yomitoku 0.4.0.post1.dev0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- yomitoku/__init__.py +20 -0
- yomitoku/base.py +136 -0
- yomitoku/cli/__init__.py +0 -0
- yomitoku/cli/main.py +230 -0
- yomitoku/configs/__init__.py +13 -0
- yomitoku/configs/cfg_layout_parser_rtdtrv2.py +89 -0
- yomitoku/configs/cfg_table_structure_recognizer_rtdtrv2.py +80 -0
- yomitoku/configs/cfg_text_detector_dbnet.py +49 -0
- yomitoku/configs/cfg_text_recognizer_parseq.py +51 -0
- yomitoku/constants.py +32 -0
- yomitoku/data/__init__.py +3 -0
- yomitoku/data/dataset.py +40 -0
- yomitoku/data/functions.py +279 -0
- yomitoku/document_analyzer.py +315 -0
- yomitoku/export/__init__.py +6 -0
- yomitoku/export/export_csv.py +71 -0
- yomitoku/export/export_html.py +188 -0
- yomitoku/export/export_json.py +34 -0
- yomitoku/export/export_markdown.py +145 -0
- yomitoku/layout_analyzer.py +66 -0
- yomitoku/layout_parser.py +189 -0
- yomitoku/models/__init__.py +9 -0
- yomitoku/models/dbnet_plus.py +272 -0
- yomitoku/models/layers/__init__.py +0 -0
- yomitoku/models/layers/activate.py +38 -0
- yomitoku/models/layers/dbnet_feature_attention.py +160 -0
- yomitoku/models/layers/parseq_transformer.py +218 -0
- yomitoku/models/layers/rtdetr_backbone.py +333 -0
- yomitoku/models/layers/rtdetr_hybrid_encoder.py +433 -0
- yomitoku/models/layers/rtdetrv2_decoder.py +811 -0
- yomitoku/models/parseq.py +243 -0
- yomitoku/models/rtdetr.py +22 -0
- yomitoku/ocr.py +87 -0
- yomitoku/postprocessor/__init__.py +9 -0
- yomitoku/postprocessor/dbnet_postporcessor.py +137 -0
- yomitoku/postprocessor/parseq_tokenizer.py +128 -0
- yomitoku/postprocessor/rtdetr_postprocessor.py +107 -0
- yomitoku/reading_order.py +214 -0
- yomitoku/resource/MPLUS1p-Medium.ttf +0 -0
- yomitoku/resource/charset.txt +1 -0
- yomitoku/table_structure_recognizer.py +244 -0
- yomitoku/text_detector.py +103 -0
- yomitoku/text_recognizer.py +128 -0
- yomitoku/utils/__init__.py +0 -0
- yomitoku/utils/graph.py +20 -0
- yomitoku/utils/logger.py +15 -0
- yomitoku/utils/misc.py +102 -0
- yomitoku/utils/visualizer.py +179 -0
- yomitoku-0.4.0.post1.dev0.dist-info/METADATA +127 -0
- yomitoku-0.4.0.post1.dev0.dist-info/RECORD +52 -0
- yomitoku-0.4.0.post1.dev0.dist-info/WHEEL +4 -0
- yomitoku-0.4.0.post1.dev0.dist-info/entry_points.txt +2 -0
@@ -0,0 +1,811 @@
|
|
1
|
+
"""Copyright(c) 2023 lyuwenyu. All Rights Reserved."""
|
2
|
+
|
3
|
+
import copy
|
4
|
+
import functools
|
5
|
+
import math
|
6
|
+
from collections import OrderedDict
|
7
|
+
from typing import List
|
8
|
+
|
9
|
+
import torch
|
10
|
+
import torch.nn as nn
|
11
|
+
import torch.nn.functional as F
|
12
|
+
import torch.nn.init as init
|
13
|
+
from omegaconf import ListConfig
|
14
|
+
|
15
|
+
from .activate import get_activation
|
16
|
+
|
17
|
+
|
18
|
+
def bias_init_with_prob(prior_prob=0.01):
|
19
|
+
"""initialize conv/fc bias value according to a given probability value."""
|
20
|
+
bias_init = float(-math.log((1 - prior_prob) / prior_prob))
|
21
|
+
return bias_init
|
22
|
+
|
23
|
+
|
24
|
+
def inverse_sigmoid(x: torch.Tensor, eps: float = 1e-5) -> torch.Tensor:
|
25
|
+
x = x.clip(min=0.0, max=1.0)
|
26
|
+
return torch.log(x.clip(min=eps) / (1 - x).clip(min=eps))
|
27
|
+
|
28
|
+
|
29
|
+
class MLP(nn.Module):
|
30
|
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, act="relu"):
|
31
|
+
super().__init__()
|
32
|
+
self.num_layers = num_layers
|
33
|
+
h = [hidden_dim] * (num_layers - 1)
|
34
|
+
self.layers = nn.ModuleList(
|
35
|
+
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
36
|
+
)
|
37
|
+
self.act = get_activation(act)
|
38
|
+
|
39
|
+
def forward(self, x):
|
40
|
+
for i, layer in enumerate(self.layers):
|
41
|
+
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
|
42
|
+
return x
|
43
|
+
|
44
|
+
|
45
|
+
class MSDeformableAttention(nn.Module):
|
46
|
+
def __init__(
|
47
|
+
self,
|
48
|
+
embed_dim=256,
|
49
|
+
num_heads=8,
|
50
|
+
num_levels=4,
|
51
|
+
num_points=4,
|
52
|
+
method="default",
|
53
|
+
offset_scale=0.5,
|
54
|
+
):
|
55
|
+
"""Multi-Scale Deformable Attention"""
|
56
|
+
super(MSDeformableAttention, self).__init__()
|
57
|
+
self.embed_dim = embed_dim
|
58
|
+
self.num_heads = num_heads
|
59
|
+
self.num_levels = num_levels
|
60
|
+
self.offset_scale = offset_scale
|
61
|
+
|
62
|
+
if isinstance(num_points, list):
|
63
|
+
assert len(num_points) == num_levels, ""
|
64
|
+
num_points_list = num_points
|
65
|
+
if isinstance(num_points, ListConfig):
|
66
|
+
num_points_list = list(num_points)
|
67
|
+
else:
|
68
|
+
num_points_list = [num_points for _ in range(num_levels)]
|
69
|
+
|
70
|
+
self.num_points_list = num_points_list
|
71
|
+
|
72
|
+
num_points_scale = [1 / n for n in num_points_list for _ in range(n)]
|
73
|
+
self.register_buffer(
|
74
|
+
"num_points_scale",
|
75
|
+
torch.tensor(num_points_scale, dtype=torch.float32),
|
76
|
+
)
|
77
|
+
|
78
|
+
self.total_points = num_heads * sum(num_points_list)
|
79
|
+
self.method = method
|
80
|
+
|
81
|
+
self.head_dim = embed_dim // num_heads
|
82
|
+
assert (
|
83
|
+
self.head_dim * num_heads == self.embed_dim
|
84
|
+
), "embed_dim must be divisible by num_heads"
|
85
|
+
|
86
|
+
self.sampling_offsets = nn.Linear(embed_dim, self.total_points * 2)
|
87
|
+
self.attention_weights = nn.Linear(embed_dim, self.total_points)
|
88
|
+
self.value_proj = nn.Linear(embed_dim, embed_dim)
|
89
|
+
self.output_proj = nn.Linear(embed_dim, embed_dim)
|
90
|
+
|
91
|
+
self.ms_deformable_attn_core = functools.partial(
|
92
|
+
deformable_attention_core_func_v2, method=self.method
|
93
|
+
)
|
94
|
+
|
95
|
+
self._reset_parameters()
|
96
|
+
|
97
|
+
if method == "discrete":
|
98
|
+
for p in self.sampling_offsets.parameters():
|
99
|
+
p.requires_grad = False
|
100
|
+
|
101
|
+
def _reset_parameters(self):
|
102
|
+
# sampling_offsets
|
103
|
+
init.constant_(self.sampling_offsets.weight, 0)
|
104
|
+
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (
|
105
|
+
2.0 * math.pi / self.num_heads
|
106
|
+
)
|
107
|
+
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
108
|
+
grid_init = grid_init / grid_init.abs().max(-1, keepdim=True).values
|
109
|
+
grid_init = grid_init.reshape(self.num_heads, 1, 2).tile(
|
110
|
+
[1, sum(self.num_points_list), 1]
|
111
|
+
)
|
112
|
+
scaling = torch.concat(
|
113
|
+
[torch.arange(1, n + 1) for n in self.num_points_list]
|
114
|
+
).reshape(1, -1, 1)
|
115
|
+
grid_init *= scaling
|
116
|
+
self.sampling_offsets.bias.data[...] = grid_init.flatten()
|
117
|
+
|
118
|
+
# attention_weights
|
119
|
+
init.constant_(self.attention_weights.weight, 0)
|
120
|
+
init.constant_(self.attention_weights.bias, 0)
|
121
|
+
|
122
|
+
# proj
|
123
|
+
init.xavier_uniform_(self.value_proj.weight)
|
124
|
+
init.constant_(self.value_proj.bias, 0)
|
125
|
+
init.xavier_uniform_(self.output_proj.weight)
|
126
|
+
init.constant_(self.output_proj.bias, 0)
|
127
|
+
|
128
|
+
def forward(
|
129
|
+
self,
|
130
|
+
query: torch.Tensor,
|
131
|
+
reference_points: torch.Tensor,
|
132
|
+
value: torch.Tensor,
|
133
|
+
value_spatial_shapes: List[int],
|
134
|
+
value_mask: torch.Tensor = None,
|
135
|
+
):
|
136
|
+
"""
|
137
|
+
Args:
|
138
|
+
query (Tensor): [bs, query_length, C]
|
139
|
+
reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
|
140
|
+
bottom-right (1, 1), including padding area
|
141
|
+
value (Tensor): [bs, value_length, C]
|
142
|
+
value_spatial_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
|
143
|
+
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
|
144
|
+
|
145
|
+
Returns:
|
146
|
+
output (Tensor): [bs, Length_{query}, C]
|
147
|
+
"""
|
148
|
+
bs, Len_q = query.shape[:2]
|
149
|
+
Len_v = value.shape[1]
|
150
|
+
|
151
|
+
value = self.value_proj(value)
|
152
|
+
if value_mask is not None:
|
153
|
+
value = value * value_mask.to(value.dtype).unsqueeze(-1)
|
154
|
+
|
155
|
+
value = value.reshape(bs, Len_v, self.num_heads, self.head_dim)
|
156
|
+
|
157
|
+
sampling_offsets: torch.Tensor = self.sampling_offsets(query)
|
158
|
+
sampling_offsets = sampling_offsets.reshape(
|
159
|
+
bs, Len_q, self.num_heads, sum(self.num_points_list), 2
|
160
|
+
)
|
161
|
+
|
162
|
+
attention_weights = self.attention_weights(query).reshape(
|
163
|
+
bs, Len_q, self.num_heads, sum(self.num_points_list)
|
164
|
+
)
|
165
|
+
attention_weights = F.softmax(attention_weights, dim=-1).reshape(
|
166
|
+
bs, Len_q, self.num_heads, sum(self.num_points_list)
|
167
|
+
)
|
168
|
+
|
169
|
+
if reference_points.shape[-1] == 2:
|
170
|
+
offset_normalizer = torch.tensor(value_spatial_shapes)
|
171
|
+
offset_normalizer = offset_normalizer.flip([1]).reshape(
|
172
|
+
1, 1, 1, self.num_levels, 1, 2
|
173
|
+
)
|
174
|
+
sampling_locations = (
|
175
|
+
reference_points.reshape(bs, Len_q, 1, self.num_levels, 1, 2)
|
176
|
+
+ sampling_offsets / offset_normalizer
|
177
|
+
)
|
178
|
+
elif reference_points.shape[-1] == 4:
|
179
|
+
# reference_points [8, 480, None, 1, 4]
|
180
|
+
# sampling_offsets [8, 480, 8, 12, 2]
|
181
|
+
num_points_scale = self.num_points_scale.to(dtype=query.dtype).unsqueeze(-1)
|
182
|
+
offset = (
|
183
|
+
sampling_offsets
|
184
|
+
* num_points_scale
|
185
|
+
* reference_points[:, :, None, :, 2:]
|
186
|
+
* self.offset_scale
|
187
|
+
)
|
188
|
+
sampling_locations = reference_points[:, :, None, :, :2] + offset
|
189
|
+
else:
|
190
|
+
raise ValueError(
|
191
|
+
"Last dim of reference_points must be 2 or 4, but get {} instead.".format(
|
192
|
+
reference_points.shape[-1]
|
193
|
+
)
|
194
|
+
)
|
195
|
+
|
196
|
+
output = self.ms_deformable_attn_core(
|
197
|
+
value,
|
198
|
+
value_spatial_shapes,
|
199
|
+
sampling_locations,
|
200
|
+
attention_weights,
|
201
|
+
self.num_points_list,
|
202
|
+
)
|
203
|
+
|
204
|
+
output = self.output_proj(output)
|
205
|
+
|
206
|
+
return output
|
207
|
+
|
208
|
+
|
209
|
+
class TransformerDecoderLayer(nn.Module):
|
210
|
+
def __init__(
|
211
|
+
self,
|
212
|
+
d_model=256,
|
213
|
+
n_head=8,
|
214
|
+
dim_feedforward=1024,
|
215
|
+
dropout=0.0,
|
216
|
+
activation="relu",
|
217
|
+
n_levels=4,
|
218
|
+
n_points=4,
|
219
|
+
cross_attn_method="default",
|
220
|
+
):
|
221
|
+
super(TransformerDecoderLayer, self).__init__()
|
222
|
+
|
223
|
+
# self attention
|
224
|
+
self.self_attn = nn.MultiheadAttention(
|
225
|
+
d_model, n_head, dropout=dropout, batch_first=True
|
226
|
+
)
|
227
|
+
self.dropout1 = nn.Dropout(dropout)
|
228
|
+
self.norm1 = nn.LayerNorm(d_model)
|
229
|
+
|
230
|
+
# cross attention
|
231
|
+
self.cross_attn = MSDeformableAttention(
|
232
|
+
d_model, n_head, n_levels, n_points, method=cross_attn_method
|
233
|
+
)
|
234
|
+
self.dropout2 = nn.Dropout(dropout)
|
235
|
+
self.norm2 = nn.LayerNorm(d_model)
|
236
|
+
|
237
|
+
# ffn
|
238
|
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
239
|
+
self.activation = get_activation(activation)
|
240
|
+
self.dropout3 = nn.Dropout(dropout)
|
241
|
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
242
|
+
self.dropout4 = nn.Dropout(dropout)
|
243
|
+
self.norm3 = nn.LayerNorm(d_model)
|
244
|
+
|
245
|
+
self._reset_parameters()
|
246
|
+
|
247
|
+
def _reset_parameters(self):
|
248
|
+
init.xavier_uniform_(self.linear1.weight)
|
249
|
+
init.xavier_uniform_(self.linear2.weight)
|
250
|
+
|
251
|
+
def with_pos_embed(self, tensor, pos):
|
252
|
+
return tensor if pos is None else tensor + pos
|
253
|
+
|
254
|
+
def forward_ffn(self, tgt):
|
255
|
+
return self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
|
256
|
+
|
257
|
+
def forward(
|
258
|
+
self,
|
259
|
+
target,
|
260
|
+
reference_points,
|
261
|
+
memory,
|
262
|
+
memory_spatial_shapes,
|
263
|
+
attn_mask=None,
|
264
|
+
memory_mask=None,
|
265
|
+
query_pos_embed=None,
|
266
|
+
):
|
267
|
+
# self attention
|
268
|
+
q = k = self.with_pos_embed(target, query_pos_embed)
|
269
|
+
|
270
|
+
target2, _ = self.self_attn(q, k, value=target, attn_mask=attn_mask)
|
271
|
+
target = target + self.dropout1(target2)
|
272
|
+
target = self.norm1(target)
|
273
|
+
|
274
|
+
# cross attention
|
275
|
+
target2 = self.cross_attn(
|
276
|
+
self.with_pos_embed(target, query_pos_embed),
|
277
|
+
reference_points,
|
278
|
+
memory,
|
279
|
+
memory_spatial_shapes,
|
280
|
+
memory_mask,
|
281
|
+
)
|
282
|
+
target = target + self.dropout2(target2)
|
283
|
+
target = self.norm2(target)
|
284
|
+
|
285
|
+
# ffn
|
286
|
+
target2 = self.forward_ffn(target)
|
287
|
+
target = target + self.dropout4(target2)
|
288
|
+
target = self.norm3(target)
|
289
|
+
|
290
|
+
return target
|
291
|
+
|
292
|
+
|
293
|
+
def deformable_attention_core_func_v2(
|
294
|
+
value: torch.Tensor,
|
295
|
+
value_spatial_shapes,
|
296
|
+
sampling_locations: torch.Tensor,
|
297
|
+
attention_weights: torch.Tensor,
|
298
|
+
num_points_list: List[int],
|
299
|
+
method="default",
|
300
|
+
):
|
301
|
+
"""
|
302
|
+
Args:
|
303
|
+
value (Tensor): [bs, value_length, n_head, c]
|
304
|
+
value_spatial_shapes (Tensor|List): [n_levels, 2]
|
305
|
+
value_level_start_index (Tensor|List): [n_levels]
|
306
|
+
sampling_locations (Tensor): [bs, query_length, n_head, n_levels * n_points, 2]
|
307
|
+
attention_weights (Tensor): [bs, query_length, n_head, n_levels * n_points]
|
308
|
+
|
309
|
+
Returns:
|
310
|
+
output (Tensor): [bs, Length_{query}, C]
|
311
|
+
"""
|
312
|
+
bs, _, n_head, c = value.shape
|
313
|
+
_, Len_q, _, _, _ = sampling_locations.shape
|
314
|
+
|
315
|
+
split_shape = [h * w for h, w in value_spatial_shapes]
|
316
|
+
value_list = value.permute(0, 2, 3, 1).flatten(0, 1).split(split_shape, dim=-1)
|
317
|
+
|
318
|
+
# sampling_offsets [8, 480, 8, 12, 2]
|
319
|
+
if method == "default":
|
320
|
+
sampling_grids = 2 * sampling_locations - 1
|
321
|
+
|
322
|
+
elif method == "discrete":
|
323
|
+
sampling_grids = sampling_locations
|
324
|
+
|
325
|
+
sampling_grids = sampling_grids.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
326
|
+
sampling_locations_list = sampling_grids.split(num_points_list, dim=-2)
|
327
|
+
|
328
|
+
sampling_value_list = []
|
329
|
+
for level, (h, w) in enumerate(value_spatial_shapes):
|
330
|
+
value_l = value_list[level].reshape(bs * n_head, c, h, w)
|
331
|
+
sampling_grid_l: torch.Tensor = sampling_locations_list[level]
|
332
|
+
|
333
|
+
if method == "default":
|
334
|
+
sampling_value_l = F.grid_sample(
|
335
|
+
value_l,
|
336
|
+
sampling_grid_l,
|
337
|
+
mode="bilinear",
|
338
|
+
padding_mode="zeros",
|
339
|
+
align_corners=False,
|
340
|
+
)
|
341
|
+
|
342
|
+
elif method == "discrete":
|
343
|
+
# n * m, seq, n, 2
|
344
|
+
sampling_coord = (
|
345
|
+
sampling_grid_l * torch.tensor([[w, h]], device=value.device) + 0.5
|
346
|
+
).to(torch.int64)
|
347
|
+
|
348
|
+
# FIX ME? for rectangle input
|
349
|
+
sampling_coord = sampling_coord.clamp(0, h - 1)
|
350
|
+
sampling_coord = sampling_coord.reshape(
|
351
|
+
bs * n_head, Len_q * num_points_list[level], 2
|
352
|
+
)
|
353
|
+
|
354
|
+
s_idx = (
|
355
|
+
torch.arange(sampling_coord.shape[0], device=value.device)
|
356
|
+
.unsqueeze(-1)
|
357
|
+
.repeat(1, sampling_coord.shape[1])
|
358
|
+
)
|
359
|
+
sampling_value_l: torch.Tensor = value_l[
|
360
|
+
s_idx, :, sampling_coord[..., 1], sampling_coord[..., 0]
|
361
|
+
] # n l c
|
362
|
+
|
363
|
+
sampling_value_l = sampling_value_l.permute(0, 2, 1).reshape(
|
364
|
+
bs * n_head, c, Len_q, num_points_list[level]
|
365
|
+
)
|
366
|
+
|
367
|
+
sampling_value_list.append(sampling_value_l)
|
368
|
+
|
369
|
+
attn_weights = attention_weights.permute(0, 2, 1, 3).reshape(
|
370
|
+
bs * n_head, 1, Len_q, sum(num_points_list)
|
371
|
+
)
|
372
|
+
weighted_sample_locs = torch.concat(sampling_value_list, dim=-1) * attn_weights
|
373
|
+
output = weighted_sample_locs.sum(-1).reshape(bs, n_head * c, Len_q)
|
374
|
+
|
375
|
+
return output.permute(0, 2, 1)
|
376
|
+
|
377
|
+
|
378
|
+
class TransformerDecoder(nn.Module):
|
379
|
+
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
|
380
|
+
super(TransformerDecoder, self).__init__()
|
381
|
+
self.layers = nn.ModuleList(
|
382
|
+
[copy.deepcopy(decoder_layer) for _ in range(num_layers)]
|
383
|
+
)
|
384
|
+
self.hidden_dim = hidden_dim
|
385
|
+
self.num_layers = num_layers
|
386
|
+
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
|
387
|
+
|
388
|
+
def forward(
|
389
|
+
self,
|
390
|
+
target,
|
391
|
+
ref_points_unact,
|
392
|
+
memory,
|
393
|
+
memory_spatial_shapes,
|
394
|
+
bbox_head,
|
395
|
+
score_head,
|
396
|
+
query_pos_head,
|
397
|
+
attn_mask=None,
|
398
|
+
memory_mask=None,
|
399
|
+
):
|
400
|
+
dec_out_bboxes = []
|
401
|
+
dec_out_logits = []
|
402
|
+
ref_points_detach = F.sigmoid(ref_points_unact)
|
403
|
+
|
404
|
+
output = target
|
405
|
+
for i, layer in enumerate(self.layers):
|
406
|
+
ref_points_input = ref_points_detach.unsqueeze(2)
|
407
|
+
query_pos_embed = query_pos_head(ref_points_detach)
|
408
|
+
|
409
|
+
output = layer(
|
410
|
+
output,
|
411
|
+
ref_points_input,
|
412
|
+
memory,
|
413
|
+
memory_spatial_shapes,
|
414
|
+
attn_mask,
|
415
|
+
memory_mask,
|
416
|
+
query_pos_embed,
|
417
|
+
)
|
418
|
+
|
419
|
+
inter_ref_bbox = F.sigmoid(
|
420
|
+
bbox_head[i](output) + inverse_sigmoid(ref_points_detach)
|
421
|
+
)
|
422
|
+
|
423
|
+
if i == self.eval_idx:
|
424
|
+
dec_out_logits.append(score_head[i](output))
|
425
|
+
dec_out_bboxes.append(inter_ref_bbox)
|
426
|
+
break
|
427
|
+
|
428
|
+
ref_points_detach = inter_ref_bbox.detach()
|
429
|
+
|
430
|
+
return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits)
|
431
|
+
|
432
|
+
|
433
|
+
class RTDETRTransformerv2(nn.Module):
|
434
|
+
__share__ = ["num_classes", "eval_spatial_size"]
|
435
|
+
|
436
|
+
def __init__(
|
437
|
+
self,
|
438
|
+
num_classes=80,
|
439
|
+
hidden_dim=256,
|
440
|
+
num_queries=300,
|
441
|
+
feat_channels=[512, 1024, 2048],
|
442
|
+
feat_strides=[8, 16, 32],
|
443
|
+
num_levels=3,
|
444
|
+
num_points=4,
|
445
|
+
nhead=8,
|
446
|
+
num_layers=6,
|
447
|
+
dim_feedforward=1024,
|
448
|
+
dropout=0.0,
|
449
|
+
activation="relu",
|
450
|
+
num_denoising=100,
|
451
|
+
label_noise_ratio=0.5,
|
452
|
+
box_noise_scale=1.0,
|
453
|
+
learn_query_content=False,
|
454
|
+
eval_spatial_size=None,
|
455
|
+
eval_idx=-1,
|
456
|
+
eps=1e-2,
|
457
|
+
aux_loss=True,
|
458
|
+
cross_attn_method="default",
|
459
|
+
query_select_method="default",
|
460
|
+
):
|
461
|
+
super().__init__()
|
462
|
+
assert len(feat_channels) <= num_levels
|
463
|
+
assert len(feat_strides) == len(feat_channels)
|
464
|
+
|
465
|
+
for _ in range(num_levels - len(feat_strides)):
|
466
|
+
feat_strides.append(feat_strides[-1] * 2)
|
467
|
+
|
468
|
+
self.hidden_dim = hidden_dim
|
469
|
+
self.nhead = nhead
|
470
|
+
self.feat_strides = feat_strides
|
471
|
+
self.num_levels = num_levels
|
472
|
+
self.num_classes = num_classes
|
473
|
+
self.num_queries = num_queries
|
474
|
+
self.eps = eps
|
475
|
+
self.num_layers = num_layers
|
476
|
+
self.eval_spatial_size = eval_spatial_size
|
477
|
+
self.aux_loss = aux_loss
|
478
|
+
|
479
|
+
assert query_select_method in ("default", "one2many", "agnostic"), ""
|
480
|
+
assert cross_attn_method in ("default", "discrete"), ""
|
481
|
+
self.cross_attn_method = cross_attn_method
|
482
|
+
self.query_select_method = query_select_method
|
483
|
+
|
484
|
+
# backbone feature projection
|
485
|
+
self._build_input_proj_layer(feat_channels)
|
486
|
+
|
487
|
+
# Transformer module
|
488
|
+
decoder_layer = TransformerDecoderLayer(
|
489
|
+
hidden_dim,
|
490
|
+
nhead,
|
491
|
+
dim_feedforward,
|
492
|
+
dropout,
|
493
|
+
activation,
|
494
|
+
num_levels,
|
495
|
+
num_points,
|
496
|
+
cross_attn_method=cross_attn_method,
|
497
|
+
)
|
498
|
+
self.decoder = TransformerDecoder(
|
499
|
+
hidden_dim, decoder_layer, num_layers, eval_idx
|
500
|
+
)
|
501
|
+
|
502
|
+
# denoising
|
503
|
+
self.num_denoising = num_denoising
|
504
|
+
self.label_noise_ratio = label_noise_ratio
|
505
|
+
self.box_noise_scale = box_noise_scale
|
506
|
+
if num_denoising > 0:
|
507
|
+
self.denoising_class_embed = nn.Embedding(
|
508
|
+
num_classes + 1, hidden_dim, padding_idx=num_classes
|
509
|
+
)
|
510
|
+
init.normal_(self.denoising_class_embed.weight[:-1])
|
511
|
+
|
512
|
+
# decoder embedding
|
513
|
+
self.learn_query_content = learn_query_content
|
514
|
+
if learn_query_content:
|
515
|
+
self.tgt_embed = nn.Embedding(num_queries, hidden_dim)
|
516
|
+
self.query_pos_head = MLP(4, 2 * hidden_dim, hidden_dim, 2)
|
517
|
+
|
518
|
+
# if num_select_queries != self.num_queries:
|
519
|
+
# layer = TransformerEncoderLayer(hidden_dim, nhead, dim_feedforward, activation='gelu')
|
520
|
+
# self.encoder = TransformerEncoder(layer, 1)
|
521
|
+
|
522
|
+
self.enc_output = nn.Sequential(
|
523
|
+
OrderedDict(
|
524
|
+
[
|
525
|
+
("proj", nn.Linear(hidden_dim, hidden_dim)),
|
526
|
+
(
|
527
|
+
"norm",
|
528
|
+
nn.LayerNorm(
|
529
|
+
hidden_dim,
|
530
|
+
),
|
531
|
+
),
|
532
|
+
]
|
533
|
+
)
|
534
|
+
)
|
535
|
+
|
536
|
+
if query_select_method == "agnostic":
|
537
|
+
self.enc_score_head = nn.Linear(hidden_dim, 1)
|
538
|
+
else:
|
539
|
+
self.enc_score_head = nn.Linear(hidden_dim, num_classes)
|
540
|
+
|
541
|
+
self.enc_bbox_head = MLP(hidden_dim, hidden_dim, 4, 3)
|
542
|
+
|
543
|
+
# decoder head
|
544
|
+
self.dec_score_head = nn.ModuleList(
|
545
|
+
[nn.Linear(hidden_dim, num_classes) for _ in range(num_layers)]
|
546
|
+
)
|
547
|
+
self.dec_bbox_head = nn.ModuleList(
|
548
|
+
[MLP(hidden_dim, hidden_dim, 4, 3) for _ in range(num_layers)]
|
549
|
+
)
|
550
|
+
|
551
|
+
# init encoder output anchors and valid_mask
|
552
|
+
if self.eval_spatial_size:
|
553
|
+
anchors, valid_mask = self._generate_anchors()
|
554
|
+
self.register_buffer("anchors", anchors)
|
555
|
+
self.register_buffer("valid_mask", valid_mask)
|
556
|
+
|
557
|
+
self._reset_parameters()
|
558
|
+
|
559
|
+
def _reset_parameters(self):
|
560
|
+
bias = bias_init_with_prob(0.01)
|
561
|
+
init.constant_(self.enc_score_head.bias, bias)
|
562
|
+
init.constant_(self.enc_bbox_head.layers[-1].weight, 0)
|
563
|
+
init.constant_(self.enc_bbox_head.layers[-1].bias, 0)
|
564
|
+
|
565
|
+
for _cls, _reg in zip(self.dec_score_head, self.dec_bbox_head):
|
566
|
+
init.constant_(_cls.bias, bias)
|
567
|
+
init.constant_(_reg.layers[-1].weight, 0)
|
568
|
+
init.constant_(_reg.layers[-1].bias, 0)
|
569
|
+
|
570
|
+
init.xavier_uniform_(self.enc_output[0].weight)
|
571
|
+
if self.learn_query_content:
|
572
|
+
init.xavier_uniform_(self.tgt_embed.weight)
|
573
|
+
init.xavier_uniform_(self.query_pos_head.layers[0].weight)
|
574
|
+
init.xavier_uniform_(self.query_pos_head.layers[1].weight)
|
575
|
+
for m in self.input_proj:
|
576
|
+
init.xavier_uniform_(m[0].weight)
|
577
|
+
|
578
|
+
def _build_input_proj_layer(self, feat_channels):
|
579
|
+
self.input_proj = nn.ModuleList()
|
580
|
+
for in_channels in feat_channels:
|
581
|
+
self.input_proj.append(
|
582
|
+
nn.Sequential(
|
583
|
+
OrderedDict(
|
584
|
+
[
|
585
|
+
(
|
586
|
+
"conv",
|
587
|
+
nn.Conv2d(in_channels, self.hidden_dim, 1, bias=False),
|
588
|
+
),
|
589
|
+
(
|
590
|
+
"norm",
|
591
|
+
nn.BatchNorm2d(
|
592
|
+
self.hidden_dim,
|
593
|
+
),
|
594
|
+
),
|
595
|
+
]
|
596
|
+
)
|
597
|
+
)
|
598
|
+
)
|
599
|
+
|
600
|
+
in_channels = feat_channels[-1]
|
601
|
+
|
602
|
+
for _ in range(self.num_levels - len(feat_channels)):
|
603
|
+
self.input_proj.append(
|
604
|
+
nn.Sequential(
|
605
|
+
OrderedDict(
|
606
|
+
[
|
607
|
+
(
|
608
|
+
"conv",
|
609
|
+
nn.Conv2d(
|
610
|
+
in_channels,
|
611
|
+
self.hidden_dim,
|
612
|
+
3,
|
613
|
+
2,
|
614
|
+
padding=1,
|
615
|
+
bias=False,
|
616
|
+
),
|
617
|
+
),
|
618
|
+
("norm", nn.BatchNorm2d(self.hidden_dim)),
|
619
|
+
]
|
620
|
+
)
|
621
|
+
)
|
622
|
+
)
|
623
|
+
in_channels = self.hidden_dim
|
624
|
+
|
625
|
+
def _get_encoder_input(self, feats: List[torch.Tensor]):
|
626
|
+
# get projection features
|
627
|
+
proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]
|
628
|
+
if self.num_levels > len(proj_feats):
|
629
|
+
len_srcs = len(proj_feats)
|
630
|
+
for i in range(len_srcs, self.num_levels):
|
631
|
+
if i == len_srcs:
|
632
|
+
proj_feats.append(self.input_proj[i](feats[-1]))
|
633
|
+
else:
|
634
|
+
proj_feats.append(self.input_proj[i](proj_feats[-1]))
|
635
|
+
|
636
|
+
# get encoder inputs
|
637
|
+
feat_flatten = []
|
638
|
+
spatial_shapes = []
|
639
|
+
for i, feat in enumerate(proj_feats):
|
640
|
+
_, _, h, w = feat.shape
|
641
|
+
# [b, c, h, w] -> [b, h*w, c]
|
642
|
+
feat_flatten.append(feat.flatten(2).permute(0, 2, 1))
|
643
|
+
# [num_levels, 2]
|
644
|
+
spatial_shapes.append([h, w])
|
645
|
+
# [b, l, c]
|
646
|
+
feat_flatten = torch.concat(feat_flatten, 1)
|
647
|
+
return feat_flatten, spatial_shapes
|
648
|
+
|
649
|
+
def _generate_anchors(
|
650
|
+
self,
|
651
|
+
spatial_shapes=None,
|
652
|
+
grid_size=0.05,
|
653
|
+
dtype=torch.float32,
|
654
|
+
device="cpu",
|
655
|
+
):
|
656
|
+
if spatial_shapes is None:
|
657
|
+
spatial_shapes = []
|
658
|
+
eval_h, eval_w = self.eval_spatial_size
|
659
|
+
for s in self.feat_strides:
|
660
|
+
spatial_shapes.append([int(eval_h / s), int(eval_w / s)])
|
661
|
+
|
662
|
+
anchors = []
|
663
|
+
for lvl, (h, w) in enumerate(spatial_shapes):
|
664
|
+
grid_y, grid_x = torch.meshgrid(
|
665
|
+
torch.arange(h), torch.arange(w), indexing="ij"
|
666
|
+
)
|
667
|
+
grid_xy = torch.stack([grid_x, grid_y], dim=-1)
|
668
|
+
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / torch.tensor([w, h], dtype=dtype)
|
669
|
+
wh = torch.ones_like(grid_xy) * grid_size * (2.0**lvl)
|
670
|
+
lvl_anchors = torch.concat([grid_xy, wh], dim=-1).reshape(-1, h * w, 4)
|
671
|
+
anchors.append(lvl_anchors)
|
672
|
+
|
673
|
+
anchors = torch.concat(anchors, dim=1).to(device)
|
674
|
+
valid_mask = ((anchors > self.eps) * (anchors < 1 - self.eps)).all(
|
675
|
+
-1, keepdim=True
|
676
|
+
)
|
677
|
+
anchors = torch.log(anchors / (1 - anchors))
|
678
|
+
anchors = torch.where(valid_mask, anchors, torch.inf)
|
679
|
+
|
680
|
+
return anchors, valid_mask
|
681
|
+
|
682
|
+
def _get_decoder_input(
|
683
|
+
self,
|
684
|
+
memory: torch.Tensor,
|
685
|
+
spatial_shapes,
|
686
|
+
denoising_logits=None,
|
687
|
+
denoising_bbox_unact=None,
|
688
|
+
):
|
689
|
+
# prepare input for decoder
|
690
|
+
anchors = self.anchors
|
691
|
+
valid_mask = self.valid_mask
|
692
|
+
|
693
|
+
# memory = torch.where(valid_mask, memory, 0)
|
694
|
+
# TODO fix type error for onnx export
|
695
|
+
memory = valid_mask.to(memory.dtype) * memory
|
696
|
+
|
697
|
+
output_memory: torch.Tensor = self.enc_output(memory)
|
698
|
+
enc_outputs_logits: torch.Tensor = self.enc_score_head(output_memory)
|
699
|
+
enc_outputs_coord_unact: torch.Tensor = (
|
700
|
+
self.enc_bbox_head(output_memory) + anchors
|
701
|
+
)
|
702
|
+
|
703
|
+
enc_topk_bboxes_list, enc_topk_logits_list = [], []
|
704
|
+
enc_topk_memory, enc_topk_logits, enc_topk_bbox_unact = self._select_topk(
|
705
|
+
output_memory,
|
706
|
+
enc_outputs_logits,
|
707
|
+
enc_outputs_coord_unact,
|
708
|
+
self.num_queries,
|
709
|
+
)
|
710
|
+
|
711
|
+
# if self.num_select_queries != self.num_queries:
|
712
|
+
# raise NotImplementedError('')
|
713
|
+
|
714
|
+
if self.learn_query_content:
|
715
|
+
content = self.tgt_embed.weight.unsqueeze(0).tile([memory.shape[0], 1, 1])
|
716
|
+
else:
|
717
|
+
content = enc_topk_memory.detach()
|
718
|
+
|
719
|
+
enc_topk_bbox_unact = enc_topk_bbox_unact.detach()
|
720
|
+
|
721
|
+
if denoising_bbox_unact is not None:
|
722
|
+
enc_topk_bbox_unact = torch.concat(
|
723
|
+
[denoising_bbox_unact, enc_topk_bbox_unact], dim=1
|
724
|
+
)
|
725
|
+
content = torch.concat([denoising_logits, content], dim=1)
|
726
|
+
|
727
|
+
return (
|
728
|
+
content,
|
729
|
+
enc_topk_bbox_unact,
|
730
|
+
enc_topk_bboxes_list,
|
731
|
+
enc_topk_logits_list,
|
732
|
+
)
|
733
|
+
|
734
|
+
def _select_topk(
|
735
|
+
self,
|
736
|
+
memory: torch.Tensor,
|
737
|
+
outputs_logits: torch.Tensor,
|
738
|
+
outputs_coords_unact: torch.Tensor,
|
739
|
+
topk: int,
|
740
|
+
):
|
741
|
+
if self.query_select_method == "default":
|
742
|
+
_, topk_ind = torch.topk(outputs_logits.max(-1).values, topk, dim=-1)
|
743
|
+
|
744
|
+
elif self.query_select_method == "one2many":
|
745
|
+
_, topk_ind = torch.topk(outputs_logits.flatten(1), topk, dim=-1)
|
746
|
+
topk_ind = topk_ind // self.num_classes
|
747
|
+
|
748
|
+
elif self.query_select_method == "agnostic":
|
749
|
+
_, topk_ind = torch.topk(outputs_logits.squeeze(-1), topk, dim=-1)
|
750
|
+
|
751
|
+
topk_ind: torch.Tensor
|
752
|
+
|
753
|
+
topk_coords = outputs_coords_unact.gather(
|
754
|
+
dim=1,
|
755
|
+
index=topk_ind.unsqueeze(-1).repeat(1, 1, outputs_coords_unact.shape[-1]),
|
756
|
+
)
|
757
|
+
|
758
|
+
topk_logits = outputs_logits.gather(
|
759
|
+
dim=1,
|
760
|
+
index=topk_ind.unsqueeze(-1).repeat(1, 1, outputs_logits.shape[-1]),
|
761
|
+
)
|
762
|
+
|
763
|
+
topk_memory = memory.gather(
|
764
|
+
dim=1, index=topk_ind.unsqueeze(-1).repeat(1, 1, memory.shape[-1])
|
765
|
+
)
|
766
|
+
|
767
|
+
return topk_memory, topk_logits, topk_coords
|
768
|
+
|
769
|
+
def forward(self, feats, targets=None):
|
770
|
+
# input projection and embedding
|
771
|
+
memory, spatial_shapes = self._get_encoder_input(feats)
|
772
|
+
denoising_logits, denoising_bbox_unact, attn_mask = (
|
773
|
+
None,
|
774
|
+
None,
|
775
|
+
None,
|
776
|
+
)
|
777
|
+
|
778
|
+
(
|
779
|
+
init_ref_contents,
|
780
|
+
init_ref_points_unact,
|
781
|
+
enc_topk_bboxes_list,
|
782
|
+
enc_topk_logits_list,
|
783
|
+
) = self._get_decoder_input(
|
784
|
+
memory, spatial_shapes, denoising_logits, denoising_bbox_unact
|
785
|
+
)
|
786
|
+
|
787
|
+
# decoder
|
788
|
+
out_bboxes, out_logits = self.decoder(
|
789
|
+
init_ref_contents,
|
790
|
+
init_ref_points_unact,
|
791
|
+
memory,
|
792
|
+
spatial_shapes,
|
793
|
+
self.dec_bbox_head,
|
794
|
+
self.dec_score_head,
|
795
|
+
self.query_pos_head,
|
796
|
+
attn_mask=attn_mask,
|
797
|
+
)
|
798
|
+
|
799
|
+
out = {"pred_logits": out_logits[-1], "pred_boxes": out_bboxes[-1]}
|
800
|
+
|
801
|
+
return out
|
802
|
+
|
803
|
+
@torch.jit.unused
|
804
|
+
def _set_aux_loss(self, outputs_class, outputs_coord):
|
805
|
+
# this is a workaround to make torchscript happy, as torchscript
|
806
|
+
# doesn't support dictionary with non-homogeneous values, such
|
807
|
+
# as a dict having both a Tensor and a list.
|
808
|
+
return [
|
809
|
+
{"pred_logits": a, "pred_boxes": b}
|
810
|
+
for a, b in zip(outputs_class, outputs_coord)
|
811
|
+
]
|