-b4MwTb-H2wmZjEE_5VpxFs,8040
|
26
|
+
yomitoku/export/__init__.py,sha256=gmlikMHRXfzfJ_8q4fyDlnpGms-x1oggQOwJEWHMgBU,508
|
27
|
+
yomitoku/export/export_csv.py,sha256=4DT5Nf4FdeGP0olIzv1ypBlswkZSdMB4MeQOgYWe8uk,3375
|
28
|
+
yomitoku/export/export_html.py,sha256=syzAapHcUHcUlabmZcQdWiNy2NrRs7LPzA_x39pFtfQ,5494
|
29
|
+
yomitoku/export/export_json.py,sha256=6cSXSsyEVJ5Rw2nKSUOcW8_XlGmSLWlWQWCBNmRKsps,2386
|
30
|
+
yomitoku/export/export_markdown.py,sha256=7Jib-YXOw70H46kvNc6z0_3LFwX9iwp1eXxsGeylF0I,4681
|
28
31
|
yomitoku/models/__init__.py,sha256=Enxq9sjJWusZuxecTori8IQa8NEYKaiiptDluHX1avg,144
|
29
32
|
yomitoku/models/dbnet_plus.py,sha256=jeWJZm0ihbxoJeAXBFK7uVIwoosx2IUNk7Ut5wRH0vA,7998
|
30
33
|
yomitoku/models/parseq.py,sha256=psCPjP3eKjOFAUZJPQQhbD0nWEV5FeOZ0tTK27Rvvbw,8748
|
@@ -40,7 +43,7 @@ yomitoku/onnx/.gitkeep,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
40
43
|
yomitoku/postprocessor/__init__.py,sha256=W4vUuqBaFtH5dlSBIYgyaCroGLMjpV6RrNGIBQ8NFVw,243
|
41
44
|
yomitoku/postprocessor/dbnet_postporcessor.py,sha256=o_y8b5REd2dFEdIpRcr6o-XBfOCHo9rBYGwokP_uhTc,4948
|
42
45
|
yomitoku/postprocessor/parseq_tokenizer.py,sha256=e89_g_bc4Au3SchuxoJfJNATJTxFmVYetzXyAzPWm28,4315
|
43
|
-
yomitoku/postprocessor/rtdetr_postprocessor.py,sha256=
|
46
|
+
yomitoku/postprocessor/rtdetr_postprocessor.py,sha256=zp_PEAIl0-b7EJIWVZFrAaEUBSp9OgBVd1G-mP9R20E,4350
|
44
47
|
yomitoku/resource/MPLUS1p-Medium.ttf,sha256=KLL1KkCumIBkgQtx1n4SffdaFuCNffThktEAbkB1OU8,1758908
|
45
48
|
yomitoku/resource/charset.txt,sha256=sU91kSi-9Wk4733bCXy4j_UDmvcsj96sHOq1ppUJlOY,21672
|
46
49
|
yomitoku/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -48,7 +51,7 @@ yomitoku/utils/graph.py,sha256=LKNB8ZhSQwOZMfeAimPMF5UCVVr2ZaUWoGDkz8z-uGU,456
|
|
48
51
|
yomitoku/utils/logger.py,sha256=uOmtQDr0A0JD7wyFshedL08BiNrQorHnpktRXba8bjU,424
|
49
52
|
yomitoku/utils/misc.py,sha256=FbwPLeIYYBvNf9wQh2RoEonTM5BF7_IwaEqmRsYHKA8,2673
|
50
53
|
yomitoku/utils/visualizer.py,sha256=DjDwHiAu1iFRKh96H3Egq4vuI2s_-9dLCDeykhKi8jo,5251
|
51
|
-
yomitoku-0.
|
52
|
-
yomitoku-0.
|
53
|
-
yomitoku-0.
|
54
|
-
yomitoku-0.
|
54
|
+
yomitoku-0.8.0.dist-info/METADATA,sha256=CH5KOT64Q8AMOaKkUbbd9rI1Zcd_dBk_OXd2GguC4f0,8555
|
55
|
+
yomitoku-0.8.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
56
|
+
yomitoku-0.8.0.dist-info/entry_points.txt,sha256=nFV3S11zgBNW0Qq_D0XQNg2R4lNXU_9XUFr6rdJoyF8,52
|
57
|
+
yomitoku-0.8.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|