yms-kan 0.0.7__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- yms_kan-0.0.7/LICENSE +21 -0
- yms_kan-0.0.7/PKG-INFO +18 -0
- yms_kan-0.0.7/README.md +1 -0
- yms_kan-0.0.7/kan/KANLayer.py +364 -0
- yms_kan-0.0.7/kan/LBFGS.py +492 -0
- yms_kan-0.0.7/kan/MLP.py +361 -0
- yms_kan-0.0.7/kan/MultKAN.py +3087 -0
- yms_kan-0.0.7/kan/Symbolic_KANLayer.py +270 -0
- yms_kan-0.0.7/kan/__init__.py +3 -0
- yms_kan-0.0.7/kan/compiler.py +498 -0
- yms_kan-0.0.7/kan/dataset.py +27 -0
- yms_kan-0.0.7/kan/experiment.py +50 -0
- yms_kan-0.0.7/kan/feynman.py +739 -0
- yms_kan-0.0.7/kan/hypothesis.py +695 -0
- yms_kan-0.0.7/kan/spline.py +144 -0
- yms_kan-0.0.7/kan/utils.py +661 -0
- yms_kan-0.0.7/setup.cfg +4 -0
- yms_kan-0.0.7/setup.py +96 -0
- yms_kan-0.0.7/yms_kan.egg-info/PKG-INFO +18 -0
- yms_kan-0.0.7/yms_kan.egg-info/SOURCES.txt +20 -0
- yms_kan-0.0.7/yms_kan.egg-info/dependency_links.txt +1 -0
- yms_kan-0.0.7/yms_kan.egg-info/top_level.txt +1 -0
@@ -0,0 +1,144 @@
|
|
1
|
+
import torch
|
2
|
+
|
3
|
+
|
4
|
+
def B_batch(x, grid, k=0, extend=True, device='cpu'):
|
5
|
+
'''
|
6
|
+
evaludate x on B-spline bases
|
7
|
+
|
8
|
+
Args:
|
9
|
+
-----
|
10
|
+
x : 2D torch.tensor
|
11
|
+
inputs, shape (number of splines, number of samples)
|
12
|
+
grid : 2D torch.tensor
|
13
|
+
grids, shape (number of splines, number of grid points)
|
14
|
+
k : int
|
15
|
+
the piecewise polynomial order of splines.
|
16
|
+
extend : bool
|
17
|
+
If True, k points are extended on both ends. If False, no extension (zero boundary condition). Default: True
|
18
|
+
device : str
|
19
|
+
devicde
|
20
|
+
|
21
|
+
Returns:
|
22
|
+
--------
|
23
|
+
spline values : 3D torch.tensor
|
24
|
+
shape (batch, in_dim, G+k). G: the number of grid intervals, k: spline order.
|
25
|
+
|
26
|
+
Example
|
27
|
+
-------
|
28
|
+
>>> from kan.spline import B_batch
|
29
|
+
>>> x = torch.rand(100,2)
|
30
|
+
>>> grid = torch.linspace(-1,1,steps=11)[None, :].expand(2, 11)
|
31
|
+
>>> B_batch(x, grid, k=3).shape
|
32
|
+
'''
|
33
|
+
|
34
|
+
x = x.unsqueeze(dim=2)
|
35
|
+
grid = grid.unsqueeze(dim=0)
|
36
|
+
|
37
|
+
if k == 0:
|
38
|
+
value = (x >= grid[:, :, :-1]) * (x < grid[:, :, 1:])
|
39
|
+
else:
|
40
|
+
B_km1 = B_batch(x[:,:,0], grid=grid[0], k=k - 1)
|
41
|
+
|
42
|
+
value = (x - grid[:, :, :-(k + 1)]) / (grid[:, :, k:-1] - grid[:, :, :-(k + 1)]) * B_km1[:, :, :-1] + (
|
43
|
+
grid[:, :, k + 1:] - x) / (grid[:, :, k + 1:] - grid[:, :, 1:(-k)]) * B_km1[:, :, 1:]
|
44
|
+
|
45
|
+
# in case grid is degenerate
|
46
|
+
value = torch.nan_to_num(value)
|
47
|
+
return value
|
48
|
+
|
49
|
+
|
50
|
+
|
51
|
+
def coef2curve(x_eval, grid, coef, k, device="cpu"):
|
52
|
+
'''
|
53
|
+
converting B-spline coefficients to B-spline curves. Evaluate x on B-spline curves (summing up B_batch results over B-spline basis).
|
54
|
+
|
55
|
+
Args:
|
56
|
+
-----
|
57
|
+
x_eval : 2D torch.tensor
|
58
|
+
shape (batch, in_dim)
|
59
|
+
grid : 2D torch.tensor
|
60
|
+
shape (in_dim, G+2k). G: the number of grid intervals; k: spline order.
|
61
|
+
coef : 3D torch.tensor
|
62
|
+
shape (in_dim, out_dim, G+k)
|
63
|
+
k : int
|
64
|
+
the piecewise polynomial order of splines.
|
65
|
+
device : str
|
66
|
+
devicde
|
67
|
+
|
68
|
+
Returns:
|
69
|
+
--------
|
70
|
+
y_eval : 3D torch.tensor
|
71
|
+
shape (batch, in_dim, out_dim)
|
72
|
+
|
73
|
+
'''
|
74
|
+
|
75
|
+
b_splines = B_batch(x_eval, grid, k=k)
|
76
|
+
y_eval = torch.einsum('ijk,jlk->ijl', b_splines, coef.to(b_splines.device))
|
77
|
+
|
78
|
+
return y_eval
|
79
|
+
|
80
|
+
|
81
|
+
def curve2coef(x_eval, y_eval, grid, k):
|
82
|
+
'''
|
83
|
+
converting B-spline curves to B-spline coefficients using least squares.
|
84
|
+
|
85
|
+
Args:
|
86
|
+
-----
|
87
|
+
x_eval : 2D torch.tensor
|
88
|
+
shape (batch, in_dim)
|
89
|
+
y_eval : 3D torch.tensor
|
90
|
+
shape (batch, in_dim, out_dim)
|
91
|
+
grid : 2D torch.tensor
|
92
|
+
shape (in_dim, grid+2*k)
|
93
|
+
k : int
|
94
|
+
spline order
|
95
|
+
lamb : float
|
96
|
+
regularized least square lambda
|
97
|
+
|
98
|
+
Returns:
|
99
|
+
--------
|
100
|
+
coef : 3D torch.tensor
|
101
|
+
shape (in_dim, out_dim, G+k)
|
102
|
+
'''
|
103
|
+
#print('haha', x_eval.shape, y_eval.shape, grid.shape)
|
104
|
+
batch = x_eval.shape[0]
|
105
|
+
in_dim = x_eval.shape[1]
|
106
|
+
out_dim = y_eval.shape[2]
|
107
|
+
n_coef = grid.shape[1] - k - 1
|
108
|
+
mat = B_batch(x_eval, grid, k)
|
109
|
+
mat = mat.permute(1,0,2)[:,None,:,:].expand(in_dim, out_dim, batch, n_coef)
|
110
|
+
#print('mat', mat.shape)
|
111
|
+
y_eval = y_eval.permute(1,2,0).unsqueeze(dim=3)
|
112
|
+
#print('y_eval', y_eval.shape)
|
113
|
+
device = mat.device
|
114
|
+
|
115
|
+
#coef = torch.linalg.lstsq(mat, y_eval, driver='gelsy' if device == 'cpu' else 'gels').solution[:,:,:,0]
|
116
|
+
try:
|
117
|
+
coef = torch.linalg.lstsq(mat, y_eval).solution[:,:,:,0]
|
118
|
+
except:
|
119
|
+
print('lstsq failed')
|
120
|
+
|
121
|
+
# manual psuedo-inverse
|
122
|
+
'''lamb=1e-8
|
123
|
+
XtX = torch.einsum('ijmn,ijnp->ijmp', mat.permute(0,1,3,2), mat)
|
124
|
+
Xty = torch.einsum('ijmn,ijnp->ijmp', mat.permute(0,1,3,2), y_eval)
|
125
|
+
n1, n2, n = XtX.shape[0], XtX.shape[1], XtX.shape[2]
|
126
|
+
identity = torch.eye(n,n)[None, None, :, :].expand(n1, n2, n, n).to(device)
|
127
|
+
A = XtX + lamb * identity
|
128
|
+
B = Xty
|
129
|
+
coef = (A.pinverse() @ B)[:,:,:,0]'''
|
130
|
+
|
131
|
+
return coef
|
132
|
+
|
133
|
+
|
134
|
+
def extend_grid(grid, k_extend=0):
|
135
|
+
'''
|
136
|
+
extend grid
|
137
|
+
'''
|
138
|
+
h = (grid[:, [-1]] - grid[:, [0]]) / (grid.shape[1] - 1)
|
139
|
+
|
140
|
+
for i in range(k_extend):
|
141
|
+
grid = torch.cat([grid[:, [0]] - h, grid], dim=1)
|
142
|
+
grid = torch.cat([grid, grid[:, [-1]] + h], dim=1)
|
143
|
+
|
144
|
+
return grid
|