yandexcloud 0.326.0__py3-none-any.whl → 0.327.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of yandexcloud might be problematic. Click here for more details.

Files changed (65) hide show
  1. yandex/cloud/ai/dataset/v1/dataset_pb2.py +10 -8
  2. yandex/cloud/ai/dataset/v1/dataset_pb2.pyi +9 -1
  3. yandex/cloud/ai/dataset/v1/dataset_service_pb2.py +45 -39
  4. yandex/cloud/ai/dataset/v1/dataset_service_pb2.pyi +57 -2
  5. yandex/cloud/ai/dataset/v1/dataset_service_pb2_grpc.py +34 -0
  6. yandex/cloud/ai/dataset/v1/dataset_service_pb2_grpc.pyi +20 -0
  7. yandex/cloud/ai/tuning/__init__.py +0 -0
  8. yandex/cloud/ai/tuning/v1/__init__.py +0 -0
  9. yandex/cloud/ai/tuning/v1/tuning_optimizers_pb2.py +26 -0
  10. yandex/cloud/ai/tuning/v1/tuning_optimizers_pb2.pyi +35 -0
  11. yandex/cloud/ai/tuning/v1/tuning_optimizers_pb2_grpc.py +4 -0
  12. yandex/cloud/ai/tuning/v1/tuning_optimizers_pb2_grpc.pyi +17 -0
  13. yandex/cloud/ai/tuning/v1/tuning_schedulers_pb2.py +30 -0
  14. yandex/cloud/ai/tuning/v1/tuning_schedulers_pb2.pyi +51 -0
  15. yandex/cloud/ai/tuning/v1/tuning_schedulers_pb2_grpc.py +4 -0
  16. yandex/cloud/ai/tuning/v1/tuning_schedulers_pb2_grpc.pyi +17 -0
  17. yandex/cloud/ai/tuning/v1/tuning_service_pb2.py +101 -0
  18. yandex/cloud/ai/tuning/v1/tuning_service_pb2.pyi +577 -0
  19. yandex/cloud/ai/tuning/v1/tuning_service_pb2_grpc.py +232 -0
  20. yandex/cloud/ai/tuning/v1/tuning_service_pb2_grpc.pyi +127 -0
  21. yandex/cloud/ai/tuning/v1/tuning_task_pb2.py +29 -0
  22. yandex/cloud/ai/tuning/v1/tuning_task_pb2.pyi +86 -0
  23. yandex/cloud/ai/tuning/v1/tuning_task_pb2_grpc.py +4 -0
  24. yandex/cloud/ai/tuning/v1/tuning_task_pb2_grpc.pyi +17 -0
  25. yandex/cloud/ai/tuning/v1/tuning_types_pb2.py +28 -0
  26. yandex/cloud/ai/tuning/v1/tuning_types_pb2.pyi +50 -0
  27. yandex/cloud/ai/tuning/v1/tuning_types_pb2_grpc.py +4 -0
  28. yandex/cloud/ai/tuning/v1/tuning_types_pb2_grpc.pyi +17 -0
  29. yandex/cloud/cic/v1/private_connection_pb2.py +5 -3
  30. yandex/cloud/cic/v1/private_connection_pb2.pyi +1 -0
  31. yandex/cloud/cloudregistry/v1/registry_service_pb2.py +41 -41
  32. yandex/cloud/dataproc/v1/cluster_pb2.py +20 -18
  33. yandex/cloud/dataproc/v1/cluster_pb2.pyi +20 -1
  34. yandex/cloud/dataproc/v1/cluster_service_pb2.py +40 -40
  35. yandex/cloud/dataproc/v1/cluster_service_pb2.pyi +5 -1
  36. yandex/cloud/datasphere/v2/jobs/jobs_pb2.py +34 -32
  37. yandex/cloud/datasphere/v2/jobs/jobs_pb2.pyi +21 -1
  38. yandex/cloud/datasphere/v2/jobs/project_job_service_pb2.py +54 -54
  39. yandex/cloud/datasphere/v2/jobs/project_job_service_pb2.pyi +7 -1
  40. yandex/cloud/marketplace/metering/v1/product_usage_service_pb2.py +39 -0
  41. yandex/cloud/marketplace/metering/v1/product_usage_service_pb2.pyi +64 -0
  42. yandex/cloud/marketplace/metering/v1/product_usage_service_pb2_grpc.py +67 -0
  43. yandex/cloud/marketplace/metering/v1/product_usage_service_pb2_grpc.pyi +44 -0
  44. yandex/cloud/searchapi/v2/search_query_pb2.py +8 -6
  45. yandex/cloud/searchapi/v2/search_query_pb2.pyi +24 -1
  46. yandex/cloud/searchapi/v2/search_service_pb2.py +14 -8
  47. yandex/cloud/searchapi/v2/search_service_pb2.pyi +33 -6
  48. yandex/cloud/searchapi/v2/search_service_pb2_grpc.py +64 -0
  49. yandex/cloud/searchapi/v2/search_service_pb2_grpc.pyi +29 -0
  50. yandex/cloud/serverless/eventrouter/v1/connector_pb2.py +12 -6
  51. yandex/cloud/serverless/eventrouter/v1/connector_pb2.pyi +31 -3
  52. yandex/cloud/speechsense/v1/classifier_pb2.py +26 -0
  53. yandex/cloud/speechsense/v1/classifier_pb2.pyi +35 -0
  54. yandex/cloud/speechsense/v1/classifier_pb2_grpc.py +4 -0
  55. yandex/cloud/speechsense/v1/classifier_pb2_grpc.pyi +17 -0
  56. yandex/cloud/speechsense/v1/classifiers_service_pb2.py +34 -0
  57. yandex/cloud/speechsense/v1/classifiers_service_pb2.pyi +48 -0
  58. yandex/cloud/speechsense/v1/classifiers_service_pb2_grpc.py +67 -0
  59. yandex/cloud/speechsense/v1/classifiers_service_pb2_grpc.pyi +44 -0
  60. {yandexcloud-0.326.0.dist-info → yandexcloud-0.327.0.dist-info}/METADATA +1 -1
  61. {yandexcloud-0.326.0.dist-info → yandexcloud-0.327.0.dist-info}/RECORD +65 -31
  62. {yandexcloud-0.326.0.dist-info → yandexcloud-0.327.0.dist-info}/AUTHORS +0 -0
  63. {yandexcloud-0.326.0.dist-info → yandexcloud-0.327.0.dist-info}/LICENSE +0 -0
  64. {yandexcloud-0.326.0.dist-info → yandexcloud-0.327.0.dist-info}/WHEEL +0 -0
  65. {yandexcloud-0.326.0.dist-info → yandexcloud-0.327.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,577 @@
1
+ """
2
+ @generated by mypy-protobuf. Do not edit manually!
3
+ isort:skip_file
4
+ """
5
+
6
+ import builtins
7
+ import collections.abc
8
+ import google.protobuf.descriptor
9
+ import google.protobuf.internal.containers
10
+ import google.protobuf.message
11
+ import typing
12
+ import yandex.cloud.ai.tuning.v1.tuning_optimizers_pb2
13
+ import yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2
14
+ import yandex.cloud.ai.tuning.v1.tuning_task_pb2
15
+ import yandex.cloud.ai.tuning.v1.tuning_types_pb2
16
+
17
+ DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
18
+
19
+ @typing.final
20
+ class ListTuningsRequest(google.protobuf.message.Message):
21
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
22
+
23
+ FOLDER_ID_FIELD_NUMBER: builtins.int
24
+ PAGE_SIZE_FIELD_NUMBER: builtins.int
25
+ PAGE_TOKEN_FIELD_NUMBER: builtins.int
26
+ folder_id: builtins.str
27
+ """Required field. ID of the folder to list tunings in."""
28
+ page_size: builtins.int
29
+ """Maximum number of tuning tasks to return per page."""
30
+ page_token: builtins.str
31
+ """Token to retrieve the next page of results."""
32
+ def __init__(
33
+ self,
34
+ *,
35
+ folder_id: builtins.str = ...,
36
+ page_size: builtins.int = ...,
37
+ page_token: builtins.str = ...,
38
+ ) -> None: ...
39
+ def ClearField(self, field_name: typing.Literal["folder_id", b"folder_id", "page_size", b"page_size", "page_token", b"page_token"]) -> None: ...
40
+
41
+ global___ListTuningsRequest = ListTuningsRequest
42
+
43
+ @typing.final
44
+ class ListTuningsResponse(google.protobuf.message.Message):
45
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
46
+
47
+ TUNING_TASKS_FIELD_NUMBER: builtins.int
48
+ NEXT_PAGE_TOKEN_FIELD_NUMBER: builtins.int
49
+ next_page_token: builtins.str
50
+ """Token to retrieve the next page of results."""
51
+ @property
52
+ def tuning_tasks(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[yandex.cloud.ai.tuning.v1.tuning_task_pb2.TuningTask]:
53
+ """List of tuning tasks in the specified folder."""
54
+
55
+ def __init__(
56
+ self,
57
+ *,
58
+ tuning_tasks: collections.abc.Iterable[yandex.cloud.ai.tuning.v1.tuning_task_pb2.TuningTask] | None = ...,
59
+ next_page_token: builtins.str = ...,
60
+ ) -> None: ...
61
+ def ClearField(self, field_name: typing.Literal["next_page_token", b"next_page_token", "tuning_tasks", b"tuning_tasks"]) -> None: ...
62
+
63
+ global___ListTuningsResponse = ListTuningsResponse
64
+
65
+ @typing.final
66
+ class DescribeTuningRequest(google.protobuf.message.Message):
67
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
68
+
69
+ TUNING_TASK_ID_FIELD_NUMBER: builtins.int
70
+ tuning_task_id: builtins.str
71
+ def __init__(
72
+ self,
73
+ *,
74
+ tuning_task_id: builtins.str = ...,
75
+ ) -> None: ...
76
+ def ClearField(self, field_name: typing.Literal["tuning_task_id", b"tuning_task_id"]) -> None: ...
77
+
78
+ global___DescribeTuningRequest = DescribeTuningRequest
79
+
80
+ @typing.final
81
+ class DescribeTuningResponse(google.protobuf.message.Message):
82
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
83
+
84
+ TUNING_TASK_FIELD_NUMBER: builtins.int
85
+ @property
86
+ def tuning_task(self) -> yandex.cloud.ai.tuning.v1.tuning_task_pb2.TuningTask: ...
87
+ def __init__(
88
+ self,
89
+ *,
90
+ tuning_task: yandex.cloud.ai.tuning.v1.tuning_task_pb2.TuningTask | None = ...,
91
+ ) -> None: ...
92
+ def HasField(self, field_name: typing.Literal["tuning_task", b"tuning_task"]) -> builtins.bool: ...
93
+ def ClearField(self, field_name: typing.Literal["tuning_task", b"tuning_task"]) -> None: ...
94
+
95
+ global___DescribeTuningResponse = DescribeTuningResponse
96
+
97
+ @typing.final
98
+ class CancelTuningRequest(google.protobuf.message.Message):
99
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
100
+
101
+ TUNING_TASK_ID_FIELD_NUMBER: builtins.int
102
+ tuning_task_id: builtins.str
103
+ def __init__(
104
+ self,
105
+ *,
106
+ tuning_task_id: builtins.str = ...,
107
+ ) -> None: ...
108
+ def ClearField(self, field_name: typing.Literal["tuning_task_id", b"tuning_task_id"]) -> None: ...
109
+
110
+ global___CancelTuningRequest = CancelTuningRequest
111
+
112
+ @typing.final
113
+ class CancelTuningResponse(google.protobuf.message.Message):
114
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
115
+
116
+ TUNING_TASK_ID_FIELD_NUMBER: builtins.int
117
+ tuning_task_id: builtins.str
118
+ def __init__(
119
+ self,
120
+ *,
121
+ tuning_task_id: builtins.str = ...,
122
+ ) -> None: ...
123
+ def ClearField(self, field_name: typing.Literal["tuning_task_id", b"tuning_task_id"]) -> None: ...
124
+
125
+ global___CancelTuningResponse = CancelTuningResponse
126
+
127
+ @typing.final
128
+ class TuningResponse(google.protobuf.message.Message):
129
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
130
+
131
+ TUNING_TASK_ID_FIELD_NUMBER: builtins.int
132
+ STATUS_FIELD_NUMBER: builtins.int
133
+ TARGET_MODEL_URI_FIELD_NUMBER: builtins.int
134
+ tuning_task_id: builtins.str
135
+ status: yandex.cloud.ai.tuning.v1.tuning_task_pb2.TuningTask.Status.ValueType
136
+ target_model_uri: builtins.str
137
+ def __init__(
138
+ self,
139
+ *,
140
+ tuning_task_id: builtins.str = ...,
141
+ status: yandex.cloud.ai.tuning.v1.tuning_task_pb2.TuningTask.Status.ValueType = ...,
142
+ target_model_uri: builtins.str = ...,
143
+ ) -> None: ...
144
+ def ClearField(self, field_name: typing.Literal["status", b"status", "target_model_uri", b"target_model_uri", "tuning_task_id", b"tuning_task_id"]) -> None: ...
145
+
146
+ global___TuningResponse = TuningResponse
147
+
148
+ @typing.final
149
+ class TuningMetadata(google.protobuf.message.Message):
150
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
151
+
152
+ TUNING_TASK_ID_FIELD_NUMBER: builtins.int
153
+ STATUS_FIELD_NUMBER: builtins.int
154
+ tuning_task_id: builtins.str
155
+ status: yandex.cloud.ai.tuning.v1.tuning_task_pb2.TuningTask.Status.ValueType
156
+ def __init__(
157
+ self,
158
+ *,
159
+ tuning_task_id: builtins.str = ...,
160
+ status: yandex.cloud.ai.tuning.v1.tuning_task_pb2.TuningTask.Status.ValueType = ...,
161
+ ) -> None: ...
162
+ def ClearField(self, field_name: typing.Literal["status", b"status", "tuning_task_id", b"tuning_task_id"]) -> None: ...
163
+
164
+ global___TuningMetadata = TuningMetadata
165
+
166
+ @typing.final
167
+ class TuningRequest(google.protobuf.message.Message):
168
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
169
+
170
+ @typing.final
171
+ class LabelsEntry(google.protobuf.message.Message):
172
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
173
+
174
+ KEY_FIELD_NUMBER: builtins.int
175
+ VALUE_FIELD_NUMBER: builtins.int
176
+ key: builtins.str
177
+ value: builtins.str
178
+ def __init__(
179
+ self,
180
+ *,
181
+ key: builtins.str = ...,
182
+ value: builtins.str = ...,
183
+ ) -> None: ...
184
+ def ClearField(self, field_name: typing.Literal["key", b"key", "value", b"value"]) -> None: ...
185
+
186
+ @typing.final
187
+ class WeightedDataset(google.protobuf.message.Message):
188
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
189
+
190
+ DATASET_ID_FIELD_NUMBER: builtins.int
191
+ WEIGHT_FIELD_NUMBER: builtins.int
192
+ dataset_id: builtins.str
193
+ weight: builtins.float
194
+ def __init__(
195
+ self,
196
+ *,
197
+ dataset_id: builtins.str = ...,
198
+ weight: builtins.float = ...,
199
+ ) -> None: ...
200
+ def ClearField(self, field_name: typing.Literal["dataset_id", b"dataset_id", "weight", b"weight"]) -> None: ...
201
+
202
+ BASE_MODEL_URI_FIELD_NUMBER: builtins.int
203
+ TRAIN_DATASETS_FIELD_NUMBER: builtins.int
204
+ VALIDATION_DATASETS_FIELD_NUMBER: builtins.int
205
+ TEXT_TO_TEXT_COMPLETION_FIELD_NUMBER: builtins.int
206
+ TEXT_CLASSIFICATION_MULTILABEL_FIELD_NUMBER: builtins.int
207
+ TEXT_CLASSIFICATION_MULTICLASS_FIELD_NUMBER: builtins.int
208
+ NAME_FIELD_NUMBER: builtins.int
209
+ DESCRIPTION_FIELD_NUMBER: builtins.int
210
+ LABELS_FIELD_NUMBER: builtins.int
211
+ base_model_uri: builtins.str
212
+ """Format like a gpt://{folder_id}/yandex-gpt/latest"""
213
+ name: builtins.str
214
+ """common params"""
215
+ description: builtins.str
216
+ @property
217
+ def train_datasets(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___TuningRequest.WeightedDataset]: ...
218
+ @property
219
+ def validation_datasets(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___TuningRequest.WeightedDataset]: ...
220
+ @property
221
+ def text_to_text_completion(self) -> global___TextToTextCompletionTuningParams: ...
222
+ @property
223
+ def text_classification_multilabel(self) -> global___TextClassificationMultilabelParams: ...
224
+ @property
225
+ def text_classification_multiclass(self) -> global___TextClassificationMulticlassParams: ...
226
+ @property
227
+ def labels(self) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.str]: ...
228
+ def __init__(
229
+ self,
230
+ *,
231
+ base_model_uri: builtins.str = ...,
232
+ train_datasets: collections.abc.Iterable[global___TuningRequest.WeightedDataset] | None = ...,
233
+ validation_datasets: collections.abc.Iterable[global___TuningRequest.WeightedDataset] | None = ...,
234
+ text_to_text_completion: global___TextToTextCompletionTuningParams | None = ...,
235
+ text_classification_multilabel: global___TextClassificationMultilabelParams | None = ...,
236
+ text_classification_multiclass: global___TextClassificationMulticlassParams | None = ...,
237
+ name: builtins.str = ...,
238
+ description: builtins.str = ...,
239
+ labels: collections.abc.Mapping[builtins.str, builtins.str] | None = ...,
240
+ ) -> None: ...
241
+ def HasField(self, field_name: typing.Literal["text_classification_multiclass", b"text_classification_multiclass", "text_classification_multilabel", b"text_classification_multilabel", "text_to_text_completion", b"text_to_text_completion", "tuning_params", b"tuning_params"]) -> builtins.bool: ...
242
+ def ClearField(self, field_name: typing.Literal["base_model_uri", b"base_model_uri", "description", b"description", "labels", b"labels", "name", b"name", "text_classification_multiclass", b"text_classification_multiclass", "text_classification_multilabel", b"text_classification_multilabel", "text_to_text_completion", b"text_to_text_completion", "train_datasets", b"train_datasets", "tuning_params", b"tuning_params", "validation_datasets", b"validation_datasets"]) -> None: ...
243
+ def WhichOneof(self, oneof_group: typing.Literal["tuning_params", b"tuning_params"]) -> typing.Literal["text_to_text_completion", "text_classification_multilabel", "text_classification_multiclass"] | None: ...
244
+
245
+ global___TuningRequest = TuningRequest
246
+
247
+ @typing.final
248
+ class TextToTextCompletionTuningParams(google.protobuf.message.Message):
249
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
250
+
251
+ @typing.final
252
+ class Scheduler(google.protobuf.message.Message):
253
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
254
+
255
+ LINEAR_FIELD_NUMBER: builtins.int
256
+ CONSTANT_FIELD_NUMBER: builtins.int
257
+ COSINE_FIELD_NUMBER: builtins.int
258
+ WARMUP_RATIO_FIELD_NUMBER: builtins.int
259
+ warmup_ratio: builtins.float
260
+ @property
261
+ def linear(self) -> yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerLinear: ...
262
+ @property
263
+ def constant(self) -> yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerConstant: ...
264
+ @property
265
+ def cosine(self) -> yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerCosine: ...
266
+ def __init__(
267
+ self,
268
+ *,
269
+ linear: yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerLinear | None = ...,
270
+ constant: yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerConstant | None = ...,
271
+ cosine: yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerCosine | None = ...,
272
+ warmup_ratio: builtins.float = ...,
273
+ ) -> None: ...
274
+ def HasField(self, field_name: typing.Literal["constant", b"constant", "cosine", b"cosine", "linear", b"linear", "type", b"type"]) -> builtins.bool: ...
275
+ def ClearField(self, field_name: typing.Literal["constant", b"constant", "cosine", b"cosine", "linear", b"linear", "type", b"type", "warmup_ratio", b"warmup_ratio"]) -> None: ...
276
+ def WhichOneof(self, oneof_group: typing.Literal["type", b"type"]) -> typing.Literal["linear", "constant", "cosine"] | None: ...
277
+
278
+ @typing.final
279
+ class Optimizer(google.protobuf.message.Message):
280
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
281
+
282
+ ADAMW_FIELD_NUMBER: builtins.int
283
+ @property
284
+ def adamw(self) -> yandex.cloud.ai.tuning.v1.tuning_optimizers_pb2.OptimizerAdamw: ...
285
+ def __init__(
286
+ self,
287
+ *,
288
+ adamw: yandex.cloud.ai.tuning.v1.tuning_optimizers_pb2.OptimizerAdamw | None = ...,
289
+ ) -> None: ...
290
+ def HasField(self, field_name: typing.Literal["adamw", b"adamw", "type", b"type"]) -> builtins.bool: ...
291
+ def ClearField(self, field_name: typing.Literal["adamw", b"adamw", "type", b"type"]) -> None: ...
292
+ def WhichOneof(self, oneof_group: typing.Literal["type", b"type"]) -> typing.Literal["adamw"] | None: ...
293
+
294
+ SEED_FIELD_NUMBER: builtins.int
295
+ LR_FIELD_NUMBER: builtins.int
296
+ N_SAMPLES_FIELD_NUMBER: builtins.int
297
+ ADDITIONAL_ARGUMENTS_FIELD_NUMBER: builtins.int
298
+ LORA_FIELD_NUMBER: builtins.int
299
+ PROMPT_TUNE_FIELD_NUMBER: builtins.int
300
+ SCHEDULER_FIELD_NUMBER: builtins.int
301
+ OPTIMIZER_FIELD_NUMBER: builtins.int
302
+ seed: builtins.int
303
+ lr: builtins.float
304
+ n_samples: builtins.int
305
+ additional_arguments: builtins.str
306
+ @property
307
+ def lora(self) -> yandex.cloud.ai.tuning.v1.tuning_types_pb2.TuningTypeLora: ...
308
+ @property
309
+ def prompt_tune(self) -> yandex.cloud.ai.tuning.v1.tuning_types_pb2.TuningTypePromptTune: ...
310
+ @property
311
+ def scheduler(self) -> global___TextToTextCompletionTuningParams.Scheduler: ...
312
+ @property
313
+ def optimizer(self) -> global___TextToTextCompletionTuningParams.Optimizer: ...
314
+ def __init__(
315
+ self,
316
+ *,
317
+ seed: builtins.int = ...,
318
+ lr: builtins.float = ...,
319
+ n_samples: builtins.int = ...,
320
+ additional_arguments: builtins.str = ...,
321
+ lora: yandex.cloud.ai.tuning.v1.tuning_types_pb2.TuningTypeLora | None = ...,
322
+ prompt_tune: yandex.cloud.ai.tuning.v1.tuning_types_pb2.TuningTypePromptTune | None = ...,
323
+ scheduler: global___TextToTextCompletionTuningParams.Scheduler | None = ...,
324
+ optimizer: global___TextToTextCompletionTuningParams.Optimizer | None = ...,
325
+ ) -> None: ...
326
+ def HasField(self, field_name: typing.Literal["lora", b"lora", "optimizer", b"optimizer", "prompt_tune", b"prompt_tune", "scheduler", b"scheduler", "tuning_type", b"tuning_type"]) -> builtins.bool: ...
327
+ def ClearField(self, field_name: typing.Literal["additional_arguments", b"additional_arguments", "lora", b"lora", "lr", b"lr", "n_samples", b"n_samples", "optimizer", b"optimizer", "prompt_tune", b"prompt_tune", "scheduler", b"scheduler", "seed", b"seed", "tuning_type", b"tuning_type"]) -> None: ...
328
+ def WhichOneof(self, oneof_group: typing.Literal["tuning_type", b"tuning_type"]) -> typing.Literal["lora", "prompt_tune"] | None: ...
329
+
330
+ global___TextToTextCompletionTuningParams = TextToTextCompletionTuningParams
331
+
332
+ @typing.final
333
+ class TextClassificationMultilabelParams(google.protobuf.message.Message):
334
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
335
+
336
+ @typing.final
337
+ class Scheduler(google.protobuf.message.Message):
338
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
339
+
340
+ LINEAR_FIELD_NUMBER: builtins.int
341
+ CONSTANT_FIELD_NUMBER: builtins.int
342
+ COSINE_FIELD_NUMBER: builtins.int
343
+ WARMUP_RATIO_FIELD_NUMBER: builtins.int
344
+ warmup_ratio: builtins.float
345
+ @property
346
+ def linear(self) -> yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerLinear: ...
347
+ @property
348
+ def constant(self) -> yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerConstant: ...
349
+ @property
350
+ def cosine(self) -> yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerCosine: ...
351
+ def __init__(
352
+ self,
353
+ *,
354
+ linear: yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerLinear | None = ...,
355
+ constant: yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerConstant | None = ...,
356
+ cosine: yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerCosine | None = ...,
357
+ warmup_ratio: builtins.float = ...,
358
+ ) -> None: ...
359
+ def HasField(self, field_name: typing.Literal["constant", b"constant", "cosine", b"cosine", "linear", b"linear", "type", b"type"]) -> builtins.bool: ...
360
+ def ClearField(self, field_name: typing.Literal["constant", b"constant", "cosine", b"cosine", "linear", b"linear", "type", b"type", "warmup_ratio", b"warmup_ratio"]) -> None: ...
361
+ def WhichOneof(self, oneof_group: typing.Literal["type", b"type"]) -> typing.Literal["linear", "constant", "cosine"] | None: ...
362
+
363
+ @typing.final
364
+ class Optimizer(google.protobuf.message.Message):
365
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
366
+
367
+ ADAMW_FIELD_NUMBER: builtins.int
368
+ @property
369
+ def adamw(self) -> yandex.cloud.ai.tuning.v1.tuning_optimizers_pb2.OptimizerAdamw: ...
370
+ def __init__(
371
+ self,
372
+ *,
373
+ adamw: yandex.cloud.ai.tuning.v1.tuning_optimizers_pb2.OptimizerAdamw | None = ...,
374
+ ) -> None: ...
375
+ def HasField(self, field_name: typing.Literal["adamw", b"adamw", "type", b"type"]) -> builtins.bool: ...
376
+ def ClearField(self, field_name: typing.Literal["adamw", b"adamw", "type", b"type"]) -> None: ...
377
+ def WhichOneof(self, oneof_group: typing.Literal["type", b"type"]) -> typing.Literal["adamw"] | None: ...
378
+
379
+ SEED_FIELD_NUMBER: builtins.int
380
+ LR_FIELD_NUMBER: builtins.int
381
+ N_SAMPLES_FIELD_NUMBER: builtins.int
382
+ ADDITIONAL_ARGUMENTS_FIELD_NUMBER: builtins.int
383
+ LORA_FIELD_NUMBER: builtins.int
384
+ PROMPT_TUNE_FIELD_NUMBER: builtins.int
385
+ SCHEDULER_FIELD_NUMBER: builtins.int
386
+ OPTIMIZER_FIELD_NUMBER: builtins.int
387
+ seed: builtins.int
388
+ lr: builtins.float
389
+ n_samples: builtins.int
390
+ additional_arguments: builtins.str
391
+ @property
392
+ def lora(self) -> yandex.cloud.ai.tuning.v1.tuning_types_pb2.TuningTypeLora: ...
393
+ @property
394
+ def prompt_tune(self) -> yandex.cloud.ai.tuning.v1.tuning_types_pb2.TuningTypePromptTune: ...
395
+ @property
396
+ def scheduler(self) -> global___TextClassificationMultilabelParams.Scheduler: ...
397
+ @property
398
+ def optimizer(self) -> global___TextClassificationMultilabelParams.Optimizer: ...
399
+ def __init__(
400
+ self,
401
+ *,
402
+ seed: builtins.int = ...,
403
+ lr: builtins.float = ...,
404
+ n_samples: builtins.int = ...,
405
+ additional_arguments: builtins.str = ...,
406
+ lora: yandex.cloud.ai.tuning.v1.tuning_types_pb2.TuningTypeLora | None = ...,
407
+ prompt_tune: yandex.cloud.ai.tuning.v1.tuning_types_pb2.TuningTypePromptTune | None = ...,
408
+ scheduler: global___TextClassificationMultilabelParams.Scheduler | None = ...,
409
+ optimizer: global___TextClassificationMultilabelParams.Optimizer | None = ...,
410
+ ) -> None: ...
411
+ def HasField(self, field_name: typing.Literal["lora", b"lora", "optimizer", b"optimizer", "prompt_tune", b"prompt_tune", "scheduler", b"scheduler", "tuning_type", b"tuning_type"]) -> builtins.bool: ...
412
+ def ClearField(self, field_name: typing.Literal["additional_arguments", b"additional_arguments", "lora", b"lora", "lr", b"lr", "n_samples", b"n_samples", "optimizer", b"optimizer", "prompt_tune", b"prompt_tune", "scheduler", b"scheduler", "seed", b"seed", "tuning_type", b"tuning_type"]) -> None: ...
413
+ def WhichOneof(self, oneof_group: typing.Literal["tuning_type", b"tuning_type"]) -> typing.Literal["lora", "prompt_tune"] | None: ...
414
+
415
+ global___TextClassificationMultilabelParams = TextClassificationMultilabelParams
416
+
417
+ @typing.final
418
+ class TextClassificationMulticlassParams(google.protobuf.message.Message):
419
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
420
+
421
+ @typing.final
422
+ class Scheduler(google.protobuf.message.Message):
423
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
424
+
425
+ LINEAR_FIELD_NUMBER: builtins.int
426
+ CONSTANT_FIELD_NUMBER: builtins.int
427
+ COSINE_FIELD_NUMBER: builtins.int
428
+ WARMUP_RATIO_FIELD_NUMBER: builtins.int
429
+ warmup_ratio: builtins.float
430
+ @property
431
+ def linear(self) -> yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerLinear: ...
432
+ @property
433
+ def constant(self) -> yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerConstant: ...
434
+ @property
435
+ def cosine(self) -> yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerCosine: ...
436
+ def __init__(
437
+ self,
438
+ *,
439
+ linear: yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerLinear | None = ...,
440
+ constant: yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerConstant | None = ...,
441
+ cosine: yandex.cloud.ai.tuning.v1.tuning_schedulers_pb2.SchedulerCosine | None = ...,
442
+ warmup_ratio: builtins.float = ...,
443
+ ) -> None: ...
444
+ def HasField(self, field_name: typing.Literal["constant", b"constant", "cosine", b"cosine", "linear", b"linear", "type", b"type"]) -> builtins.bool: ...
445
+ def ClearField(self, field_name: typing.Literal["constant", b"constant", "cosine", b"cosine", "linear", b"linear", "type", b"type", "warmup_ratio", b"warmup_ratio"]) -> None: ...
446
+ def WhichOneof(self, oneof_group: typing.Literal["type", b"type"]) -> typing.Literal["linear", "constant", "cosine"] | None: ...
447
+
448
+ @typing.final
449
+ class Optimizer(google.protobuf.message.Message):
450
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
451
+
452
+ ADAMW_FIELD_NUMBER: builtins.int
453
+ @property
454
+ def adamw(self) -> yandex.cloud.ai.tuning.v1.tuning_optimizers_pb2.OptimizerAdamw: ...
455
+ def __init__(
456
+ self,
457
+ *,
458
+ adamw: yandex.cloud.ai.tuning.v1.tuning_optimizers_pb2.OptimizerAdamw | None = ...,
459
+ ) -> None: ...
460
+ def HasField(self, field_name: typing.Literal["adamw", b"adamw", "type", b"type"]) -> builtins.bool: ...
461
+ def ClearField(self, field_name: typing.Literal["adamw", b"adamw", "type", b"type"]) -> None: ...
462
+ def WhichOneof(self, oneof_group: typing.Literal["type", b"type"]) -> typing.Literal["adamw"] | None: ...
463
+
464
+ SEED_FIELD_NUMBER: builtins.int
465
+ LR_FIELD_NUMBER: builtins.int
466
+ N_SAMPLES_FIELD_NUMBER: builtins.int
467
+ ADDITIONAL_ARGUMENTS_FIELD_NUMBER: builtins.int
468
+ LORA_FIELD_NUMBER: builtins.int
469
+ PROMPT_TUNE_FIELD_NUMBER: builtins.int
470
+ SCHEDULER_FIELD_NUMBER: builtins.int
471
+ OPTIMIZER_FIELD_NUMBER: builtins.int
472
+ seed: builtins.int
473
+ lr: builtins.float
474
+ n_samples: builtins.int
475
+ additional_arguments: builtins.str
476
+ @property
477
+ def lora(self) -> yandex.cloud.ai.tuning.v1.tuning_types_pb2.TuningTypeLora: ...
478
+ @property
479
+ def prompt_tune(self) -> yandex.cloud.ai.tuning.v1.tuning_types_pb2.TuningTypePromptTune: ...
480
+ @property
481
+ def scheduler(self) -> global___TextClassificationMulticlassParams.Scheduler: ...
482
+ @property
483
+ def optimizer(self) -> global___TextClassificationMulticlassParams.Optimizer: ...
484
+ def __init__(
485
+ self,
486
+ *,
487
+ seed: builtins.int = ...,
488
+ lr: builtins.float = ...,
489
+ n_samples: builtins.int = ...,
490
+ additional_arguments: builtins.str = ...,
491
+ lora: yandex.cloud.ai.tuning.v1.tuning_types_pb2.TuningTypeLora | None = ...,
492
+ prompt_tune: yandex.cloud.ai.tuning.v1.tuning_types_pb2.TuningTypePromptTune | None = ...,
493
+ scheduler: global___TextClassificationMulticlassParams.Scheduler | None = ...,
494
+ optimizer: global___TextClassificationMulticlassParams.Optimizer | None = ...,
495
+ ) -> None: ...
496
+ def HasField(self, field_name: typing.Literal["lora", b"lora", "optimizer", b"optimizer", "prompt_tune", b"prompt_tune", "scheduler", b"scheduler", "tuning_type", b"tuning_type"]) -> builtins.bool: ...
497
+ def ClearField(self, field_name: typing.Literal["additional_arguments", b"additional_arguments", "lora", b"lora", "lr", b"lr", "n_samples", b"n_samples", "optimizer", b"optimizer", "prompt_tune", b"prompt_tune", "scheduler", b"scheduler", "seed", b"seed", "tuning_type", b"tuning_type"]) -> None: ...
498
+ def WhichOneof(self, oneof_group: typing.Literal["tuning_type", b"tuning_type"]) -> typing.Literal["lora", "prompt_tune"] | None: ...
499
+
500
+ global___TextClassificationMulticlassParams = TextClassificationMulticlassParams
501
+
502
+ @typing.final
503
+ class GetMetricsUrlRequest(google.protobuf.message.Message):
504
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
505
+
506
+ TASK_ID_FIELD_NUMBER: builtins.int
507
+ task_id: builtins.str
508
+ def __init__(
509
+ self,
510
+ *,
511
+ task_id: builtins.str = ...,
512
+ ) -> None: ...
513
+ def ClearField(self, field_name: typing.Literal["task_id", b"task_id"]) -> None: ...
514
+
515
+ global___GetMetricsUrlRequest = GetMetricsUrlRequest
516
+
517
+ @typing.final
518
+ class GetMetricsUrlResponse(google.protobuf.message.Message):
519
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
520
+
521
+ LOAD_URL_FIELD_NUMBER: builtins.int
522
+ load_url: builtins.str
523
+ def __init__(
524
+ self,
525
+ *,
526
+ load_url: builtins.str = ...,
527
+ ) -> None: ...
528
+ def ClearField(self, field_name: typing.Literal["load_url", b"load_url"]) -> None: ...
529
+
530
+ global___GetMetricsUrlResponse = GetMetricsUrlResponse
531
+
532
+ @typing.final
533
+ class GetOptionsRequest(google.protobuf.message.Message):
534
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
535
+
536
+ TASK_ID_FIELD_NUMBER: builtins.int
537
+ task_id: builtins.str
538
+ def __init__(
539
+ self,
540
+ *,
541
+ task_id: builtins.str = ...,
542
+ ) -> None: ...
543
+ def ClearField(self, field_name: typing.Literal["task_id", b"task_id"]) -> None: ...
544
+
545
+ global___GetOptionsRequest = GetOptionsRequest
546
+
547
+ @typing.final
548
+ class GetOptionsResponse(google.protobuf.message.Message):
549
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
550
+
551
+ TASK_ID_FIELD_NUMBER: builtins.int
552
+ BASE_MODEL_URI_FIELD_NUMBER: builtins.int
553
+ TRAIN_DATASETS_FIELD_NUMBER: builtins.int
554
+ VALIDATION_DATASETS_FIELD_NUMBER: builtins.int
555
+ TEXT_TO_TEXT_COMPLETION_FIELD_NUMBER: builtins.int
556
+ task_id: builtins.str
557
+ base_model_uri: builtins.str
558
+ @property
559
+ def train_datasets(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___TuningRequest.WeightedDataset]: ...
560
+ @property
561
+ def validation_datasets(self) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___TuningRequest.WeightedDataset]: ...
562
+ @property
563
+ def text_to_text_completion(self) -> global___TextToTextCompletionTuningParams: ...
564
+ def __init__(
565
+ self,
566
+ *,
567
+ task_id: builtins.str = ...,
568
+ base_model_uri: builtins.str = ...,
569
+ train_datasets: collections.abc.Iterable[global___TuningRequest.WeightedDataset] | None = ...,
570
+ validation_datasets: collections.abc.Iterable[global___TuningRequest.WeightedDataset] | None = ...,
571
+ text_to_text_completion: global___TextToTextCompletionTuningParams | None = ...,
572
+ ) -> None: ...
573
+ def HasField(self, field_name: typing.Literal["text_to_text_completion", b"text_to_text_completion", "tuning_params", b"tuning_params"]) -> builtins.bool: ...
574
+ def ClearField(self, field_name: typing.Literal["base_model_uri", b"base_model_uri", "task_id", b"task_id", "text_to_text_completion", b"text_to_text_completion", "train_datasets", b"train_datasets", "tuning_params", b"tuning_params", "validation_datasets", b"validation_datasets"]) -> None: ...
575
+ def WhichOneof(self, oneof_group: typing.Literal["tuning_params", b"tuning_params"]) -> typing.Literal["text_to_text_completion"] | None: ...
576
+
577
+ global___GetOptionsResponse = GetOptionsResponse