yomitoku 0.4.1__py3-none-any.whl → 0.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. yomitoku/base.py +1 -1
  2. yomitoku/cli/main.py +219 -27
  3. yomitoku/configs/__init__.py +2 -0
  4. yomitoku/configs/cfg_text_detector_dbnet.py +1 -1
  5. yomitoku/configs/cfg_text_recognizer_parseq_small.py +51 -0
  6. yomitoku/data/functions.py +48 -23
  7. yomitoku/document_analyzer.py +243 -41
  8. yomitoku/export/__init__.py +18 -5
  9. yomitoku/export/export_csv.py +71 -2
  10. yomitoku/export/export_html.py +46 -12
  11. yomitoku/export/export_json.py +66 -3
  12. yomitoku/export/export_markdown.py +42 -6
  13. yomitoku/layout_analyzer.py +2 -9
  14. yomitoku/layout_parser.py +58 -4
  15. yomitoku/models/dbnet_plus.py +13 -39
  16. yomitoku/models/layers/activate.py +13 -0
  17. yomitoku/models/layers/rtdetr_backbone.py +18 -17
  18. yomitoku/models/layers/rtdetr_hybrid_encoder.py +19 -20
  19. yomitoku/models/layers/rtdetrv2_decoder.py +14 -1
  20. yomitoku/models/parseq.py +15 -22
  21. yomitoku/ocr.py +24 -27
  22. yomitoku/onnx/.gitkeep +0 -0
  23. yomitoku/postprocessor/dbnet_postporcessor.py +15 -14
  24. yomitoku/postprocessor/parseq_tokenizer.py +1 -3
  25. yomitoku/postprocessor/rtdetr_postprocessor.py +14 -1
  26. yomitoku/table_structure_recognizer.py +82 -9
  27. yomitoku/text_detector.py +57 -7
  28. yomitoku/text_recognizer.py +84 -16
  29. yomitoku/utils/misc.py +21 -14
  30. yomitoku/utils/visualizer.py +15 -8
  31. {yomitoku-0.4.1.dist-info → yomitoku-0.7.4.dist-info}/METADATA +34 -41
  32. yomitoku-0.7.4.dist-info/RECORD +54 -0
  33. {yomitoku-0.4.1.dist-info → yomitoku-0.7.4.dist-info}/WHEEL +1 -1
  34. yomitoku-0.4.1.dist-info/RECORD +0 -52
  35. {yomitoku-0.4.1.dist-info → yomitoku-0.7.4.dist-info}/entry_points.txt +0 -0
@@ -1,8 +1,10 @@
1
1
  import cv2
2
2
  import numpy as np
3
- from PIL import Image, ImageDraw, ImageFont
4
-
3
+ from PIL import Image, ImageDraw, ImageFont, features
5
4
  from ..constants import PALETTE
5
+ from .logger import set_logger
6
+
7
+ logger = set_logger(__name__, "INFO")
6
8
 
7
9
 
8
10
  def _reading_order_visualizer(img, elements, line_color, tip_size):
@@ -64,14 +66,14 @@ def reading_order_visualizer(
64
66
  return out
65
67
 
66
68
 
67
- def det_visualizer(preds, img, quads, vis_heatmap=False, line_color=(0, 255, 0)):
68
- preds = preds["binary"][0]
69
- binary = preds.detach().cpu().numpy()
69
+ def det_visualizer(img, quads, preds=None, vis_heatmap=False, line_color=(0, 255, 0)):
70
70
  out = img.copy()
71
71
  h, w = out.shape[:2]
72
- binary = binary.squeeze(0)
73
- binary = (binary * 255).astype(np.uint8)
74
72
  if vis_heatmap:
73
+ preds = preds["binary"][0]
74
+ binary = preds.detach().cpu().numpy()
75
+ binary = binary.squeeze(0)
76
+ binary = (binary * 255).astype(np.uint8)
75
77
  binary = cv2.resize(binary, (w, h), interpolation=cv2.INTER_LINEAR)
76
78
  heatmap = cv2.applyColorMap(binary, cv2.COLORMAP_JET)
77
79
  out = cv2.addWeighted(out, 0.5, heatmap, 0.5, 0)
@@ -148,13 +150,18 @@ def rec_visualizer(
148
150
  out = img.copy()
149
151
  pillow_img = Image.fromarray(out)
150
152
  draw = ImageDraw.Draw(pillow_img)
153
+ has_raqm = features.check_feature(feature="raqm")
154
+ if not has_raqm:
155
+ logger.warning(
156
+ "libraqm is not installed. Vertical text rendering is not supported. Rendering horizontally instead."
157
+ )
151
158
 
152
159
  for pred, quad, direction in zip(
153
160
  outputs.contents, outputs.points, outputs.directions
154
161
  ):
155
162
  quad = np.array(quad).astype(np.int32)
156
163
  font = ImageFont.truetype(font_path, font_size)
157
- if direction == "horizontal":
164
+ if direction == "horizontal" or not has_raqm:
158
165
  x_offset = 0
159
166
  y_offset = -font_size
160
167
 
@@ -1,33 +1,37 @@
1
- Metadata-Version: 2.3
1
+ Metadata-Version: 2.4
2
2
  Name: yomitoku
3
- Version: 0.4.1
4
- Summary: Yomitoku is a document image analysis package powered by AI technology for the Japanese language.
3
+ Version: 0.7.4
4
+ Summary: Yomitoku is an AI-powered document image analysis package designed specifically for the Japanese language.
5
5
  Author-email: Kotaro Kinoshita <kotaro.kinoshita@mlism.com>
6
6
  License: CC BY-NC-SA 4.0
7
7
  Keywords: Deep Learning,Japanese,OCR
8
- Requires-Python: >=3.9
8
+ Requires-Python: <3.13,>=3.10
9
9
  Requires-Dist: huggingface-hub>=0.26.1
10
10
  Requires-Dist: lxml>=5.3.0
11
11
  Requires-Dist: omegaconf>=2.3.0
12
+ Requires-Dist: onnx>=1.17.0
13
+ Requires-Dist: onnxruntime>=1.20.1
12
14
  Requires-Dist: opencv-python>=4.10.0.84
13
- Requires-Dist: pdf2image>=1.17.0
14
15
  Requires-Dist: pyclipper>=1.3.0.post6
15
16
  Requires-Dist: pydantic>=2.9.2
17
+ Requires-Dist: pypdfium2>=4.30.0
16
18
  Requires-Dist: shapely>=2.0.6
17
19
  Requires-Dist: timm>=1.0.11
18
20
  Requires-Dist: torch>=2.5.0
19
21
  Requires-Dist: torchvision>=0.20.0
20
22
  Description-Content-Type: text/markdown
21
23
 
22
- # YomiToku
23
-
24
- ![Python](https://img.shields.io/badge/Python-3.9|3.10|3.11|3.12-F9DC3E.svg?logo=python&logoColor=&style=flat)
25
- ![Pytorch](https://img.shields.io/badge/Pytorch-2.5-EE4C2C.svg?logo=Pytorch&style=fla)
26
- ![OS](https://img.shields.io/badge/OS-Linux|MacOS-1793D1.svg?&style=fla)
27
- [![Document](https://img.shields.io/badge/docs-live-brightgreen)](https://kotaro-kinoshita.github.io/yomitoku-dev/)
24
+ 日本語版 | [English](README_EN.md)
28
25
 
29
26
  <img src="static/logo/horizontal.png" width="800px">
30
27
 
28
+ ![Python](https://img.shields.io/badge/Python-3.10|3.11|3.12-F9DC3E.svg?logo=python&logoColor=&style=flat)
29
+ ![Pytorch](https://img.shields.io/badge/Pytorch-2.5-EE4C2C.svg?logo=Pytorch&style=fla)
30
+ ![CUDA](https://img.shields.io/badge/CUDA->=11.8-76B900.svg?logo=NVIDIA&style=fla)
31
+ ![OS](https://img.shields.io/badge/OS-Linux|Mac|Win-1793D1.svg?&style=fla)
32
+ [![Document](https://img.shields.io/badge/docs-live-brightgreen)](https://kotaro-kinoshita.github.io/yomitoku/)
33
+ [![PyPI Downloads](https://static.pepy.tech/badge/yomitoku)](https://pepy.tech/projects/yomitoku)
34
+
31
35
  ## 🌟 概要
32
36
 
33
37
  YomiToku は日本語に特化した AI 文章画像解析エンジン(Document AI)です。画像内の文字の全文 OCR およびレイアウト解析機能を有しており、画像内の文字情報や図表を認識、抽出、変換します。
@@ -60,46 +64,35 @@ Markdown でエクスポートした結果は関してはリポジトリ内の[s
60
64
 
61
65
  ## 📣 リリース情報
62
66
 
63
- - 2024 年 12XX YomiToku vX.X.X を公開
67
+ - 2024 年 1126 YomiToku v0.5.1 (beta) を公開
64
68
 
65
69
  ## 💡 インストールの方法
66
70
 
67
71
  ```
68
- pip install git+https://github.com/kotaro-kinoshita/yomitoku-dev.git@main
69
- ```
70
-
71
- - pytorch がご自身の GPU の環境にあったものをインストールしてください
72
-
73
- ### 依存ライブラリ
74
-
75
- pdf ファイルの解析を行うためには、別途、[poppler](https://poppler.freedesktop.org/)のインストールが必要です。
76
-
77
- **Mac**
78
-
79
- ```
80
- brew install poppler
72
+ pip install yomitoku
81
73
  ```
82
74
 
83
- **Linux**
84
-
85
- ```
86
- apt install poppler-utils -y
87
- ```
75
+ - pytorch はご自身の CUDA のバージョンにあったものをインストールしてください。デフォルトでは CUDA12.4 以上に対応したものがインストールされます。
76
+ - pytorch は 2.5 以上のバージョンに対応しています。その関係で CUDA11.8 以上のバージョンが必要になります。対応できない場合は、リポジトリ内の Dockerfile を利用してください。
88
77
 
89
78
  ## 🚀 実行方法
90
79
 
91
80
  ```
92
- yomitoku ${path_data} -f md -o results -v --figure
81
+ yomitoku ${path_data} -f md -o results -v --figure --lite
93
82
  ```
94
83
 
95
84
  - `${path_data}` 解析対象の画像が含まれたディレクトリか画像ファイルのパスを直接して指定してください。ディレクトリを対象とした場合はディレクトリのサブディレクトリ内の画像も含めて処理を実行します。
96
85
  - `-f`, `--format` 出力形式のファイルフォーマットを指定します。(json, csv, html, md をサポート)
97
86
  - `-o`, `--outdir` 出力先のディレクトリ名を指定します。存在しない場合は新規で作成されます。
98
87
  - `-v`, `--vis` を指定すると解析結果を可視化した画像を出力します。
88
+ - `-l`, `--lite` を指定すると軽量モデルで推論を実行します。通常より高速に推論できますが、若干、精度が低下する可能性があります。
99
89
  - `-d`, `--device` モデルを実行するためのデバイスを指定します。gpu が利用できない場合は cpu で推論が実行されます。(デフォルト: cuda)
100
90
  - `--ignore_line_break` 画像の改行位置を無視して、段落内の文章を連結して返します。(デフォルト:画像通りの改行位置位置で改行します。)
101
- - `figure_letter` 検出した図表に含まれる文字も出力ファイルにエクスポートします。
102
- - `figure` 検出した図、画像を出力ファイルにエクスポートします。(html と markdown のみ)
91
+ - `--figure_letter` 検出した図表に含まれる文字も出力ファイルにエクスポートします。
92
+ - `--figure` 検出した図、画像を出力ファイルにエクスポートします。
93
+ - `--encoding` エクスポートする出力ファイルの文字エンコーディングを指定します。サポートされていない文字コードが含まれる場合は、その文字を無視します。(utf-8, utf-8-sig, shift-jis, enc-jp, cp932)
94
+ - `--combine` PDFを入力に与えたときに、複数ページが含まれる場合に、それらの予測結果を一つのファイルに統合してエクスポートします。
95
+ - `--ignore_meta` 文章のheater, fotterなどの文字情報を出力ファイルに含めません。
103
96
 
104
97
  その他のオプションに関しては、ヘルプを参照
105
98
 
@@ -107,21 +100,21 @@ yomitoku ${path_data} -f md -o results -v --figure
107
100
  yomitoku --help
108
101
  ```
109
102
 
110
- ### Note
103
+ **NOTE**
111
104
 
112
- - CPU を用いての推論向けに最適化されておらず、処理時間が長くなりますので、GPU での実行を推奨します。
105
+ - GPU での実行を推奨します。CPU を用いての推論向けに最適化されておらず、処理時間が長くなります。
113
106
  - 活字のみ識別をサポートしております。手書き文字に関しては、読み取れる場合もありますが、公式にはサポートしておりません。
114
- - OCR は文書 OCR と情景 OCR(看板など紙以外にプリントされた文字)に大別されますが、Yomitoku は文書 OCR 向けに最適化されています。
107
+ - Yomitoku は文書 OCR 向けに最適化されており、情景 OCR(看板など紙以外にプリントされた文字の読み取り)向けには最適化されていません。
115
108
  - AI-OCR の識別精度を高めるために、入力画像の解像度が重要です。低解像度画像では識別精度が低下します。最低でも画像の短辺を 720px 以上の画像で推論することをお勧めします。
116
109
 
117
110
  ## 📝 ドキュメント
118
111
 
119
- パッケージの詳細は[ドキュメント](https://kotaro-kinoshita.github.io/yomitoku-dev/)を確認してください。
112
+ パッケージの詳細は[ドキュメント](https://kotaro-kinoshita.github.io/yomitoku/)を確認してください。
120
113
 
121
114
  ## LICENSE
122
115
 
123
- 本リポジトリ内に格納されているリソースのライセンスは YomiToku CC BY-NC-SA 4.0 に従います。
124
- 非商用での個人利用、研究目的での利用は自由に利用できます。
125
- 商用目的での利用に関しては、別途、商用ライセンスを提供しますので、開発者にお問い合わせください。
116
+ 本リポジトリ内に格納されているソースコードおよび本プロジェクトに関連する HuggingFaceHub 上のモデルの重みファイルのライセンスは CC BY-NC-SA 4.0 に従います。
117
+ 非商用での個人利用、研究目的での利用はご自由にお使いください。
118
+ 商用目的での利用に関しては、別途、商用ライセンスを提供しますので、https://www.mlism.com/ にお問い合わせください。
126
119
 
127
- YomiToku © 2024 by MLism Inc. is licensed under CC BY-NC-SA 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/
120
+ YomiToku © 2024 by Kotaro Kinoshita is licensed under CC BY-NC-SA 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/
@@ -0,0 +1,54 @@
1
+ yomitoku/__init__.py,sha256=kXOM8RbpwwLABG3p3vPT3dJWBk4JX2MFGrOeBEW0hKM,543
2
+ yomitoku/base.py,sha256=9U3sfe69O6vuO430JzzKQQNkgPsLM9WdLfOUUhp3Ljs,3878
3
+ yomitoku/constants.py,sha256=zlW5QRc_u_F3C2RAgBFWyHJZexBnJT5N15GC-9d3iLo,686
4
+ yomitoku/document_analyzer.py,sha256=wQMmXACDsDmyaxg2OnG9Og5Nx53WPUkQdUmgYtljACQ,16412
5
+ yomitoku/layout_analyzer.py,sha256=VhNf1ZQFoozj6WUGk5ll1p2p1jk5X3j-JPcDbTAoSl4,1856
6
+ yomitoku/layout_parser.py,sha256=V_mAkZxke1gwHfnxBFMTOJ8hnz2X_kfZu2lLiMd8cAs,7610
7
+ yomitoku/ocr.py,sha256=JSTjkupcxHITQm6ERnzU7As0c3KWf8-oxc0AqNoWHXo,2272
8
+ yomitoku/reading_order.py,sha256=OfhOS9ttPDoPSuHrIRKyOzG19GGeRufbuSKDqhsohh4,6404
9
+ yomitoku/table_structure_recognizer.py,sha256=tHjex6deT_FjRK5ePz9bUXA_QIhgv_vYtK-ynm4ALxg,9625
10
+ yomitoku/text_detector.py,sha256=XgqhtbNcJww2x3BrH8EFz45qC6kqPKCX9hsa-dzRoIA,4274
11
+ yomitoku/text_recognizer.py,sha256=t95sbxve-E9VOCaU9CFGZIlk_a4my9KfFfr9tXws9As,5871
12
+ yomitoku/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
+ yomitoku/cli/main.py,sha256=jQCSwHw4oOwLQjARvaIO1yoSjz-2Rdb9c3DNShLS5OE,12038
14
+ yomitoku/configs/__init__.py,sha256=e1Alss5QJLZSNfD6zLEG6xu5vDQDw-4Jayiqq8bq52s,571
15
+ yomitoku/configs/cfg_layout_parser_rtdtrv2.py,sha256=8PRxB2Ar9UF7-DLtbgSokhrzdXb0veWI6Wc-X8qigRw,2329
16
+ yomitoku/configs/cfg_table_structure_recognizer_rtdtrv2.py,sha256=o70GMHD8k-zeBeJtuhPS8x7vVB-ffucnJXeSyn-0AXo,2116
17
+ yomitoku/configs/cfg_text_detector_dbnet.py,sha256=U9k48PON7haoOaytiELhbZRpv9RMiUm6nnfHmdxIa9Q,1153
18
+ yomitoku/configs/cfg_text_recognizer_parseq.py,sha256=hpFs3nKqh4XdU3BZMTultegtLEGahEsCaZdjfKC_MO8,1247
19
+ yomitoku/configs/cfg_text_recognizer_parseq_small.py,sha256=uCm_VC_G79IbZpOiK8fgYzAJ4b98H5pf328wyQomtfo,1259
20
+ yomitoku/data/__init__.py,sha256=KAofFc9rk9ZdTKBjemu9RM8Vj9XnKbWC2MPZ2RWtOdE,82
21
+ yomitoku/data/dataset.py,sha256=-I4f-FDtgsPnJ2MnXB7FtwihMW3koDaSI1OEoqKneIg,1014
22
+ yomitoku/data/functions.py,sha256=HIrffs0zCJOq8IvQiI_z-b4MwTb-H2wmZjEE_5VpxFs,8040
23
+ yomitoku/export/__init__.py,sha256=gmlikMHRXfzfJ_8q4fyDlnpGms-x1oggQOwJEWHMgBU,508
24
+ yomitoku/export/export_csv.py,sha256=4DT5Nf4FdeGP0olIzv1ypBlswkZSdMB4MeQOgYWe8uk,3375
25
+ yomitoku/export/export_html.py,sha256=syzAapHcUHcUlabmZcQdWiNy2NrRs7LPzA_x39pFtfQ,5494
26
+ yomitoku/export/export_json.py,sha256=6cSXSsyEVJ5Rw2nKSUOcW8_XlGmSLWlWQWCBNmRKsps,2386
27
+ yomitoku/export/export_markdown.py,sha256=7Jib-YXOw70H46kvNc6z0_3LFwX9iwp1eXxsGeylF0I,4681
28
+ yomitoku/models/__init__.py,sha256=Enxq9sjJWusZuxecTori8IQa8NEYKaiiptDluHX1avg,144
29
+ yomitoku/models/dbnet_plus.py,sha256=jeWJZm0ihbxoJeAXBFK7uVIwoosx2IUNk7Ut5wRH0vA,7998
30
+ yomitoku/models/parseq.py,sha256=psCPjP3eKjOFAUZJPQQhbD0nWEV5FeOZ0tTK27Rvvbw,8748
31
+ yomitoku/models/rtdetr.py,sha256=oJsr8RHz3frslhLfXdVJve47lUsrmqLjfdTrZ41tlQ0,687
32
+ yomitoku/models/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
+ yomitoku/models/layers/activate.py,sha256=S54GPssZBMloM2oFAXeDVMmBBZOWyjwU98Niq758txE,1244
34
+ yomitoku/models/layers/dbnet_feature_attention.py,sha256=Vpp_PiLVuI7Zs30TTg4RNRn16KTb81ewonADpUHd4aE,6060
35
+ yomitoku/models/layers/parseq_transformer.py,sha256=33eroJf8rmgIptP-NpZLJMhG7XOTwV4rXsq674VrKnU,6704
36
+ yomitoku/models/layers/rtdetr_backbone.py,sha256=VOWFW7XFfJl4cvPaupqqP4-I-YHdwlVltQEgliD69As,9904
37
+ yomitoku/models/layers/rtdetr_hybrid_encoder.py,sha256=ZnpEzJLzHgu_hrx7YK6myXZ4F1CDHRM501RbAPQdzdQ,14125
38
+ yomitoku/models/layers/rtdetrv2_decoder.py,sha256=ggUwTdWpBfyYHnZuLx8vyH8n0XfZkQFtxgpY-1YI2sI,28070
39
+ yomitoku/onnx/.gitkeep,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
40
+ yomitoku/postprocessor/__init__.py,sha256=W4vUuqBaFtH5dlSBIYgyaCroGLMjpV6RrNGIBQ8NFVw,243
41
+ yomitoku/postprocessor/dbnet_postporcessor.py,sha256=o_y8b5REd2dFEdIpRcr6o-XBfOCHo9rBYGwokP_uhTc,4948
42
+ yomitoku/postprocessor/parseq_tokenizer.py,sha256=e89_g_bc4Au3SchuxoJfJNATJTxFmVYetzXyAzPWm28,4315
43
+ yomitoku/postprocessor/rtdetr_postprocessor.py,sha256=TCv1t1zCxg2rSirsLm4sXlaltGubH-roVdEqnUoRs-8,3905
44
+ yomitoku/resource/MPLUS1p-Medium.ttf,sha256=KLL1KkCumIBkgQtx1n4SffdaFuCNffThktEAbkB1OU8,1758908
45
+ yomitoku/resource/charset.txt,sha256=sU91kSi-9Wk4733bCXy4j_UDmvcsj96sHOq1ppUJlOY,21672
46
+ yomitoku/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
47
+ yomitoku/utils/graph.py,sha256=LKNB8ZhSQwOZMfeAimPMF5UCVVr2ZaUWoGDkz8z-uGU,456
48
+ yomitoku/utils/logger.py,sha256=uOmtQDr0A0JD7wyFshedL08BiNrQorHnpktRXba8bjU,424
49
+ yomitoku/utils/misc.py,sha256=FbwPLeIYYBvNf9wQh2RoEonTM5BF7_IwaEqmRsYHKA8,2673
50
+ yomitoku/utils/visualizer.py,sha256=DjDwHiAu1iFRKh96H3Egq4vuI2s_-9dLCDeykhKi8jo,5251
51
+ yomitoku-0.7.4.dist-info/METADATA,sha256=1M3s2JjuK7Jfk_hnYYNE17Jz8esC_e6R9mXu3a8x8e8,8717
52
+ yomitoku-0.7.4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
53
+ yomitoku-0.7.4.dist-info/entry_points.txt,sha256=nFV3S11zgBNW0Qq_D0XQNg2R4lNXU_9XUFr6rdJoyF8,52
54
+ yomitoku-0.7.4.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: hatchling 1.25.0
2
+ Generator: hatchling 1.27.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,52 +0,0 @@
1
- yomitoku/__init__.py,sha256=kXOM8RbpwwLABG3p3vPT3dJWBk4JX2MFGrOeBEW0hKM,543
2
- yomitoku/base.py,sha256=lzR_V8t87aRasmFdFwD-8KAeSahSTI3AZaEn6g8sOv8,3871
3
- yomitoku/constants.py,sha256=zlW5QRc_u_F3C2RAgBFWyHJZexBnJT5N15GC-9d3iLo,686
4
- yomitoku/document_analyzer.py,sha256=0dTH6YrCvp2EZXufPnSN4DdF95DZ0_z1TIDML744oX0,10029
5
- yomitoku/layout_analyzer.py,sha256=WIP8PjuayoM7VNtmrbb1b1r4joHYuSyIHg91GZ3F46s,2071
6
- yomitoku/layout_parser.py,sha256=V2jCNHE61jNp8ytYdKwPV34V5qEK7y-7-Mq7-AkoQhU,5898
7
- yomitoku/ocr.py,sha256=Rcojw0aGA6yDF2RjqfK23_rMw-xm61KGd8JmTCTOOVU,2516
8
- yomitoku/reading_order.py,sha256=OfhOS9ttPDoPSuHrIRKyOzG19GGeRufbuSKDqhsohh4,6404
9
- yomitoku/table_structure_recognizer.py,sha256=CouRzfdO_toZKUQbzQqocKdMcgA3Pr7glkZuqD5itpg,7280
10
- yomitoku/text_detector.py,sha256=okp0xuq4lXgEDcfgCzeJcrj8hfSI4NvAgorsNwi_NYI,2682
11
- yomitoku/text_recognizer.py,sha256=CpPuD5x_xE4vS9ut_SkD4FMCNoE--KWveCH10L0mlT0,3705
12
- yomitoku/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
- yomitoku/cli/main.py,sha256=MBD0S4sXgquJ8P2egkZjJcglXvCke5Uw46C28SDtr8g,6252
14
- yomitoku/configs/__init__.py,sha256=KBhb9S7xt22HZaIcoWSgZHfscXXj9YlimOwLH5z9CRo,454
15
- yomitoku/configs/cfg_layout_parser_rtdtrv2.py,sha256=8PRxB2Ar9UF7-DLtbgSokhrzdXb0veWI6Wc-X8qigRw,2329
16
- yomitoku/configs/cfg_table_structure_recognizer_rtdtrv2.py,sha256=o70GMHD8k-zeBeJtuhPS8x7vVB-ffucnJXeSyn-0AXo,2116
17
- yomitoku/configs/cfg_text_detector_dbnet.py,sha256=AUl9aStR6z7SEPldIDd7GNQVPQx0eUlyn6ui3B4RVjA,1153
18
- yomitoku/configs/cfg_text_recognizer_parseq.py,sha256=hpFs3nKqh4XdU3BZMTultegtLEGahEsCaZdjfKC_MO8,1247
19
- yomitoku/data/__init__.py,sha256=KAofFc9rk9ZdTKBjemu9RM8Vj9XnKbWC2MPZ2RWtOdE,82
20
- yomitoku/data/dataset.py,sha256=-I4f-FDtgsPnJ2MnXB7FtwihMW3koDaSI1OEoqKneIg,1014
21
- yomitoku/data/functions.py,sha256=2rJz4Gfd3UzlTq2bzXyFhcwtxJoUjNsnnNMJfk5-i4o,7361
22
- yomitoku/export/__init__.py,sha256=aANEfuovH2aevFjb2pGrBLFP-4iRzEzD9wcriCR-M7I,229
23
- yomitoku/export/export_csv.py,sha256=-n8eYPIzDQuiixeqpTbWaN9aQ5oFyl7XRfpv51oKPTI,1979
24
- yomitoku/export/export_html.py,sha256=X3H_orkS1BRlQo8Z1NzgrFwsIboDzRAx9etmqj90k2Y,4866
25
- yomitoku/export/export_json.py,sha256=1ChvCAHfCmMQvCfcAb1p3fSpr4elNAs3xBSIbpfn3bc,998
26
- yomitoku/export/export_markdown.py,sha256=mCcsXUWBLrYc1NcRSBFfBT28d6eCddAF1oHp0qdBEnE,3986
27
- yomitoku/models/__init__.py,sha256=Enxq9sjJWusZuxecTori8IQa8NEYKaiiptDluHX1avg,144
28
- yomitoku/models/dbnet_plus.py,sha256=VsE9anGOL1OzCivLilWpJ__32JHnSBEJOwdk_fpHE_o,8428
29
- yomitoku/models/parseq.py,sha256=OfN3ts1Z6f5T27amoRKvnL8qCma-wf0veIbWWoG4GuU,8801
30
- yomitoku/models/rtdetr.py,sha256=oJsr8RHz3frslhLfXdVJve47lUsrmqLjfdTrZ41tlQ0,687
31
- yomitoku/models/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
32
- yomitoku/models/layers/activate.py,sha256=HUw0q-76RNjZF-o9O3fowfJcw0t1H5o0pbyioGdqUvU,668
33
- yomitoku/models/layers/dbnet_feature_attention.py,sha256=Vpp_PiLVuI7Zs30TTg4RNRn16KTb81ewonADpUHd4aE,6060
34
- yomitoku/models/layers/parseq_transformer.py,sha256=33eroJf8rmgIptP-NpZLJMhG7XOTwV4rXsq674VrKnU,6704
35
- yomitoku/models/layers/rtdetr_backbone.py,sha256=8-57bh8IjUCL94qM5mTpOXUTYPih1Xek5E8xs5pMGBE,9537
36
- yomitoku/models/layers/rtdetr_hybrid_encoder.py,sha256=i19sqZAIfPVotvpWBuxpxbepi9xhnGlRpaiL9XMp_Cc,13804
37
- yomitoku/models/layers/rtdetrv2_decoder.py,sha256=5bVYPLFYCy3PcjyHTPFHNLWqg3bctrk-dKVG4kayhaw,27517
38
- yomitoku/postprocessor/__init__.py,sha256=W4vUuqBaFtH5dlSBIYgyaCroGLMjpV6RrNGIBQ8NFVw,243
39
- yomitoku/postprocessor/dbnet_postporcessor.py,sha256=iEPOWbGaJ8YIYCQJOpBadbf7uUGEAPjmeNDcNAvY8yc,4523
40
- yomitoku/postprocessor/parseq_tokenizer.py,sha256=eXIHIazEkByjyXKegYEzQ3CE0ReAJYIC2VpQJjnNQjU,4337
41
- yomitoku/postprocessor/rtdetr_postprocessor.py,sha256=f52wfRKrxqSXy_LeidKDR9XAta_qPjto-oYEdO0XL8A,3386
42
- yomitoku/resource/MPLUS1p-Medium.ttf,sha256=KLL1KkCumIBkgQtx1n4SffdaFuCNffThktEAbkB1OU8,1758908
43
- yomitoku/resource/charset.txt,sha256=sU91kSi-9Wk4733bCXy4j_UDmvcsj96sHOq1ppUJlOY,21672
44
- yomitoku/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
45
- yomitoku/utils/graph.py,sha256=LKNB8ZhSQwOZMfeAimPMF5UCVVr2ZaUWoGDkz8z-uGU,456
46
- yomitoku/utils/logger.py,sha256=uOmtQDr0A0JD7wyFshedL08BiNrQorHnpktRXba8bjU,424
47
- yomitoku/utils/misc.py,sha256=dC1w3DmsoU_ECqngbAs14vPOFCbcecZSGmbztgwx4XU,2479
48
- yomitoku/utils/visualizer.py,sha256=EEDo4bts61FX6mJecgJiHtzY2vLH6sJOQgOVr9yVsF0,4912
49
- yomitoku-0.4.1.dist-info/METADATA,sha256=mTZjZU6_zGTcnYgGR7bu5nGNOnys7DFH_NkAbq3FQrc,7553
50
- yomitoku-0.4.1.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
51
- yomitoku-0.4.1.dist-info/entry_points.txt,sha256=nFV3S11zgBNW0Qq_D0XQNg2R4lNXU_9XUFr6rdJoyF8,52
52
- yomitoku-0.4.1.dist-info/RECORD,,