xtgeo 4.10.0__cp310-cp310-win_amd64.whl → 4.11.0__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xtgeo might be problematic. Click here for more details.

Files changed (546) hide show
  1. xtgeo/_cxtgeo.cp310-win_amd64.pyd +0 -0
  2. xtgeo/_internal.cp310-win_amd64.pyd +0 -0
  3. xtgeo/common/version.py +16 -3
  4. xtgeo/cube/_cube_window_attributes.py +13 -4
  5. xtgeo/grid3d/_grid_etc1.py +10 -5
  6. xtgeo/grid3d/grid.py +22 -6
  7. xtgeo/metadata/metadata.py +20 -13
  8. {xtgeo-4.10.0.dist-info → xtgeo-4.11.0.dist-info}/METADATA +1 -1
  9. xtgeo-4.11.0.dist-info/RECORD +117 -0
  10. {xtgeo-4.10.0.dist-info → xtgeo-4.11.0.dist-info}/WHEEL +1 -1
  11. xtgeo/include/eigen3/Eigen/Cholesky +0 -45
  12. xtgeo/include/eigen3/Eigen/CholmodSupport +0 -48
  13. xtgeo/include/eigen3/Eigen/Core +0 -384
  14. xtgeo/include/eigen3/Eigen/Dense +0 -7
  15. xtgeo/include/eigen3/Eigen/Eigen +0 -2
  16. xtgeo/include/eigen3/Eigen/Eigenvalues +0 -60
  17. xtgeo/include/eigen3/Eigen/Geometry +0 -59
  18. xtgeo/include/eigen3/Eigen/Householder +0 -29
  19. xtgeo/include/eigen3/Eigen/IterativeLinearSolvers +0 -48
  20. xtgeo/include/eigen3/Eigen/Jacobi +0 -32
  21. xtgeo/include/eigen3/Eigen/KLUSupport +0 -41
  22. xtgeo/include/eigen3/Eigen/LU +0 -47
  23. xtgeo/include/eigen3/Eigen/MetisSupport +0 -35
  24. xtgeo/include/eigen3/Eigen/OrderingMethods +0 -70
  25. xtgeo/include/eigen3/Eigen/PaStiXSupport +0 -49
  26. xtgeo/include/eigen3/Eigen/PardisoSupport +0 -35
  27. xtgeo/include/eigen3/Eigen/QR +0 -50
  28. xtgeo/include/eigen3/Eigen/QtAlignedMalloc +0 -39
  29. xtgeo/include/eigen3/Eigen/SPQRSupport +0 -34
  30. xtgeo/include/eigen3/Eigen/SVD +0 -50
  31. xtgeo/include/eigen3/Eigen/Sparse +0 -34
  32. xtgeo/include/eigen3/Eigen/SparseCholesky +0 -37
  33. xtgeo/include/eigen3/Eigen/SparseCore +0 -69
  34. xtgeo/include/eigen3/Eigen/SparseLU +0 -50
  35. xtgeo/include/eigen3/Eigen/SparseQR +0 -36
  36. xtgeo/include/eigen3/Eigen/StdDeque +0 -27
  37. xtgeo/include/eigen3/Eigen/StdList +0 -26
  38. xtgeo/include/eigen3/Eigen/StdVector +0 -27
  39. xtgeo/include/eigen3/Eigen/SuperLUSupport +0 -64
  40. xtgeo/include/eigen3/Eigen/UmfPackSupport +0 -40
  41. xtgeo/include/eigen3/Eigen/src/Cholesky/LDLT.h +0 -688
  42. xtgeo/include/eigen3/Eigen/src/Cholesky/LLT.h +0 -558
  43. xtgeo/include/eigen3/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  44. xtgeo/include/eigen3/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  45. xtgeo/include/eigen3/Eigen/src/Core/ArithmeticSequence.h +0 -413
  46. xtgeo/include/eigen3/Eigen/src/Core/Array.h +0 -417
  47. xtgeo/include/eigen3/Eigen/src/Core/ArrayBase.h +0 -226
  48. xtgeo/include/eigen3/Eigen/src/Core/ArrayWrapper.h +0 -209
  49. xtgeo/include/eigen3/Eigen/src/Core/Assign.h +0 -90
  50. xtgeo/include/eigen3/Eigen/src/Core/AssignEvaluator.h +0 -1010
  51. xtgeo/include/eigen3/Eigen/src/Core/Assign_MKL.h +0 -178
  52. xtgeo/include/eigen3/Eigen/src/Core/BandMatrix.h +0 -353
  53. xtgeo/include/eigen3/Eigen/src/Core/Block.h +0 -448
  54. xtgeo/include/eigen3/Eigen/src/Core/BooleanRedux.h +0 -162
  55. xtgeo/include/eigen3/Eigen/src/Core/CommaInitializer.h +0 -164
  56. xtgeo/include/eigen3/Eigen/src/Core/ConditionEstimator.h +0 -175
  57. xtgeo/include/eigen3/Eigen/src/Core/CoreEvaluators.h +0 -1741
  58. xtgeo/include/eigen3/Eigen/src/Core/CoreIterators.h +0 -132
  59. xtgeo/include/eigen3/Eigen/src/Core/CwiseBinaryOp.h +0 -183
  60. xtgeo/include/eigen3/Eigen/src/Core/CwiseNullaryOp.h +0 -1001
  61. xtgeo/include/eigen3/Eigen/src/Core/CwiseTernaryOp.h +0 -197
  62. xtgeo/include/eigen3/Eigen/src/Core/CwiseUnaryOp.h +0 -103
  63. xtgeo/include/eigen3/Eigen/src/Core/CwiseUnaryView.h +0 -132
  64. xtgeo/include/eigen3/Eigen/src/Core/DenseBase.h +0 -701
  65. xtgeo/include/eigen3/Eigen/src/Core/DenseCoeffsBase.h +0 -685
  66. xtgeo/include/eigen3/Eigen/src/Core/DenseStorage.h +0 -652
  67. xtgeo/include/eigen3/Eigen/src/Core/Diagonal.h +0 -258
  68. xtgeo/include/eigen3/Eigen/src/Core/DiagonalMatrix.h +0 -391
  69. xtgeo/include/eigen3/Eigen/src/Core/DiagonalProduct.h +0 -28
  70. xtgeo/include/eigen3/Eigen/src/Core/Dot.h +0 -318
  71. xtgeo/include/eigen3/Eigen/src/Core/EigenBase.h +0 -160
  72. xtgeo/include/eigen3/Eigen/src/Core/ForceAlignedAccess.h +0 -150
  73. xtgeo/include/eigen3/Eigen/src/Core/Fuzzy.h +0 -155
  74. xtgeo/include/eigen3/Eigen/src/Core/GeneralProduct.h +0 -465
  75. xtgeo/include/eigen3/Eigen/src/Core/GenericPacketMath.h +0 -1040
  76. xtgeo/include/eigen3/Eigen/src/Core/GlobalFunctions.h +0 -194
  77. xtgeo/include/eigen3/Eigen/src/Core/IO.h +0 -258
  78. xtgeo/include/eigen3/Eigen/src/Core/IndexedView.h +0 -237
  79. xtgeo/include/eigen3/Eigen/src/Core/Inverse.h +0 -117
  80. xtgeo/include/eigen3/Eigen/src/Core/Map.h +0 -171
  81. xtgeo/include/eigen3/Eigen/src/Core/MapBase.h +0 -310
  82. xtgeo/include/eigen3/Eigen/src/Core/MathFunctions.h +0 -2057
  83. xtgeo/include/eigen3/Eigen/src/Core/MathFunctionsImpl.h +0 -200
  84. xtgeo/include/eigen3/Eigen/src/Core/Matrix.h +0 -565
  85. xtgeo/include/eigen3/Eigen/src/Core/MatrixBase.h +0 -547
  86. xtgeo/include/eigen3/Eigen/src/Core/NestByValue.h +0 -85
  87. xtgeo/include/eigen3/Eigen/src/Core/NoAlias.h +0 -109
  88. xtgeo/include/eigen3/Eigen/src/Core/NumTraits.h +0 -335
  89. xtgeo/include/eigen3/Eigen/src/Core/PartialReduxEvaluator.h +0 -232
  90. xtgeo/include/eigen3/Eigen/src/Core/PermutationMatrix.h +0 -605
  91. xtgeo/include/eigen3/Eigen/src/Core/PlainObjectBase.h +0 -1128
  92. xtgeo/include/eigen3/Eigen/src/Core/Product.h +0 -191
  93. xtgeo/include/eigen3/Eigen/src/Core/ProductEvaluators.h +0 -1179
  94. xtgeo/include/eigen3/Eigen/src/Core/Random.h +0 -218
  95. xtgeo/include/eigen3/Eigen/src/Core/Redux.h +0 -515
  96. xtgeo/include/eigen3/Eigen/src/Core/Ref.h +0 -381
  97. xtgeo/include/eigen3/Eigen/src/Core/Replicate.h +0 -142
  98. xtgeo/include/eigen3/Eigen/src/Core/Reshaped.h +0 -454
  99. xtgeo/include/eigen3/Eigen/src/Core/ReturnByValue.h +0 -119
  100. xtgeo/include/eigen3/Eigen/src/Core/Reverse.h +0 -217
  101. xtgeo/include/eigen3/Eigen/src/Core/Select.h +0 -164
  102. xtgeo/include/eigen3/Eigen/src/Core/SelfAdjointView.h +0 -365
  103. xtgeo/include/eigen3/Eigen/src/Core/SelfCwiseBinaryOp.h +0 -47
  104. xtgeo/include/eigen3/Eigen/src/Core/Solve.h +0 -188
  105. xtgeo/include/eigen3/Eigen/src/Core/SolveTriangular.h +0 -235
  106. xtgeo/include/eigen3/Eigen/src/Core/SolverBase.h +0 -168
  107. xtgeo/include/eigen3/Eigen/src/Core/StableNorm.h +0 -251
  108. xtgeo/include/eigen3/Eigen/src/Core/StlIterators.h +0 -463
  109. xtgeo/include/eigen3/Eigen/src/Core/Stride.h +0 -116
  110. xtgeo/include/eigen3/Eigen/src/Core/Swap.h +0 -68
  111. xtgeo/include/eigen3/Eigen/src/Core/Transpose.h +0 -464
  112. xtgeo/include/eigen3/Eigen/src/Core/Transpositions.h +0 -386
  113. xtgeo/include/eigen3/Eigen/src/Core/TriangularMatrix.h +0 -1001
  114. xtgeo/include/eigen3/Eigen/src/Core/VectorBlock.h +0 -96
  115. xtgeo/include/eigen3/Eigen/src/Core/VectorwiseOp.h +0 -784
  116. xtgeo/include/eigen3/Eigen/src/Core/Visitor.h +0 -381
  117. xtgeo/include/eigen3/Eigen/src/Core/arch/AVX/Complex.h +0 -372
  118. xtgeo/include/eigen3/Eigen/src/Core/arch/AVX/MathFunctions.h +0 -228
  119. xtgeo/include/eigen3/Eigen/src/Core/arch/AVX/PacketMath.h +0 -1574
  120. xtgeo/include/eigen3/Eigen/src/Core/arch/AVX/TypeCasting.h +0 -115
  121. xtgeo/include/eigen3/Eigen/src/Core/arch/AVX512/Complex.h +0 -422
  122. xtgeo/include/eigen3/Eigen/src/Core/arch/AVX512/MathFunctions.h +0 -362
  123. xtgeo/include/eigen3/Eigen/src/Core/arch/AVX512/PacketMath.h +0 -2303
  124. xtgeo/include/eigen3/Eigen/src/Core/arch/AVX512/TypeCasting.h +0 -89
  125. xtgeo/include/eigen3/Eigen/src/Core/arch/AltiVec/Complex.h +0 -417
  126. xtgeo/include/eigen3/Eigen/src/Core/arch/AltiVec/MathFunctions.h +0 -90
  127. xtgeo/include/eigen3/Eigen/src/Core/arch/AltiVec/MatrixProduct.h +0 -2937
  128. xtgeo/include/eigen3/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h +0 -221
  129. xtgeo/include/eigen3/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h +0 -629
  130. xtgeo/include/eigen3/Eigen/src/Core/arch/AltiVec/PacketMath.h +0 -2711
  131. xtgeo/include/eigen3/Eigen/src/Core/arch/CUDA/Complex.h +0 -258
  132. xtgeo/include/eigen3/Eigen/src/Core/arch/Default/BFloat16.h +0 -700
  133. xtgeo/include/eigen3/Eigen/src/Core/arch/Default/ConjHelper.h +0 -117
  134. xtgeo/include/eigen3/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h +0 -1649
  135. xtgeo/include/eigen3/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h +0 -110
  136. xtgeo/include/eigen3/Eigen/src/Core/arch/Default/Half.h +0 -942
  137. xtgeo/include/eigen3/Eigen/src/Core/arch/Default/Settings.h +0 -49
  138. xtgeo/include/eigen3/Eigen/src/Core/arch/Default/TypeCasting.h +0 -120
  139. xtgeo/include/eigen3/Eigen/src/Core/arch/GPU/MathFunctions.h +0 -103
  140. xtgeo/include/eigen3/Eigen/src/Core/arch/GPU/PacketMath.h +0 -1685
  141. xtgeo/include/eigen3/Eigen/src/Core/arch/GPU/TypeCasting.h +0 -80
  142. xtgeo/include/eigen3/Eigen/src/Core/arch/HIP/hcc/math_constants.h +0 -23
  143. xtgeo/include/eigen3/Eigen/src/Core/arch/MSA/Complex.h +0 -648
  144. xtgeo/include/eigen3/Eigen/src/Core/arch/MSA/MathFunctions.h +0 -387
  145. xtgeo/include/eigen3/Eigen/src/Core/arch/MSA/PacketMath.h +0 -1233
  146. xtgeo/include/eigen3/Eigen/src/Core/arch/NEON/Complex.h +0 -584
  147. xtgeo/include/eigen3/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h +0 -183
  148. xtgeo/include/eigen3/Eigen/src/Core/arch/NEON/MathFunctions.h +0 -75
  149. xtgeo/include/eigen3/Eigen/src/Core/arch/NEON/PacketMath.h +0 -4587
  150. xtgeo/include/eigen3/Eigen/src/Core/arch/NEON/TypeCasting.h +0 -1419
  151. xtgeo/include/eigen3/Eigen/src/Core/arch/SSE/Complex.h +0 -351
  152. xtgeo/include/eigen3/Eigen/src/Core/arch/SSE/MathFunctions.h +0 -199
  153. xtgeo/include/eigen3/Eigen/src/Core/arch/SSE/PacketMath.h +0 -1505
  154. xtgeo/include/eigen3/Eigen/src/Core/arch/SSE/TypeCasting.h +0 -142
  155. xtgeo/include/eigen3/Eigen/src/Core/arch/SVE/MathFunctions.h +0 -44
  156. xtgeo/include/eigen3/Eigen/src/Core/arch/SVE/PacketMath.h +0 -752
  157. xtgeo/include/eigen3/Eigen/src/Core/arch/SVE/TypeCasting.h +0 -49
  158. xtgeo/include/eigen3/Eigen/src/Core/arch/SYCL/InteropHeaders.h +0 -232
  159. xtgeo/include/eigen3/Eigen/src/Core/arch/SYCL/MathFunctions.h +0 -301
  160. xtgeo/include/eigen3/Eigen/src/Core/arch/SYCL/PacketMath.h +0 -670
  161. xtgeo/include/eigen3/Eigen/src/Core/arch/SYCL/SyclMemoryModel.h +0 -694
  162. xtgeo/include/eigen3/Eigen/src/Core/arch/SYCL/TypeCasting.h +0 -85
  163. xtgeo/include/eigen3/Eigen/src/Core/arch/ZVector/Complex.h +0 -426
  164. xtgeo/include/eigen3/Eigen/src/Core/arch/ZVector/MathFunctions.h +0 -233
  165. xtgeo/include/eigen3/Eigen/src/Core/arch/ZVector/PacketMath.h +0 -1060
  166. xtgeo/include/eigen3/Eigen/src/Core/functors/AssignmentFunctors.h +0 -177
  167. xtgeo/include/eigen3/Eigen/src/Core/functors/BinaryFunctors.h +0 -541
  168. xtgeo/include/eigen3/Eigen/src/Core/functors/NullaryFunctors.h +0 -189
  169. xtgeo/include/eigen3/Eigen/src/Core/functors/StlFunctors.h +0 -166
  170. xtgeo/include/eigen3/Eigen/src/Core/functors/TernaryFunctors.h +0 -25
  171. xtgeo/include/eigen3/Eigen/src/Core/functors/UnaryFunctors.h +0 -1131
  172. xtgeo/include/eigen3/Eigen/src/Core/products/GeneralBlockPanelKernel.h +0 -2645
  173. xtgeo/include/eigen3/Eigen/src/Core/products/GeneralMatrixMatrix.h +0 -517
  174. xtgeo/include/eigen3/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +0 -317
  175. xtgeo/include/eigen3/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +0 -145
  176. xtgeo/include/eigen3/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +0 -124
  177. xtgeo/include/eigen3/Eigen/src/Core/products/GeneralMatrixVector.h +0 -518
  178. xtgeo/include/eigen3/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +0 -136
  179. xtgeo/include/eigen3/Eigen/src/Core/products/Parallelizer.h +0 -180
  180. xtgeo/include/eigen3/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +0 -544
  181. xtgeo/include/eigen3/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +0 -295
  182. xtgeo/include/eigen3/Eigen/src/Core/products/SelfadjointMatrixVector.h +0 -262
  183. xtgeo/include/eigen3/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +0 -118
  184. xtgeo/include/eigen3/Eigen/src/Core/products/SelfadjointProduct.h +0 -133
  185. xtgeo/include/eigen3/Eigen/src/Core/products/SelfadjointRank2Update.h +0 -94
  186. xtgeo/include/eigen3/Eigen/src/Core/products/TriangularMatrixMatrix.h +0 -472
  187. xtgeo/include/eigen3/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +0 -317
  188. xtgeo/include/eigen3/Eigen/src/Core/products/TriangularMatrixVector.h +0 -350
  189. xtgeo/include/eigen3/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +0 -255
  190. xtgeo/include/eigen3/Eigen/src/Core/products/TriangularSolverMatrix.h +0 -337
  191. xtgeo/include/eigen3/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +0 -167
  192. xtgeo/include/eigen3/Eigen/src/Core/products/TriangularSolverVector.h +0 -148
  193. xtgeo/include/eigen3/Eigen/src/Core/util/BlasUtil.h +0 -583
  194. xtgeo/include/eigen3/Eigen/src/Core/util/ConfigureVectorization.h +0 -512
  195. xtgeo/include/eigen3/Eigen/src/Core/util/Constants.h +0 -563
  196. xtgeo/include/eigen3/Eigen/src/Core/util/DisableStupidWarnings.h +0 -106
  197. xtgeo/include/eigen3/Eigen/src/Core/util/ForwardDeclarations.h +0 -322
  198. xtgeo/include/eigen3/Eigen/src/Core/util/IndexedViewHelper.h +0 -186
  199. xtgeo/include/eigen3/Eigen/src/Core/util/IntegralConstant.h +0 -272
  200. xtgeo/include/eigen3/Eigen/src/Core/util/MKL_support.h +0 -137
  201. xtgeo/include/eigen3/Eigen/src/Core/util/Macros.h +0 -1464
  202. xtgeo/include/eigen3/Eigen/src/Core/util/Memory.h +0 -1163
  203. xtgeo/include/eigen3/Eigen/src/Core/util/Meta.h +0 -812
  204. xtgeo/include/eigen3/Eigen/src/Core/util/NonMPL2.h +0 -3
  205. xtgeo/include/eigen3/Eigen/src/Core/util/ReenableStupidWarnings.h +0 -31
  206. xtgeo/include/eigen3/Eigen/src/Core/util/ReshapedHelper.h +0 -51
  207. xtgeo/include/eigen3/Eigen/src/Core/util/StaticAssert.h +0 -221
  208. xtgeo/include/eigen3/Eigen/src/Core/util/SymbolicIndex.h +0 -293
  209. xtgeo/include/eigen3/Eigen/src/Core/util/XprHelper.h +0 -856
  210. xtgeo/include/eigen3/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  211. xtgeo/include/eigen3/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  212. xtgeo/include/eigen3/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  213. xtgeo/include/eigen3/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  214. xtgeo/include/eigen3/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  215. xtgeo/include/eigen3/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  216. xtgeo/include/eigen3/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  217. xtgeo/include/eigen3/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  218. xtgeo/include/eigen3/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  219. xtgeo/include/eigen3/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  220. xtgeo/include/eigen3/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  221. xtgeo/include/eigen3/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  222. xtgeo/include/eigen3/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  223. xtgeo/include/eigen3/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  224. xtgeo/include/eigen3/Eigen/src/Geometry/AlignedBox.h +0 -486
  225. xtgeo/include/eigen3/Eigen/src/Geometry/AngleAxis.h +0 -247
  226. xtgeo/include/eigen3/Eigen/src/Geometry/EulerAngles.h +0 -114
  227. xtgeo/include/eigen3/Eigen/src/Geometry/Homogeneous.h +0 -501
  228. xtgeo/include/eigen3/Eigen/src/Geometry/Hyperplane.h +0 -282
  229. xtgeo/include/eigen3/Eigen/src/Geometry/OrthoMethods.h +0 -235
  230. xtgeo/include/eigen3/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  231. xtgeo/include/eigen3/Eigen/src/Geometry/Quaternion.h +0 -870
  232. xtgeo/include/eigen3/Eigen/src/Geometry/Rotation2D.h +0 -199
  233. xtgeo/include/eigen3/Eigen/src/Geometry/RotationBase.h +0 -206
  234. xtgeo/include/eigen3/Eigen/src/Geometry/Scaling.h +0 -188
  235. xtgeo/include/eigen3/Eigen/src/Geometry/Transform.h +0 -1563
  236. xtgeo/include/eigen3/Eigen/src/Geometry/Translation.h +0 -202
  237. xtgeo/include/eigen3/Eigen/src/Geometry/Umeyama.h +0 -166
  238. xtgeo/include/eigen3/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  239. xtgeo/include/eigen3/Eigen/src/Householder/BlockHouseholder.h +0 -110
  240. xtgeo/include/eigen3/Eigen/src/Householder/Householder.h +0 -176
  241. xtgeo/include/eigen3/Eigen/src/Householder/HouseholderSequence.h +0 -545
  242. xtgeo/include/eigen3/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  243. xtgeo/include/eigen3/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  244. xtgeo/include/eigen3/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  245. xtgeo/include/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  246. xtgeo/include/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  247. xtgeo/include/eigen3/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  248. xtgeo/include/eigen3/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  249. xtgeo/include/eigen3/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  250. xtgeo/include/eigen3/Eigen/src/Jacobi/Jacobi.h +0 -483
  251. xtgeo/include/eigen3/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  252. xtgeo/include/eigen3/Eigen/src/LU/Determinant.h +0 -117
  253. xtgeo/include/eigen3/Eigen/src/LU/FullPivLU.h +0 -877
  254. xtgeo/include/eigen3/Eigen/src/LU/InverseImpl.h +0 -432
  255. xtgeo/include/eigen3/Eigen/src/LU/PartialPivLU.h +0 -624
  256. xtgeo/include/eigen3/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  257. xtgeo/include/eigen3/Eigen/src/LU/arch/InverseSize4.h +0 -351
  258. xtgeo/include/eigen3/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  259. xtgeo/include/eigen3/Eigen/src/OrderingMethods/Amd.h +0 -435
  260. xtgeo/include/eigen3/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  261. xtgeo/include/eigen3/Eigen/src/OrderingMethods/Ordering.h +0 -153
  262. xtgeo/include/eigen3/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  263. xtgeo/include/eigen3/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  264. xtgeo/include/eigen3/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  265. xtgeo/include/eigen3/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  266. xtgeo/include/eigen3/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  267. xtgeo/include/eigen3/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  268. xtgeo/include/eigen3/Eigen/src/QR/HouseholderQR.h +0 -434
  269. xtgeo/include/eigen3/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  270. xtgeo/include/eigen3/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  271. xtgeo/include/eigen3/Eigen/src/SVD/BDCSVD.h +0 -1366
  272. xtgeo/include/eigen3/Eigen/src/SVD/JacobiSVD.h +0 -812
  273. xtgeo/include/eigen3/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  274. xtgeo/include/eigen3/Eigen/src/SVD/SVDBase.h +0 -376
  275. xtgeo/include/eigen3/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  276. xtgeo/include/eigen3/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  277. xtgeo/include/eigen3/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  278. xtgeo/include/eigen3/Eigen/src/SparseCore/AmbiVector.h +0 -378
  279. xtgeo/include/eigen3/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  280. xtgeo/include/eigen3/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  281. xtgeo/include/eigen3/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  282. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseAssign.h +0 -270
  283. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseBlock.h +0 -571
  284. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  285. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  286. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  287. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  288. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  289. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  290. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseDot.h +0 -98
  291. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  292. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseMap.h +0 -305
  293. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  294. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  295. xtgeo/include/eigen3/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  296. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseProduct.h +0 -181
  297. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseRedux.h +0 -49
  298. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseRef.h +0 -397
  299. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  300. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  301. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  302. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  303. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  304. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseUtil.h +0 -186
  305. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseVector.h +0 -478
  306. xtgeo/include/eigen3/Eigen/src/SparseCore/SparseView.h +0 -254
  307. xtgeo/include/eigen3/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  308. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU.h +0 -923
  309. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  310. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  311. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  312. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  313. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  314. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  315. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  316. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  317. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  318. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  319. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  320. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  321. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  322. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  323. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  324. xtgeo/include/eigen3/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  325. xtgeo/include/eigen3/Eigen/src/SparseQR/SparseQR.h +0 -758
  326. xtgeo/include/eigen3/Eigen/src/StlSupport/StdDeque.h +0 -116
  327. xtgeo/include/eigen3/Eigen/src/StlSupport/StdList.h +0 -106
  328. xtgeo/include/eigen3/Eigen/src/StlSupport/StdVector.h +0 -131
  329. xtgeo/include/eigen3/Eigen/src/StlSupport/details.h +0 -84
  330. xtgeo/include/eigen3/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  331. xtgeo/include/eigen3/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  332. xtgeo/include/eigen3/Eigen/src/misc/Image.h +0 -82
  333. xtgeo/include/eigen3/Eigen/src/misc/Kernel.h +0 -79
  334. xtgeo/include/eigen3/Eigen/src/misc/RealSvd2x2.h +0 -55
  335. xtgeo/include/eigen3/Eigen/src/misc/blas.h +0 -440
  336. xtgeo/include/eigen3/Eigen/src/misc/lapack.h +0 -152
  337. xtgeo/include/eigen3/Eigen/src/misc/lapacke.h +0 -16292
  338. xtgeo/include/eigen3/Eigen/src/misc/lapacke_mangling.h +0 -17
  339. xtgeo/include/eigen3/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  340. xtgeo/include/eigen3/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  341. xtgeo/include/eigen3/Eigen/src/plugins/BlockMethods.h +0 -1442
  342. xtgeo/include/eigen3/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  343. xtgeo/include/eigen3/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  344. xtgeo/include/eigen3/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  345. xtgeo/include/eigen3/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  346. xtgeo/include/eigen3/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  347. xtgeo/include/eigen3/Eigen/src/plugins/ReshapedMethods.h +0 -149
  348. xtgeo/include/eigen3/signature_of_eigen3_matrix_library +0 -1
  349. xtgeo/include/eigen3/unsupported/Eigen/AdolcForward +0 -159
  350. xtgeo/include/eigen3/unsupported/Eigen/AlignedVector3 +0 -234
  351. xtgeo/include/eigen3/unsupported/Eigen/ArpackSupport +0 -30
  352. xtgeo/include/eigen3/unsupported/Eigen/AutoDiff +0 -46
  353. xtgeo/include/eigen3/unsupported/Eigen/BVH +0 -95
  354. xtgeo/include/eigen3/unsupported/Eigen/CXX11/Tensor +0 -137
  355. xtgeo/include/eigen3/unsupported/Eigen/CXX11/TensorSymmetry +0 -42
  356. xtgeo/include/eigen3/unsupported/Eigen/CXX11/ThreadPool +0 -74
  357. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  358. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  359. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  360. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  361. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  362. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  363. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  364. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  365. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  366. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  367. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  368. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  369. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  370. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  371. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  372. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  373. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  374. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  375. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  376. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  377. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  378. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  379. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  380. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  381. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  382. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  383. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  384. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  385. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  386. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  387. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  388. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  389. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  390. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  391. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  392. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  393. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  394. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  395. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  396. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  397. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  398. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  399. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  400. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  401. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  402. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  403. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  404. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  405. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  406. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  407. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  408. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  409. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  410. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  411. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  412. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  413. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  414. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  415. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  416. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  417. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  418. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  419. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  420. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  421. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  422. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  423. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  424. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  425. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  426. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  427. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  428. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  429. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  430. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  431. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  432. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  433. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  434. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  435. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  436. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  437. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  438. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  439. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  440. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  441. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  442. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  443. xtgeo/include/eigen3/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  444. xtgeo/include/eigen3/unsupported/Eigen/EulerAngles +0 -43
  445. xtgeo/include/eigen3/unsupported/Eigen/FFT +0 -419
  446. xtgeo/include/eigen3/unsupported/Eigen/IterativeSolvers +0 -51
  447. xtgeo/include/eigen3/unsupported/Eigen/KroneckerProduct +0 -36
  448. xtgeo/include/eigen3/unsupported/Eigen/LevenbergMarquardt +0 -49
  449. xtgeo/include/eigen3/unsupported/Eigen/MPRealSupport +0 -213
  450. xtgeo/include/eigen3/unsupported/Eigen/MatrixFunctions +0 -504
  451. xtgeo/include/eigen3/unsupported/Eigen/MoreVectorization +0 -24
  452. xtgeo/include/eigen3/unsupported/Eigen/NonLinearOptimization +0 -140
  453. xtgeo/include/eigen3/unsupported/Eigen/NumericalDiff +0 -56
  454. xtgeo/include/eigen3/unsupported/Eigen/OpenGLSupport +0 -322
  455. xtgeo/include/eigen3/unsupported/Eigen/Polynomials +0 -137
  456. xtgeo/include/eigen3/unsupported/Eigen/Skyline +0 -39
  457. xtgeo/include/eigen3/unsupported/Eigen/SparseExtra +0 -54
  458. xtgeo/include/eigen3/unsupported/Eigen/SpecialFunctions +0 -103
  459. xtgeo/include/eigen3/unsupported/Eigen/Splines +0 -35
  460. xtgeo/include/eigen3/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  461. xtgeo/include/eigen3/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  462. xtgeo/include/eigen3/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  463. xtgeo/include/eigen3/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  464. xtgeo/include/eigen3/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  465. xtgeo/include/eigen3/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  466. xtgeo/include/eigen3/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  467. xtgeo/include/eigen3/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  468. xtgeo/include/eigen3/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  469. xtgeo/include/eigen3/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  470. xtgeo/include/eigen3/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  471. xtgeo/include/eigen3/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  472. xtgeo/include/eigen3/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  473. xtgeo/include/eigen3/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  474. xtgeo/include/eigen3/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  475. xtgeo/include/eigen3/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  476. xtgeo/include/eigen3/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  477. xtgeo/include/eigen3/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  478. xtgeo/include/eigen3/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  479. xtgeo/include/eigen3/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  480. xtgeo/include/eigen3/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  481. xtgeo/include/eigen3/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  482. xtgeo/include/eigen3/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  483. xtgeo/include/eigen3/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  484. xtgeo/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  485. xtgeo/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  486. xtgeo/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  487. xtgeo/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  488. xtgeo/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  489. xtgeo/include/eigen3/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  490. xtgeo/include/eigen3/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  491. xtgeo/include/eigen3/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  492. xtgeo/include/eigen3/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  493. xtgeo/include/eigen3/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  494. xtgeo/include/eigen3/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  495. xtgeo/include/eigen3/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  496. xtgeo/include/eigen3/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  497. xtgeo/include/eigen3/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  498. xtgeo/include/eigen3/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  499. xtgeo/include/eigen3/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  500. xtgeo/include/eigen3/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  501. xtgeo/include/eigen3/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  502. xtgeo/include/eigen3/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  503. xtgeo/include/eigen3/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  504. xtgeo/include/eigen3/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  505. xtgeo/include/eigen3/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  506. xtgeo/include/eigen3/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  507. xtgeo/include/eigen3/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  508. xtgeo/include/eigen3/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  509. xtgeo/include/eigen3/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  510. xtgeo/include/eigen3/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  511. xtgeo/include/eigen3/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  512. xtgeo/include/eigen3/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  513. xtgeo/include/eigen3/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  514. xtgeo/include/eigen3/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  515. xtgeo/include/eigen3/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  516. xtgeo/include/eigen3/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  517. xtgeo/include/eigen3/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  518. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  519. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  520. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  521. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  522. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  523. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  524. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  525. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  526. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  527. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  528. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  529. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  530. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  531. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  532. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  533. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  534. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  535. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  536. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  537. xtgeo/include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  538. xtgeo/include/eigen3/unsupported/Eigen/src/Splines/Spline.h +0 -507
  539. xtgeo/include/eigen3/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  540. xtgeo/include/eigen3/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  541. xtgeo/share/eigen3/cmake/Eigen3Config.cmake +0 -37
  542. xtgeo/share/eigen3/cmake/Eigen3ConfigVersion.cmake +0 -65
  543. xtgeo/share/eigen3/cmake/Eigen3Targets.cmake +0 -106
  544. xtgeo/share/eigen3/cmake/UseEigen3.cmake +0 -6
  545. xtgeo-4.10.0.dist-info/RECORD +0 -651
  546. {xtgeo-4.10.0.dist-info → xtgeo-4.11.0.dist-info}/licenses/LICENSE.md +0 -0
@@ -1,1679 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
11
- #define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
12
-
13
- // evaluator for thread pool device
14
- #ifdef EIGEN_USE_THREADS
15
-
16
- namespace Eigen {
17
-
18
- template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType>
19
- struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> :
20
- public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> > {
21
-
22
- typedef ThreadPoolDevice Device;
23
-
24
- typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self;
25
- typedef TensorContractionEvaluatorBase<Self> Base;
26
-
27
- typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
28
- typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
29
- typedef typename XprType::Index Index;
30
- typedef typename XprType::CoeffReturnType CoeffReturnType;
31
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
32
-
33
- enum {
34
- Layout = TensorEvaluator<LeftArgType, Device>::Layout,
35
- };
36
-
37
- // Most of the code is assuming that both input tensors are ColMajor. If the
38
- // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
39
- // If we want to compute A * B = C, where A is LHS and B is RHS, the code
40
- // will pretend B is LHS and A is RHS.
41
- typedef typename internal::conditional<
42
- static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
43
- typedef typename internal::conditional<
44
- static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
45
-
46
- static const int LDims =
47
- internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
48
- static const int RDims =
49
- internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
50
- static const int ContractDims = internal::array_size<Indices>::value;
51
-
52
- typedef array<Index, LDims> left_dim_mapper_t;
53
- typedef array<Index, RDims> right_dim_mapper_t;
54
-
55
- typedef array<Index, ContractDims> contract_t;
56
- typedef array<Index, LDims - ContractDims> left_nocontract_t;
57
- typedef array<Index, RDims - ContractDims> right_nocontract_t;
58
-
59
- static const int NumDims = LDims + RDims - 2 * ContractDims;
60
-
61
- typedef DSizes<Index, NumDims> Dimensions;
62
-
63
- // typedefs needed in evalTo
64
- typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
65
- typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
66
- typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
67
-
68
- typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
69
- typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
70
-
71
- TensorEvaluator(const XprType& op, const Device& device) :
72
- Base(op, device) {}
73
-
74
- template <int Alignment>
75
- void evalProduct(Scalar* buffer) const {
76
- evalProductImpl<NoCallback, Alignment>(buffer, NoCallback());
77
- }
78
-
79
- template <typename EvalToCallback, int Alignment>
80
- void evalProductAsync(Scalar* buffer, EvalToCallback done) const {
81
- evalProductImpl<EvalToCallback, Alignment>(buffer, std::move(done));
82
- }
83
-
84
- template <typename DoneCallback, int Alignment>
85
- void evalProductImpl(Scalar* buffer, DoneCallback done) const {
86
- // This function computes a lot of heuristics in multiple steps, and it
87
- // also has multiple exit points. To keep it sane, readable and all in one
88
- // place, sync/async execution decision is made at runtime at the very end.
89
- //
90
- // (1) In sync mode we allocate Context on the stack, submit computations
91
- // to the device thread pool, and block on a barrier until it is
92
- // completed.
93
- //
94
- // (2) In async mode we allocate Context on the heap, and after all tasks
95
- // are finished, we call provided the done callback, and delete a
96
- // context from the heap.
97
- //
98
- // (*) EvalParallelContext & EvalShardedByInnerDimContext owns all the state
99
- // and temporary buffers, requried for executing the tensor contraction.
100
- // They are responsible for cleaning it up after contraction is done.
101
- static const bool IsEvalInSyncMode =
102
- std::is_same<DoneCallback, NoCallback>::value;
103
-
104
- const Index m = this->m_i_size;
105
- const Index n = this->m_j_size;
106
- const Index k = this->m_k_size;
107
- if (m == 0 || n == 0 || k == 0) return;
108
-
109
- // Compute a set of algorithm parameters:
110
- // - kernel block sizes (bm, bn, bk)
111
- // - task grain sizes (number of kernels executed per task: gm, gn)
112
- // - number of threads
113
- // - sharding by row/column
114
- // - parallel packing or first lhs then rhs
115
- // and some derived parameters:
116
- // - number of tasks (nm, nn, nk)
117
- // - number of kernels (nm0, nn0)
118
- // Unfortunately, all these parameters are tightly interdependent.
119
- // So in some cases we first compute approximate values, then compute other
120
- // values based on these approximations and then refine the approximations.
121
-
122
- // There are lots of heuristics here. There is some reasoning behind them,
123
- // but ultimately they are just tuned on contraction benchmarks for
124
- // different input configurations, thread counts and instruction sets.
125
- // So feel free to question any of them.
126
-
127
- // Compute whether we want to shard by row or by column.
128
- // This is a first approximation, it will be refined later. Since we don't
129
- // know number of threads yet we use 2, because what's we are most
130
- // interested in at this point is whether it makes sense to use
131
- // parallelization at all or not.
132
- bool shard_by_col = shardByCol(m, n, 2);
133
-
134
- // First approximation of kernel blocking sizes.
135
- // Again, we don't know number of threads yet, so we use 2.
136
- Index bm, bn, bk;
137
- if (shard_by_col) {
138
- internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index,
139
- internal::ShardByCol>
140
- blocking(k, m, n, 2);
141
- bm = blocking.mc();
142
- bn = blocking.nc();
143
- bk = blocking.kc();
144
- } else {
145
- internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index,
146
- internal::ShardByRow>
147
- blocking(k, m, n, 2);
148
- bm = blocking.mc();
149
- bn = blocking.nc();
150
- bk = blocking.kc();
151
- }
152
-
153
- // Compute optimal number of threads.
154
- // Note: we use bk instead of k here because we are interested in amount of
155
- // _parallelizable_ computations, and computations are not parallelizable
156
- // across k dimension.
157
- const TensorOpCost cost =
158
- contractionCost(m, n, bm, bn, bk, shard_by_col, false);
159
- int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
160
- static_cast<double>(n) * m, cost, this->m_device.numThreads());
161
- int num_threads_by_k = numThreadsInnerDim(m, n, k);
162
- if (shardByInnerDim(m, n, k, num_threads, num_threads_by_k)) {
163
- // We are in the scenario where it is more effective to shard by the
164
- // inner dimension.
165
- if (IsEvalInSyncMode) {
166
- EvalShardedByInnerDimContext<DoneCallback> ctx(
167
- this, num_threads_by_k, buffer, m, n, k, std::move(done));
168
- ctx.template run<Alignment>();
169
- } else {
170
- auto* ctx = new EvalShardedByInnerDimContext<DoneCallback>(
171
- this, num_threads_by_k, buffer, m, n, k, std::move(done));
172
- ctx->template runAsync<Alignment>();
173
- }
174
-
175
- return;
176
- }
177
-
178
- // TODO(dvyukov): this is a stop-gap to prevent regressions while the cost
179
- // model is not tuned. Remove this when the cost model is tuned.
180
- if (n == 1) num_threads = 1;
181
-
182
- if (num_threads == 1) {
183
- TENSOR_CONTRACTION_DISPATCH(this->template evalProductSequential,
184
- Unaligned, (buffer));
185
- if (!IsEvalInSyncMode) done();
186
- return;
187
- }
188
-
189
- // Now that we know number of threads, recalculate sharding and blocking.
190
- shard_by_col = shardByCol(m, n, num_threads);
191
- if (shard_by_col) {
192
- internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index,
193
- internal::ShardByCol>
194
- blocking(k, m, n, num_threads);
195
- bm = blocking.mc();
196
- bn = blocking.nc();
197
- bk = blocking.kc();
198
- } else {
199
- internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index,
200
- internal::ShardByRow>
201
- blocking(k, m, n, num_threads);
202
- bm = blocking.mc();
203
- bn = blocking.nc();
204
- bk = blocking.kc();
205
- }
206
-
207
- // Number of kernels for each dimension.
208
- Index nm0 = divup(m, bm);
209
- Index nn0 = divup(n, bn);
210
- Index nk = divup(k, bk);
211
-
212
- // Calculate task grain size (number of kernels executed per task).
213
- // This task size coarsening serves two purposes:
214
- // 1. It reduces per-task overheads including synchronization overheads.
215
- // 2. It allows to use caches better (reuse the same packed rhs in several
216
- // consecutive kernels).
217
- Index gm = 1;
218
- Index gn = 1;
219
- // If we are sharding by column, then we prefer to reduce rows first.
220
- if (shard_by_col) {
221
- gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
222
- gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
223
- } else {
224
- gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
225
- gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
226
- }
227
- // Number of tasks in each dimension.
228
- Index nm = divup(nm0, gm);
229
- Index nn = divup(nn0, gn);
230
-
231
- // If there is enough concurrency in the sharding dimension, we choose not
232
- // to paralellize by the other dimension, and execute all kernels in sync
233
- // mode. This reduces parallelism from the nm x nn down to nn
234
- // (shard_by_col==true) or nm (shard_by_col==false).
235
- const Index sharding_dim_tasks = shard_by_col ? nn : nm;
236
- const int num_worker_threads = this->m_device.numThreadsInPool();
237
-
238
- // With small number of threads we want to make sure that we do not reduce
239
- // parallelism too much. With large number of threads we trade maximum
240
- // parallelism for better memory locality.
241
- const float oversharding_factor =
242
- num_worker_threads <= 4 ? 8.0 :
243
- num_worker_threads <= 8 ? 4.0 :
244
- num_worker_threads <= 16 ? 2.0 :
245
- num_worker_threads <= 32 ? 1.0 :
246
- num_worker_threads <= 64 ? 0.8 : /* num_worker_threads > 64 */ 0.6;
247
-
248
- const bool parallelize_by_sharding_dim_only =
249
- sharding_dim_tasks >= oversharding_factor * num_worker_threads;
250
-
251
- // Last by not least, decide whether we want to issue both lhs and rhs
252
- // packing in parallel; or issue lhs packing first, and then issue rhs
253
- // packing when lhs packing completes (for !shard_by_col lhs and rhs are
254
- // swapped). Parallel packing allows more parallelism (for both packing and
255
- // kernels), while sequential packing provides better locality (once
256
- // a thread finishes rhs packing it proceed to kernels with that rhs).
257
- // First, we are interested in parallel packing if there are few tasks.
258
- bool parallel_pack = num_threads >= nm * nn;
259
- // Also do parallel packing if all data fits into L2$.
260
- if (m * bk * Index(sizeof(LhsScalar)) + n * bk * Index(sizeof(RhsScalar)) <=
261
- l2CacheSize() * num_threads)
262
- parallel_pack = true;
263
- // But don't do it if we will use each rhs only once. Locality seems to be
264
- // more important in this case.
265
- if ((shard_by_col ? nm : nn) == 1) parallel_pack = false;
266
- // Also don't get in the way of parallelize_by_sharding_dim_only
267
- // optimization.
268
- if (parallelize_by_sharding_dim_only) parallel_pack = false;
269
-
270
- // TODO(ezhulnev): With if contexpr we don't need SyncEvalParallelContext.
271
- if (IsEvalInSyncMode) {
272
- #define CONTEXT_ARGS \
273
- (this, num_threads, buffer, m, n, k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, \
274
- nn0, shard_by_col, parallel_pack, parallelize_by_sharding_dim_only, \
275
- NoCallback()) \
276
- .run()
277
- TENSOR_CONTRACTION_DISPATCH(SyncEvalParallelContext, Alignment,
278
- CONTEXT_ARGS);
279
- #undef CONTEXT_ARGS
280
-
281
- } else {
282
- #define CONTEXT_ARGS \
283
- (this, num_threads, buffer, m, n, k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, \
284
- nn0, shard_by_col, parallel_pack, parallelize_by_sharding_dim_only, \
285
- std::move(done))
286
- TENSOR_CONTRACTION_ASYNC_DISPATCH(EvalParallelContext, DoneCallback,
287
- Alignment, CONTEXT_ARGS, run());
288
- #undef CONTEXT_ARGS
289
- }
290
- }
291
-
292
- // ------------------------------------------------------------------------ //
293
-
294
- // Dummy struct to represent an empty DoneCallback.
295
-
296
- struct NoCallback {
297
- void operator()() {
298
- eigen_assert(false && "NoCallback should never be called");
299
- }
300
- };
301
-
302
- // ------------------------------------------------------------------------ //
303
-
304
- template <typename DoneCallback, typename Context>
305
- class EvalParallelNotification;
306
-
307
- // Synchronous evaluation notification that blocks caller thread in Wait().
308
- template <typename Context>
309
- class EvalParallelNotification<NoCallback, Context> {
310
- public:
311
- EvalParallelNotification(Context*, NoCallback) {}
312
- void Notify() { done_.Notify(); }
313
- void Wait() { done_.Wait(); }
314
- private:
315
- Eigen::Notification done_;
316
- };
317
-
318
- // Asynchronous evaluation notification that does not block in Wait().
319
- template <typename DoneCallback, typename Context>
320
- class EvalParallelNotification {
321
- public:
322
- EvalParallelNotification(Context* ctx, DoneCallback done)
323
- : ctx_(ctx), done_(std::move(done)) {}
324
-
325
- void Notify() {
326
- // Make a copy of done callback, because it will be destructed when we
327
- // will delete context in the next line (EvalParallelNotification is a
328
- // data member of EvalParallelContext class).
329
- DoneCallback done_copy = std::move(done_);
330
-
331
- // Delete parallel evaluation context.
332
- delete ctx_;
333
-
334
- // Now safely call the done callback.
335
- done_copy();
336
- }
337
-
338
- void Wait() {}
339
-
340
- private:
341
- Context* ctx_;
342
- DoneCallback done_;
343
- };
344
-
345
- // Context orchestrates sync/async parallel contraction evaluation. When it is
346
- // executed in asynchronous mode, it owns all the shared state that might be
347
- // accessible by block packing and kernel tasks.
348
-
349
- template <typename DoneCallback, bool lhs_inner_dim_contiguous,
350
- bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered,
351
- int Alignment>
352
- class EvalParallelContext {
353
- public:
354
- typedef internal::TensorContractionInputMapper<
355
- LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t,
356
- contract_t, internal::packet_traits<LhsScalar>::size,
357
- lhs_inner_dim_contiguous, false, Unaligned>
358
- LhsMapper;
359
- typedef internal::TensorContractionInputMapper<
360
- RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t,
361
- contract_t, internal::packet_traits<RhsScalar>::size,
362
- rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned>
363
- RhsMapper;
364
-
365
- typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
366
-
367
- typedef internal::TensorContractionKernel<
368
- Scalar, LhsScalar, RhsScalar, Index, OutputMapper, LhsMapper, RhsMapper>
369
- TensorContractionKernel;
370
-
371
- typedef typename TensorContractionKernel::LhsBlock LhsBlock;
372
- typedef typename TensorContractionKernel::RhsBlock RhsBlock;
373
- typedef typename TensorContractionKernel::BlockMemHandle BlockMemHandle;
374
-
375
- EvalParallelContext(const Self* self, int num_threads, Scalar* buffer,
376
- Index tm, Index tn, Index tk, Index bm, Index bn,
377
- Index bk, Index nm, Index nn, Index nk, Index gm,
378
- Index gn, Index nm0, Index nn0, bool shard_by_col,
379
- bool parallel_pack,
380
- bool parallelize_by_sharding_dim_only,
381
- DoneCallback done)
382
- : created_by_thread_id_(std::this_thread::get_id()),
383
- done_(this, std::move(done)),
384
- device_(self->m_device),
385
- lhs_(self->m_leftImpl, self->m_left_nocontract_strides,
386
- self->m_i_strides, self->m_left_contracting_strides,
387
- self->m_k_strides),
388
- rhs_(self->m_rightImpl, self->m_right_nocontract_strides,
389
- self->m_j_strides, self->m_right_contracting_strides,
390
- self->m_k_strides),
391
- buffer_(buffer),
392
- output_(buffer, tm),
393
- output_kernel_(self->m_output_kernel),
394
- tensor_contraction_params_(self->m_tensor_contraction_params),
395
- num_threads_(num_threads),
396
- shard_by_col_(shard_by_col),
397
- parallel_pack_(parallel_pack),
398
- parallelize_by_sharding_dim_only_(parallelize_by_sharding_dim_only),
399
- m_(tm),
400
- n_(tn),
401
- k_(tk),
402
- bm_(bm),
403
- bn_(bn),
404
- bk_(bk),
405
- nm_(nm),
406
- nn_(nn),
407
- nk_(nk),
408
- gm_(gm),
409
- gn_(gn),
410
- nm0_(nm0),
411
- nn0_(nn0),
412
- kernel_(m_, k_, n_, bm_, bk_, bn_),
413
- num_thread_local_allocations_(0),
414
- // We reserve 2X more capacity for a thread local values, than the
415
- // number of threads in the pool to efficiently handle task stealing
416
- // by threads that are not managed by the pool.
417
- thread_local_capacity(2 * (parallelize_by_sharding_dim_only_
418
- ? device_.numThreadsInPool()
419
- : 0)),
420
- // We will use only one of the Lhs/Rhs thread local storage depending
421
- // on the shard_by_col value and we parallelize by sharding dim ONLY.
422
- lhs_thread_local_blocks_(shard_by_col_ ? 0 : thread_local_capacity,
423
- {*this}, {*this}),
424
- rhs_thread_local_blocks_(shard_by_col_ ? thread_local_capacity : 0,
425
- {*this}, {*this}) {
426
- // These two options are mutually exclusive.
427
- eigen_assert(!(parallel_pack && parallelize_by_sharding_dim_only));
428
-
429
- for (Index x = 0; x < P; x++) {
430
- // Normal number of notifications for k slice switch is
431
- // nm_ + nn_ + nm_ * nn_. However, first P - 1 slices will receive only
432
- // nm_ + nn_ notifications, because they will not receive notifications
433
- // from preceding kernels.
434
- state_switch_[x] =
435
- x == 0
436
- ? 1
437
- : (parallel_pack_ ? nn_ + nm_ : (shard_by_col_ ? nn_ : nm_)) +
438
- (x == P - 1 ? nm_ * nn_ : 0);
439
- state_packing_ready_[x] =
440
- parallel_pack_ ? 0 : (shard_by_col_ ? nm_ : nn_);
441
- state_kernel_[x] = new std::atomic<uint8_t>*[nm_];
442
- for (Index m = 0; m < nm_; m++) {
443
- state_kernel_[x][m] = new std::atomic<uint8_t>[nn_];
444
- // Kernels generally receive 3 notifications (previous kernel + 2
445
- // packing), but the first slice won't get notifications from previous
446
- // kernels.
447
- for (Index n = 0; n < nn_; n++)
448
- state_kernel_[x][m][n].store(
449
- (x == 0 ? 0 : 1) + (parallel_pack_ ? 2 : 1),
450
- std::memory_order_relaxed);
451
- }
452
- }
453
-
454
- // Allocate memory for packed rhs/lhs matrices.
455
- packed_mem_ = kernel_.allocateSlices( //
456
- device_, //
457
- /*num_lhs=*/nm0_, //
458
- /*num_rhs=*/nn0_, //
459
- /*num_slices=*/std::min<Index>(nk_, P - 1), //
460
- packed_lhs_, packed_rhs_);
461
-
462
- if (parallelize_by_sharding_dim_only_) {
463
- const int num_worker_threads = device_.numThreadsInPool();
464
-
465
- if (shard_by_col) {
466
- can_use_thread_local_packed_ = new std::atomic<bool>[nn_];
467
- for (int i = 0; i < nn_; ++i)
468
- can_use_thread_local_packed_[i].store(true,
469
- std::memory_order_relaxed);
470
-
471
- Index num_blocks = num_worker_threads * gn_;
472
- thread_local_pre_alocated_mem_ = kernel_.allocateSlices( //
473
- device_, //
474
- /*num_lhs=*/0, //
475
- /*num_rhs=*/num_blocks, //
476
- /*num_slices=*/1, //
477
- /*lhs_blocks=*/nullptr, &rhs_thread_local_pre_allocated_);
478
-
479
- } else {
480
- can_use_thread_local_packed_ = new std::atomic<bool>[nm_];
481
- for (int i = 0; i < nm_; ++i)
482
- can_use_thread_local_packed_[i].store(true,
483
- std::memory_order_relaxed);
484
-
485
- Index num_blocks = num_worker_threads * gm_;
486
- thread_local_pre_alocated_mem_ = kernel_.allocateSlices( //
487
- device_, //
488
- /*num_lhs=*/num_blocks, //
489
- /*num_rhs=*/0, //
490
- /*num_slices=*/1, &lhs_thread_local_pre_allocated_, //
491
- /*rhs_blocks=*/nullptr);
492
- }
493
- }
494
- }
495
-
496
- ~EvalParallelContext() {
497
- for (Index x = 0; x < P; x++) {
498
- for (Index m = 0; m < nm_; m++) delete[] state_kernel_[x][m];
499
- delete[] state_kernel_[x];
500
- }
501
- kernel_.deallocate(device_, packed_mem_);
502
- if (parallelize_by_sharding_dim_only_) {
503
- kernel_.deallocate(device_, thread_local_pre_alocated_mem_);
504
- delete[] can_use_thread_local_packed_;
505
- }
506
- }
507
-
508
- void run() {
509
- // Kick off packing of the first slice.
510
- signal_switch(0, 1);
511
-
512
- // Wait for overall completion.
513
- //
514
- // If parallel evaluation is executed in async mode, this is a no-op, and
515
- // Wait() will return immediately. In synchronous mode it will block the
516
- // caller thread until it will receive notification from last task.
517
- //
518
- // In async mode, last task when completed will call done callback from
519
- // the same thread, and will delete this context.
520
- //
521
- // TODO(dvyukov): This wait can lead to deadlock if contraction is
522
- // evaluated in synchronous mode. If nthreads contractions are
523
- // concurrently submitted from worker threads, this wait will block all
524
- // worker threads and the system will deadlock.
525
- done_.Wait();
526
- }
527
-
528
- private:
529
- std::thread::id created_by_thread_id_;
530
-
531
- // This notification is specialized on the type of DoneCallback and can be
532
- // blocking or non-blocking.
533
- EvalParallelNotification<DoneCallback, EvalParallelContext> done_;
534
-
535
- const Device& device_;
536
- LhsMapper lhs_;
537
- RhsMapper rhs_;
538
- Scalar* const buffer_;
539
- OutputMapper output_;
540
- OutputKernelType output_kernel_;
541
- TensorContractionParams tensor_contraction_params_;
542
- const int num_threads_;
543
- const bool shard_by_col_;
544
- const bool parallel_pack_;
545
- const bool parallelize_by_sharding_dim_only_;
546
- // Matrix sizes.
547
- const Index m_;
548
- const Index n_;
549
- const Index k_;
550
- // Block sizes.
551
- const Index bm_;
552
- const Index bn_;
553
- const Index bk_;
554
- // Number of tasks.
555
- const Index nm_;
556
- const Index nn_;
557
- const Index nk_;
558
- // Task grain sizes (number of kernels executed per task).
559
- const Index gm_;
560
- const Index gn_;
561
- // Number of blocks (this is different from ni_/nn_ because of task size
562
- // coarsening).
563
- const Index nm0_;
564
- const Index nn0_;
565
- // Tensor contraction kernel.
566
- TensorContractionKernel kernel_;
567
-
568
- // Parallelization strategy.
569
- //
570
- // Blocks related to the same k block can run in parallel because they write
571
- // to different output blocks. So we parallelize within k slices, this
572
- // gives us parallelism level of m x n. Before we can start any kernels
573
- // related to k-th slice, we need to issue m lhs packing tasks and n rhs
574
- // packing tasks.
575
- //
576
- // However, there is a bottleneck when we are finishing kernels for k-th
577
- // slice (at the very end there is only 1 runnable kernel). To mitigate this
578
- // bottleneck we allow kernels from k-th and k+1-th slices to run in
579
- // parallel. Note that (m, n, k) and (m, n, k+1) kernels write to the same
580
- // output block, so they must not run in parallel.
581
- //
582
- // This gives us the following dependency graph.
583
- // On each k slice we have m x n kernel tasks, m lhs paking tasks and n rhs
584
- // packing tasks.
585
- // Kernel (m, n, k) can start when:
586
- // - kernel (m, n, k-1) has finished
587
- // - lhs packing (m, k) has finished
588
- // - rhs packing (n, k) has finished
589
- // Lhs/rhs packing can start when:
590
- // - all k-1 packing has finished (artificially imposed to limit amount of
591
- // parallel packing)
592
- //
593
- // On top of that we limit runnable tasks to two consecutive k slices.
594
- // This is done to limit amount of memory we need for packed lhs/rhs
595
- // (for each k slice we need m*bk + n*bk memory in packed_lhs_/packed_rhs_).
596
- //
597
- // state_switch_ tracks when we are ready to switch to the next k slice.
598
- // state_kernel_[m][n] tracks when we are ready to kick off kernel (m, n).
599
- // These variable are rolling over 3 consecutive k slices: first two we are
600
- // actively executing + one to track completion of kernels in the second
601
- // slice.
602
- static const Index P = 3;
603
-
604
- // Handle to the allocated temporary storage for Lhs/Rhs blocks.
605
- BlockMemHandle packed_mem_;
606
- std::vector<LhsBlock> packed_lhs_[P - 1];
607
- std::vector<RhsBlock> packed_rhs_[P - 1];
608
-
609
- // If we choose to parallelize only by the sharding dimension, each thread
610
- // will have it's own "thead local" (not a c++ thread local storage) memory
611
- // for packed_lhs or packed_rhs (shard_by_col = false of true). This memory
612
- // can't be passed to a kernel that might execute on a different thread.
613
- //
614
- // In practice when we are ready to pack memory for the sharding dimension
615
- // (rhs if shard_by_col==true) of the K-th slice, all kernels for K-1 slice
616
- // already computed (99% of the time), and we can pack data into the thread
617
- // local storage, and guarantee that all the kernels will be executed
618
- // immediately in the same thread. This significantly increases L1 cache hit
619
- // ratio and reduces pressure on the memory bus.
620
- //
621
- // It's still possible that kernel for the K-th slice will be ready before
622
- // completion of the K-1 kernel, so we have to allocate "global" packed_lhs_
623
- // and packed_rhs_ to allow kernels to be executed later on a thread
624
- // different from the thread that was used for packing.
625
-
626
- // Handle for pre-allocated thread local memory buffers.
627
- BlockMemHandle thread_local_pre_alocated_mem_;
628
-
629
- // Only one of these will be initialized depending on shard_by_col value
630
- // (the size will be `num_worker_threads * num_grains_in_the_sharding_dim`).
631
- std::vector<LhsBlock> lhs_thread_local_pre_allocated_;
632
- std::vector<RhsBlock> rhs_thread_local_pre_allocated_;
633
-
634
- // How many thread local blocks were already allocated.
635
- std::atomic<int> num_thread_local_allocations_;
636
- const int thread_local_capacity;
637
-
638
- // We will use pre-allocated Lhs/Rhs blocks defined above, if the number of
639
- // unique threads in a system is below or equal to the number of threads in
640
- // a thread pool. We will fallback on dynamic memory allocation after that.
641
-
642
- // ThreadLocalBlocks is a container for Lhs or Rhs thread local buffers. Its
643
- // size is equal to the grain size in Lhs/Rhs sharding dimension.
644
- template <typename BlockType>
645
- class ThreadLocalBlocks {
646
- public:
647
- ThreadLocalBlocks() = default;
648
-
649
- ThreadLocalBlocks(BlockType* base, size_t grain_size)
650
- : is_pre_allocated_(true),
651
- thread_local_pre_allocated_base_(base),
652
- grain_size_(grain_size) {}
653
-
654
- ThreadLocalBlocks(BlockMemHandle mem_handle,
655
- std::vector<BlockType> blocks)
656
- : is_pre_allocated_(false),
657
- mem_handle_(std::move(mem_handle)),
658
- blocks_(std::move(blocks)) {}
659
-
660
- BlockType& block(int grain_index) {
661
- eigen_assert(grain_index >= 0);
662
- eigen_assert(static_cast<size_t>(grain_index) < size());
663
- return is_pre_allocated_ ? thread_local_pre_allocated_base_[grain_index]
664
- : blocks_[grain_index];
665
- }
666
-
667
- void Release(EvalParallelContext& ctx) const {
668
- if (!is_pre_allocated_) {
669
- ctx.kernel_.deallocate(ctx.device_, mem_handle_);
670
- }
671
- }
672
-
673
- size_t size() const {
674
- return is_pre_allocated_ ? grain_size_ : blocks_.size();
675
- }
676
-
677
- private:
678
- bool is_pre_allocated_;
679
-
680
- // Reuse pre-allocated thread local buffers.
681
- BlockType* thread_local_pre_allocated_base_ = nullptr;
682
- size_t grain_size_ = 0;
683
-
684
- // These will be initialized only if `is_pre_allocated == false`.
685
- BlockMemHandle mem_handle_{};
686
- std::vector<BlockType> blocks_;
687
- };
688
-
689
- // ThreadLocalBlocksInitialize callable does custom thread local blocks
690
- // initialization, and will reuse pre-allocated buffers if possible, or will
691
- // dynamically allocate new memory.
692
- //
693
- // Lhs/Rhs blocks might be of the same type, so we have to pass explicitly
694
- // for what side do we plan to do block allocation.
695
- template <typename BlockType, bool is_rhs>
696
- class ThreadLocalBlocksInitialize {
697
- static constexpr bool kIsLhs =
698
- !is_rhs && std::is_same<BlockType, LhsBlock>::value;
699
- static const bool kIsRhs =
700
- is_rhs && std::is_same<BlockType, RhsBlock>::value;
701
- static_assert(kIsLhs || kIsRhs, "Unkown block type");
702
-
703
- using Blocks = ThreadLocalBlocks<BlockType>;
704
-
705
- public:
706
- ThreadLocalBlocksInitialize(EvalParallelContext& ctx)
707
- : ctx_(ctx),
708
- num_worker_threads_(ctx_.device_.numThreadsInPool()) {}
709
-
710
- void operator()(Blocks& blocks) {
711
- const int n = ctx_.num_thread_local_allocations_.fetch_add(
712
- 1, std::memory_order_relaxed);
713
-
714
- if (n >= num_worker_threads_) {
715
- ThreadLocalBlocksAllocator<is_rhs>::allocate(ctx_, blocks);
716
- } else {
717
- ThreadLocalBlocksAllocator<is_rhs>::reuse(ctx_, n, blocks);
718
- }
719
- }
720
-
721
- private:
722
- // NOTE(ezhulenev): Without 'if constexpr' we have to put calls to
723
- // TensorContractionKernel::allocateSlices into template specializations.
724
- // Also explicit specializations are not allowed at class scope in C++03,
725
- // EvalCtx type parameter is just a workaround for that limitation.
726
- template <bool pack_rhs, typename EvalCtx = EvalParallelContext>
727
- struct ThreadLocalBlocksAllocator;
728
-
729
- template <typename EvalCtx>
730
- struct ThreadLocalBlocksAllocator</*pack_rhs=*/true, EvalCtx> {
731
- static void allocate(EvalCtx& ctx, Blocks& blocks) {
732
- std::vector<RhsBlock> rhs_blocks;
733
- BlockMemHandle mem_handle = ctx.kernel_.allocateSlices(
734
- ctx.device_,
735
- /*num_lhs=*/0,
736
- /*num_rhs=*/ctx.gn_,
737
- /*num_slices=*/1,
738
- /*lhs_blocks=*/nullptr, /*rhs_blocks=*/&rhs_blocks);
739
-
740
- blocks = ThreadLocalBlocks<RhsBlock>(std::move(mem_handle),
741
- std::move(rhs_blocks));
742
- }
743
-
744
- static void reuse(EvalCtx& ctx, int index, Blocks& blocks) {
745
- RhsBlock* ptr = &ctx.rhs_thread_local_pre_allocated_[ctx.gn_ * index];
746
- blocks = ThreadLocalBlocks<RhsBlock>(ptr, ctx.gn_);
747
- }
748
- };
749
-
750
- template <typename EvalCtx>
751
- struct ThreadLocalBlocksAllocator</*pack_rhs=*/false, EvalCtx> {
752
- static void allocate(EvalCtx& ctx, Blocks& blocks) {
753
- std::vector<LhsBlock> lhs_blocks;
754
- BlockMemHandle mem_handle = ctx.kernel_.allocateSlices(
755
- ctx.device_,
756
- /*num_lhs=*/ctx.gm_,
757
- /*num_rhs=*/0,
758
- /*num_slices=*/1,
759
- /*lhs_blocks=*/&lhs_blocks, /*rhs_blocks=*/nullptr);
760
-
761
- blocks = ThreadLocalBlocks<LhsBlock>(std::move(mem_handle),
762
- std::move(lhs_blocks));
763
- }
764
-
765
- static void reuse(EvalCtx& ctx, int index, Blocks& blocks) {
766
- LhsBlock* ptr = &ctx.lhs_thread_local_pre_allocated_[ctx.gm_ * index];
767
- blocks = ThreadLocalBlocks<LhsBlock>(ptr, ctx.gm_);
768
- }
769
- };
770
-
771
- EvalParallelContext& ctx_;
772
- const int num_worker_threads_;
773
- };
774
-
775
- template <typename BlockType>
776
- class ThreadLocalBlocksRelease {
777
- public:
778
- using Blocks = ThreadLocalBlocks<BlockType>;
779
- ThreadLocalBlocksRelease(EvalParallelContext& ctx) : ctx_(ctx) {}
780
- void operator()(Blocks& blocks) { blocks.Release(ctx_); }
781
-
782
- private:
783
- EvalParallelContext& ctx_;
784
- };
785
-
786
- // ThreadLocalBlocks initialization callables.
787
- using ThreadLocalLhsInit =
788
- ThreadLocalBlocksInitialize<LhsBlock, /*is_rhs=*/false>;
789
- using ThreadLocalRhsInit =
790
- ThreadLocalBlocksInitialize<RhsBlock, /*is_rhs=*/true>;
791
-
792
- // ThreadLocalBlocks release callables.
793
- using ThreadLocalLhsRelease = ThreadLocalBlocksRelease<LhsBlock>;
794
- using ThreadLocalRhsRelease = ThreadLocalBlocksRelease<RhsBlock>;
795
-
796
- // Thread local containers for Lhs/Rhs block packs. In practice only one of
797
- // them will be used, depending on the shard_by_col value.
798
- Eigen::ThreadLocal<ThreadLocalBlocks<LhsBlock>, ThreadLocalLhsInit,
799
- ThreadLocalLhsRelease>
800
- lhs_thread_local_blocks_;
801
- Eigen::ThreadLocal<ThreadLocalBlocks<RhsBlock>, ThreadLocalRhsInit,
802
- ThreadLocalRhsRelease>
803
- rhs_thread_local_blocks_;
804
-
805
- // After a particular shard for Kth slice missed thread local execution
806
- // opportunity (K-1 slice didn't complete kernels execution), we can no
807
- // longer schedule K+1 and following slices in thread local mode, because
808
- // there is no more guarantee that previous kernels were executed
809
- // sequentially in the same thread (size is nn_ or nm_).
810
- std::atomic<bool>* can_use_thread_local_packed_;
811
-
812
- std::atomic<uint8_t>** state_kernel_[P];
813
- // state_switch_ is frequently modified by worker threads, while other
814
- // fields are read-only after constructor. Let's move it to a separate cache
815
- // line to reduce cache-coherency traffic.
816
- char pad_[128];
817
- std::atomic<Index> state_packing_ready_[P];
818
- std::atomic<Index> state_switch_[P];
819
-
820
- LhsBlock& packed_lhs(Index m, Index k, Index m1, bool use_thread_local) {
821
- if (use_thread_local) {
822
- eigen_assert(!shard_by_col_);
823
- ThreadLocalBlocks<LhsBlock>& blocks = lhs_thread_local_blocks_.local();
824
-
825
- Index grain_index = m1 - m * gm_;
826
- return blocks.block(internal::convert_index<int>(grain_index)); // FIXME better make ThreadLocalBlocks use Eigen::Index?
827
- } else {
828
- return packed_lhs_[k % (P - 1)][m1];
829
- }
830
- }
831
-
832
- RhsBlock& packed_rhs(Index n, Index k, Index n1, bool use_thread_local) {
833
- if (use_thread_local) {
834
- eigen_assert(shard_by_col_);
835
- ThreadLocalBlocks<RhsBlock>& blocks = rhs_thread_local_blocks_.local();
836
-
837
- Index grain_index = n1 - n * gn_;
838
- return blocks.block(internal::convert_index<int>(grain_index)); // FIXME better make ThreadLocalBlocks use Eigen::Index?
839
- } else {
840
- return packed_rhs_[k % (P - 1)][n1];
841
- }
842
- }
843
-
844
- // In following two methods (pack_lhs and pack_rhs), if we know for sure
845
- // that we'll be able to immediately call a kernel with packed data, and do
846
- // not submit it to the thread pool, we can use thread local memory for
847
- // packed data.
848
- //
849
- // We can only reliably check it if we are running all kernels in sync mode
850
- // (parallelize only by sharding dim). If kernel for m==0 (n==0) is ready to
851
- // run, it's guaranteed that all kernels with larger values of m (n) are
852
- // also ready, because we execute them in the same order for all K slices.
853
-
854
- void pack_lhs(Index m, Index k) {
855
- bool use_thread_local = false;
856
-
857
- if (parallelize_by_sharding_dim_only_ && !shard_by_col_ &&
858
- can_use_thread_local_packed_[m].load(std::memory_order_relaxed)) {
859
- if (state_kernel_[k % P][m][0].load(std::memory_order_relaxed) == 1) {
860
- use_thread_local = true;
861
- } else {
862
- // If we can't guarantee that all kernels in `k` slice will be
863
- // executed sequentially in current thread, it's no longer safe to use
864
- // thread local memory in following slices along the k dimensions.
865
- eigen_assert(k > 0);
866
- can_use_thread_local_packed_[m].store(false,
867
- std::memory_order_relaxed);
868
- }
869
- }
870
-
871
- const Index mend = m * gm_ + gm(m);
872
- for (Index m1 = m * gm_; m1 < mend; m1++)
873
- kernel_.packLhs(&packed_lhs(m, k, m1, use_thread_local),
874
- lhs_.getSubMapper(m1 * bm_, k * bk_), bk(k), bm(m1));
875
-
876
- if (!parallel_pack_ && shard_by_col_) {
877
- assert(!use_thread_local);
878
- signal_packing(k);
879
- } else {
880
- signal_switch(k + 1);
881
- for (Index n = nn_ - 1; n >= 0; n--) {
882
- bool sync = parallelize_by_sharding_dim_only_ || n == 0;
883
- signal_kernel(m, n, k, sync, use_thread_local);
884
- }
885
- }
886
- }
887
-
888
- void pack_rhs(Index n, Index k) {
889
- bool use_thread_local = false;
890
-
891
- if (parallelize_by_sharding_dim_only_ && shard_by_col_ &&
892
- can_use_thread_local_packed_[n].load(std::memory_order_relaxed)) {
893
- if (state_kernel_[k % P][0][n].load(std::memory_order_relaxed) == 1) {
894
- use_thread_local = true;
895
- } else {
896
- // If we can't guarantee that all kernels in `k` slice will be
897
- // executed sequentially in current thread, it's no longer safe to use
898
- // thread local memory in followig slices along the k dimensions.
899
- eigen_assert(k > 0);
900
- can_use_thread_local_packed_[n].store(false,
901
- std::memory_order_relaxed);
902
- }
903
- }
904
-
905
- const Index nend = n * gn_ + gn(n);
906
- for (Index n1 = n * gn_; n1 < nend; n1++) {
907
- if (!TensorContractionKernel::HasBeta && k == 0) {
908
- // Zero the output memory in parallel, only if contraction kernel does
909
- // not support `beta`. Otherwise we will pass beta 0.0 to the first
910
- // call to the `TensorContractionKernel::invoke()`.
911
- //
912
- // On 10000x2x10000 mm zeroing can easily take half of time. Zero (bn
913
- // x m) row. Safe to do here because all kernels that will write to
914
- // this memory depend on completion of this task. Note: don't call
915
- // device_.memset() here. device_.memset() blocks on thread pool
916
- // worker thread, which can lead to underutilization and deadlocks.
917
- memset(buffer_ + n1 * bn_ * m_, 0, bn(n1) * m_ * sizeof(Scalar));
918
- }
919
- kernel_.packRhs(&packed_rhs(n, k, n1, use_thread_local),
920
- rhs_.getSubMapper(k * bk_, n1 * bn_), bk(k), bn(n1));
921
- }
922
-
923
- if (parallel_pack_ || shard_by_col_) {
924
- signal_switch(k + 1);
925
- for (Index m = nm_ - 1; m >= 0; m--) {
926
- bool sync = parallelize_by_sharding_dim_only_ || m == 0;
927
- signal_kernel(m, n, k, sync, use_thread_local);
928
- }
929
- } else {
930
- assert(!use_thread_local);
931
- signal_packing(k);
932
- }
933
- }
934
-
935
- void kernel(Index m, Index n, Index k, bool use_thread_local) {
936
- // Note: order of iteration matters here. Iteration over m is innermost
937
- // because we want to reuse the same packed rhs in consecutive tasks
938
- // (rhs fits into L2$ while lhs only into L3$).
939
- const Index nend = n * gn_ + gn(n);
940
- const Index mend = m * gm_ + gm(m);
941
-
942
- // NOTE: output = alpha * LHS * RHS + beta * output.
943
- const Scalar alpha = Scalar(1);
944
- const Scalar beta =
945
- (TensorContractionKernel::HasBeta && k == 0) ? Scalar(0) : Scalar(1);
946
-
947
- if (shard_by_col_) {
948
- for (Index n1 = n * gn_; n1 < nend; n1++) {
949
- for (Index m1 = m * gm_; m1 < mend; m1++) {
950
- const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
951
- kernel_.invoke(
952
- output_mapper,
953
- packed_lhs(m, k, m1, !shard_by_col_ && use_thread_local),
954
- packed_rhs(n, k, n1, shard_by_col_ && use_thread_local), bm(m1),
955
- bk(k), bn(n1), alpha, beta);
956
-
957
- // We are done with the last task for the [m1, n1] block.
958
- if (k + 1 == nk_) {
959
- output_kernel_(output_mapper, tensor_contraction_params_,
960
- m1 * bm_, n1 * bn_, bm(m1), bn(n1));
961
- }
962
- }
963
- }
964
- } else {
965
- for (Index m1 = m * gm_; m1 < mend; m1++)
966
- for (Index n1 = n * gn_; n1 < nend; n1++) {
967
- const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
968
- kernel_.invoke(
969
- output_mapper,
970
- packed_lhs(m, k, m1, !shard_by_col_ && use_thread_local),
971
- packed_rhs(n, k, n1, shard_by_col_ && use_thread_local), bm(m1),
972
- bk(k), bn(n1), alpha, beta);
973
-
974
- // We are done with the last task for the [m1, n1] block.
975
- if (k + 1 == nk_) {
976
- output_kernel_(output_mapper, tensor_contraction_params_,
977
- m1 * bm_, n1 * bn_, bm(m1), bn(n1));
978
- }
979
- }
980
- }
981
- signal_kernel(m, n, k + 1, /*sync=*/false, /*use_thread_local=*/false);
982
- signal_switch(k + 2);
983
- }
984
-
985
- void signal_packing(Index k) {
986
- eigen_assert(!parallel_pack_);
987
- Index s = state_packing_ready_[k % P].fetch_sub(1);
988
- eigen_assert(s > 0);
989
- if (s != 1) return;
990
- state_packing_ready_[k % P] = shard_by_col_ ? nm_ : nn_;
991
- enqueue_packing(k, shard_by_col_);
992
- }
993
-
994
- void signal_kernel(Index m, Index n, Index k, bool sync,
995
- bool use_thread_local) {
996
- std::atomic<uint8_t>* state = &state_kernel_[k % P][m][n];
997
- Index s = state->load();
998
- eigen_assert(s > 0);
999
- if (s != 1 && state->fetch_sub(1) != 1) {
1000
- eigen_assert(!use_thread_local);
1001
- return;
1002
- }
1003
- state->store(parallel_pack_ ? 3 : 2, std::memory_order_relaxed);
1004
- if (sync) {
1005
- kernel(m, n, k, use_thread_local);
1006
- } else {
1007
- eigen_assert(!use_thread_local);
1008
- device_.enqueueNoNotification(
1009
- [=]() { kernel(m, n, k, use_thread_local); });
1010
- }
1011
- }
1012
-
1013
- void signal_switch(Index k, Index v = 1) {
1014
- Index s = state_switch_[k % P].fetch_sub(v);
1015
- eigen_assert(s >= v);
1016
- if (s != v) return;
1017
-
1018
- // Ready to switch to the next k slice.
1019
- // Reset counter for the next iteration.
1020
- state_switch_[k % P] =
1021
- (parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)) +
1022
- nm_ * nn_;
1023
- if (k < nk_) {
1024
- // Issue lhs/rhs packing. Their completion will in turn kick off
1025
- // kernels.
1026
- if (parallel_pack_) {
1027
- enqueue_packing(k, !shard_by_col_);
1028
- enqueue_packing(k, shard_by_col_);
1029
- } else if (shard_by_col_) {
1030
- enqueue_packing(k, false);
1031
- } else {
1032
- enqueue_packing(k, true);
1033
- }
1034
-
1035
- // Termination handling.
1036
- // Because kernel completion signals k + 2 switch, we need to finish nk
1037
- // + 2 slices without issuing any tasks on nk + 1 slice. So here we
1038
- // pretend that all nk + 1 packing tasks just finish instantly; so that
1039
- // nk + 2 switch only waits for completion of nk kernels.
1040
- } else if (k == nk_) {
1041
- signal_switch(k + 1,
1042
- parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_));
1043
- } else {
1044
- done_.Notify();
1045
- }
1046
- }
1047
-
1048
- // Enqueue all rhs/lhs packing for k-th slice.
1049
- void enqueue_packing(Index k, bool rhs) {
1050
- enqueue_packing_helper(0, rhs ? nn_ : nm_, k, rhs);
1051
- }
1052
-
1053
- void enqueue_packing_helper(Index start, Index end, Index k, bool rhs) {
1054
- if (end - start == 1) {
1055
- if (rhs)
1056
- pack_rhs(start, k);
1057
- else
1058
- pack_lhs(start, k);
1059
- } else {
1060
- while (end - start > 1) {
1061
- Index mid = (start + end) / 2;
1062
- device_.enqueueNoNotification(
1063
- [=]() { enqueue_packing_helper(mid, end, k, rhs); });
1064
- end = mid;
1065
- }
1066
-
1067
- // Decide if we want to run first packing task (start == 0) in
1068
- // async mode if we parallelize only by sharding dim:
1069
- // (1) pack_lhs and pack_rhs call signal_switch before completing
1070
- // all calls to signal_kernel, which in sync mode might lead
1071
- // to the execution of the first kernel of the k+1 slice, before
1072
- // completing a call to the last kernel of the k slice.
1073
- // (2) all pack tasks for sharded dim must be executed in a thread
1074
- // pool to get pre-allocated thead local buffers.
1075
- bool pack_async =
1076
- (start == 0) &&
1077
- (parallelize_by_sharding_dim_only_&& shard_by_col_ == rhs) &&
1078
- (k > 0 || std::this_thread::get_id() == created_by_thread_id_);
1079
-
1080
- if (pack_async) {
1081
- device_.enqueueNoNotification(
1082
- [=]() { enqueue_packing_helper(start, end, k, rhs); });
1083
- } else {
1084
- enqueue_packing_helper(start, end, k, rhs);
1085
- }
1086
- }
1087
- }
1088
-
1089
- // Block sizes with accounting for potentially incomplete last block.
1090
- Index bm(Index m) const { return m + 1 < nm0_ ? bm_ : m_ + bm_ - bm_ * nm0_; }
1091
- Index bn(Index n) const { return n + 1 < nn0_ ? bn_ : n_ + bn_ - bn_ * nn0_; }
1092
- Index bk(Index k) const { return k + 1 < nk_ ? bk_ : k_ + bk_ - bk_ * nk_; }
1093
- // Task grain sizes accounting for potentially incomplete last task.
1094
- Index gm(Index m) const { return m + 1 < nm_ ? gm_ : nm0_ + gm_ - gm_ * nm_; }
1095
- Index gn(Index n) const { return n + 1 < nn_ ? gn_ : nn0_ + gn_ - gn_ * nn_; }
1096
-
1097
- EvalParallelContext(const EvalParallelContext&) = delete;
1098
- void operator=(const EvalParallelContext&) = delete;
1099
- };
1100
-
1101
- template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
1102
- bool rhs_inner_dim_reordered, int Alignment>
1103
- using SyncEvalParallelContext =
1104
- EvalParallelContext<NoCallback, lhs_inner_dim_contiguous,
1105
- rhs_inner_dim_contiguous, rhs_inner_dim_reordered,
1106
- Alignment>;
1107
-
1108
- // ------------------------------------------------------------------------ //
1109
-
1110
- // EvalShardedByInnerDimContext orchestrates sync/async contraction
1111
- // evaluation, when we shard by inner dimension. When it is executed in
1112
- // asynchronous mode, it owns all the shared state that might be accessible by
1113
- // block processing tasks.
1114
-
1115
- template <typename DoneCallback>
1116
- struct EvalShardedByInnerDimContext {
1117
- EvalShardedByInnerDimContext(const Self* self, int num_threads,
1118
- Scalar* result_buffer,
1119
- Index m_size, Index n_size, Index k_size,
1120
- DoneCallback done_callback)
1121
- : evaluator(self),
1122
- m_lhs_inner_dim_contiguous(evaluator->m_lhs_inner_dim_contiguous),
1123
- m_rhs_inner_dim_contiguous(evaluator->m_rhs_inner_dim_contiguous),
1124
- m_rhs_inner_dim_reordered(evaluator->m_rhs_inner_dim_reordered),
1125
- result(result_buffer),
1126
- m(m_size),
1127
- n(n_size),
1128
- k(k_size),
1129
- done(std::move(done_callback)),
1130
- buffer_size_bytes(m * n * sizeof(Scalar)),
1131
- block_size(blockSize(k, num_threads)),
1132
- num_blocks(divup<Index>(k, block_size)),
1133
- num_pending_blocks(internal::convert_index<int>(num_blocks)),
1134
- l0_ranges(divup<Index>(num_blocks, l0_size)),
1135
- l0_state(l0_ranges),
1136
- block_buffers(num_blocks) {
1137
- // Keep count of pending gemm tasks for each l0 range.
1138
- for (int i = 0; i < l0_ranges; ++i) {
1139
- const Index num_pending_tasks = actualRangeSize(l0_ranges, l0_size, i);
1140
- l0_state.emplace_back(internal::convert_index<int>(num_pending_tasks));
1141
- }
1142
-
1143
- // Allocate temporary buffers for each block.
1144
- for (Index block_idx = 0; block_idx < num_blocks; ++block_idx) {
1145
- Scalar* buf = block_idx == 0
1146
- ? result
1147
- : static_cast<Scalar*>(evaluator->m_device.allocate(
1148
- buffer_size_bytes));
1149
- block_buffers.emplace_back(buf);
1150
- }
1151
- }
1152
-
1153
- ~EvalShardedByInnerDimContext() {
1154
- for (Index i = 1; i < num_blocks; ++i) {
1155
- evaluator->m_device.deallocate(block_buffers[i]);
1156
- }
1157
- }
1158
-
1159
- template <int Alignment>
1160
- void run() {
1161
- Barrier barrier(internal::convert_index<int>(num_blocks));
1162
- eval<Alignment>(barrier, 0, num_blocks);
1163
- barrier.Wait();
1164
-
1165
- // Aggregate partial sums from l0 ranges.
1166
- aggregateL0Blocks<Alignment>();
1167
-
1168
- // Apply output kernel.
1169
- applyOutputKernel();
1170
- }
1171
-
1172
- template <int Alignment>
1173
- void runAsync() {
1174
- evalAsync<Alignment>(0, num_blocks);
1175
- }
1176
-
1177
- private:
1178
- // The underlying GEMM kernel assumes that k is a multiple of
1179
- // the packet size and subtle breakage occurs if this is violated.
1180
- static const Index packet_size = internal::packet_traits<RhsScalar>::size;
1181
-
1182
- const Self* evaluator; // TensorContraction evaluator
1183
-
1184
- // These fields required fromTENSOR_CONTRACTION_DISPATCH macro.
1185
- bool m_lhs_inner_dim_contiguous;
1186
- bool m_rhs_inner_dim_contiguous;
1187
- bool m_rhs_inner_dim_reordered;
1188
-
1189
- Scalar* result;
1190
-
1191
- Index m;
1192
- Index n;
1193
- Index k;
1194
-
1195
- DoneCallback done;
1196
-
1197
- // ----------------------------------------------------------------------//
1198
- // Algorithm parameters.
1199
-
1200
- // We will compute partial results into the buffers of this size.
1201
- Index buffer_size_bytes;
1202
-
1203
- Index block_size;
1204
- Index num_blocks;
1205
-
1206
- // Keep track of pending tasks when evaluate in async mode.
1207
- std::atomic<int> num_pending_blocks;
1208
-
1209
- // We compute partial gemm results in parallel, and to get the final result
1210
- // we need to add them all together. For the large number of threads (>= 48)
1211
- // this adds a very expensive sequential step at the end.
1212
- //
1213
- // We split the [0, num_blocks) into small ranges, and when a task for the
1214
- // block finishes its partial gemm computation, it checks if it was the last
1215
- // gemm in the range, and if so, it will add all blocks of the range.
1216
- //
1217
- // After all tasks done, we need to add only these pre-aggregated blocks.
1218
-
1219
- // For now we use just a single level of ranges to compute pre-aggregated
1220
- // partial sums, but in general we can use more layers to compute tree
1221
- // aggregation in parallel and reduce the size of the sequential step.
1222
- //
1223
- // TODO(ezhulenev): Add multilevel tree aggregation? Probably will make
1224
- // sense only if number of threads >= ~128?
1225
- static const Index l0_size = 4;
1226
- Index l0_ranges;
1227
-
1228
- // Keep count of pending gemm tasks for each l0 range.
1229
- MaxSizeVector<std::atomic<int>> l0_state; // [0, l0_ranges)
1230
-
1231
- // Buffers allocated for each temporary block computation.
1232
- MaxSizeVector<Scalar*> block_buffers; // [0, num_blocks)
1233
-
1234
- template <int Alignment>
1235
- void processBlock(Index block_idx, Index begin, Index end) {
1236
- Scalar* buf = block_buffers[block_idx];
1237
-
1238
- TENSOR_CONTRACTION_DISPATCH(
1239
- evaluator->template evalGemmPartialWithoutOutputKernel, Alignment,
1240
- (buf, begin, end,
1241
- /*num_threads=*/internal::convert_index<int>(num_blocks)));
1242
-
1243
- // Check if it was the last task in l0 range.
1244
- const Index l0_index = block_idx / l0_size;
1245
- const int v = l0_state[l0_index].fetch_sub(1);
1246
- eigen_assert(v >= 1);
1247
-
1248
- // If we processed the last block of the range, we can aggregate all
1249
- // partial results into the first block of the range.
1250
- if (v == 1) {
1251
- const Index rng_size = actualRangeSize(l0_ranges, l0_size, l0_index);
1252
- const Index dst_block_idx = l0_index * l0_size;
1253
-
1254
- if (rng_size == l0_size) {
1255
- addAllToBuffer<Alignment>(
1256
- m * n,
1257
- /*src_buf0=*/block_buffers[dst_block_idx + 1],
1258
- /*src_buf1=*/block_buffers[dst_block_idx + 2],
1259
- /*src_buf2=*/block_buffers[dst_block_idx + 3],
1260
- /*dst_buf= */ block_buffers[dst_block_idx]);
1261
- } else {
1262
- // Aggregate blocks of potentially incomplete last range.
1263
- for (int i = 1; i < rng_size; ++i) {
1264
- addToBuffer<Alignment>(m * n,
1265
- /*src_buf=*/block_buffers[dst_block_idx + i],
1266
- /*dst_buf=*/block_buffers[dst_block_idx]);
1267
- }
1268
- }
1269
- }
1270
- }
1271
-
1272
- // Aggregate partial sums from l0 ranges.
1273
- template <int Alignment>
1274
- void aggregateL0Blocks() const {
1275
- Index l0_index = 1;
1276
-
1277
- for (; l0_index + 2 < l0_ranges; l0_index += 3) {
1278
- addAllToBuffer<Alignment>(
1279
- m * n,
1280
- /*src_buf0=*/block_buffers[(l0_index + 0) * l0_size],
1281
- /*src_buf1=*/block_buffers[(l0_index + 1) * l0_size],
1282
- /*src_buf2=*/block_buffers[(l0_index + 2) * l0_size],
1283
- /*dst_buf= */ block_buffers[0]);
1284
- }
1285
-
1286
- for (; l0_index < l0_ranges; ++l0_index) {
1287
- addToBuffer<Alignment>(m * n, block_buffers[l0_index * l0_size],
1288
- block_buffers[0]);
1289
- }
1290
- }
1291
-
1292
- void applyOutputKernel() const {
1293
- typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
1294
- evaluator->m_output_kernel(
1295
- OutputMapper(result, m), evaluator->m_tensor_contraction_params,
1296
- static_cast<Eigen::Index>(0), static_cast<Eigen::Index>(0), m, n);
1297
- }
1298
-
1299
- // Compute block size with accounting for potentially incomplete last block.
1300
- Index actualBlockSize(Index block_idx) const {
1301
- return block_idx + 1 < num_blocks
1302
- ? block_size
1303
- : k + block_size - block_size * num_blocks;
1304
- };
1305
-
1306
- // Compute range size with accounting for potentially incomplete last range.
1307
- Index actualRangeSize(Index num_ranges, Index range_size,
1308
- Index range_idx) const {
1309
- eigen_assert(range_idx < num_ranges);
1310
- return range_idx + 1 < num_ranges
1311
- ? range_size
1312
- : num_blocks + range_size - range_size * num_ranges;
1313
- };
1314
-
1315
- template <int Alignment>
1316
- EIGEN_STRONG_INLINE static void addToBuffer(size_t n, const Scalar* src_buf,
1317
- Scalar* tgt_buf) {
1318
- const int output_packet_size =
1319
- internal::unpacket_traits<PacketReturnType>::size;
1320
- size_t i = 0;
1321
- const size_t num_packets = n / output_packet_size;
1322
- for (; i < output_packet_size * num_packets; i += output_packet_size) {
1323
- const PacketReturnType src_val =
1324
- internal::pload<PacketReturnType>(src_buf + i);
1325
- const PacketReturnType tgt_val =
1326
- internal::ploadt<PacketReturnType, Alignment>(tgt_buf + i);
1327
- const PacketReturnType sum = internal::padd(src_val, tgt_val);
1328
- internal::pstoret<Scalar, PacketReturnType, Alignment>(tgt_buf + i,
1329
- sum);
1330
- }
1331
- for (; i < n; ++i) {
1332
- tgt_buf[i] += src_buf[i];
1333
- }
1334
- }
1335
-
1336
- template <int Alignment>
1337
- EIGEN_STRONG_INLINE static void addAllToBuffer(size_t n,
1338
- const Scalar* src_buf0,
1339
- const Scalar* src_buf1,
1340
- const Scalar* src_buf2,
1341
- Scalar* dst_buf) {
1342
- using ::Eigen::internal::padd;
1343
- using ::Eigen::internal::pload;
1344
- using ::Eigen::internal::ploadt;
1345
- using ::Eigen::internal::pstoret;
1346
-
1347
- const int output_packet_size =
1348
- internal::unpacket_traits<PacketReturnType>::size;
1349
-
1350
- size_t i = 0;
1351
- const size_t num_packets = n / output_packet_size;
1352
- for (; i < output_packet_size * num_packets; i += output_packet_size) {
1353
- const auto src_val0 = pload<PacketReturnType>(src_buf0 + i);
1354
- const auto src_val1 = pload<PacketReturnType>(src_buf1 + i);
1355
- const auto src_val2 = pload<PacketReturnType>(src_buf2 + i);
1356
-
1357
- const auto dst_val = ploadt<PacketReturnType, Alignment>(dst_buf + i);
1358
- const auto sum =
1359
- padd(padd(dst_val, src_val0), padd(src_val1, src_val2));
1360
-
1361
- pstoret<Scalar, PacketReturnType, Alignment>(dst_buf + i, sum);
1362
- }
1363
- for (; i < n; ++i) {
1364
- dst_buf[i] += src_buf0[i] + src_buf1[i] + src_buf2[i];
1365
- }
1366
- }
1367
-
1368
- template <int Alignment>
1369
- void eval(Barrier& barrier, Index start_block_idx, Index end_block_idx) {
1370
- while (end_block_idx - start_block_idx > 1) {
1371
- Index mid_block_idx = (start_block_idx + end_block_idx) / 2;
1372
- evaluator->m_device.enqueueNoNotification(
1373
- [this, &barrier, mid_block_idx, end_block_idx]() {
1374
- eval<Alignment>(barrier, mid_block_idx, end_block_idx);
1375
- });
1376
- end_block_idx = mid_block_idx;
1377
- }
1378
-
1379
- Index block_idx = start_block_idx;
1380
- Index block_start = block_idx * block_size;
1381
- Index block_end = block_start + actualBlockSize(block_idx);
1382
-
1383
- processBlock<Alignment>(block_idx, block_start, block_end);
1384
- barrier.Notify();
1385
- }
1386
-
1387
- template <int Alignment>
1388
- void evalAsync(Index start_block_idx, Index end_block_idx) {
1389
- while (end_block_idx - start_block_idx > 1) {
1390
- Index mid_block_idx = (start_block_idx + end_block_idx) / 2;
1391
- evaluator->m_device.enqueueNoNotification(
1392
- [this, mid_block_idx, end_block_idx]() {
1393
- evalAsync<Alignment>(mid_block_idx, end_block_idx);
1394
- });
1395
- end_block_idx = mid_block_idx;
1396
- }
1397
-
1398
- Index block_idx = start_block_idx;
1399
-
1400
- Index block_start = block_idx * block_size;
1401
- Index block_end = block_start + actualBlockSize(block_idx);
1402
-
1403
- processBlock<Alignment>(block_idx, block_start, block_end);
1404
-
1405
- int v = num_pending_blocks.fetch_sub(1);
1406
- eigen_assert(v >= 1);
1407
-
1408
- if (v == 1) {
1409
- // Aggregate partial sums from l0 ranges.
1410
- aggregateL0Blocks<Alignment>();
1411
-
1412
- // Apply output kernel.
1413
- applyOutputKernel();
1414
-
1415
- // NOTE: If we call `done` callback before deleting this (context),
1416
- // it might deallocate Self* pointer captured by context, and we'll
1417
- // fail in destructor trying to deallocate temporary buffers.
1418
-
1419
- // Move done call back from context before it will be destructed.
1420
- DoneCallback done_copy = std::move(done);
1421
-
1422
- // We are confident that we are the last one who touches context.
1423
- delete this;
1424
-
1425
- // Now safely call the done callback.
1426
- done_copy();
1427
- }
1428
- }
1429
-
1430
- // Cost model doesn't capture well the cost associated with constructing
1431
- // tensor contraction mappers and computing loop bounds in gemm_pack_lhs
1432
- // and gemm_pack_rhs, so we specify minimum desired block size.
1433
- static Index blockSize(Index k, int num_threads) {
1434
- const auto round_up = [=](Index index) -> Index {
1435
- const Index kmultiple = packet_size <= 8 ? 8 : packet_size;
1436
- return divup<Index>(index, kmultiple) * kmultiple;
1437
- };
1438
-
1439
- const Index target_block_size = round_up(divup<Index>(k, num_threads));
1440
- const Index desired_min_block_size = 12 * packet_size;
1441
-
1442
- return numext::mini<Index>(
1443
- k, numext::maxi<Index>(desired_min_block_size, target_block_size));
1444
- }
1445
-
1446
- EvalShardedByInnerDimContext(const EvalShardedByInnerDimContext&) = delete;
1447
- void operator=(const EvalShardedByInnerDimContext&) = delete;
1448
- };
1449
-
1450
- // ------------------------------------------------------------------------ //
1451
-
1452
- // Below are the function used by evalProductImpl heuristics, trying to select
1453
- // optimcal parameters for parallelization algorithm.
1454
-
1455
- // Decide whether we want to shard m x n contraction by columns or by rows.
1456
- static bool shardByCol(Index m, Index n, Index num_threads) {
1457
- // Note: we are comparing both n and m against Traits::nr, it is not
1458
- // a mistake. We are trying to figure out how both n and m will fit into
1459
- // the main sharding dimension.
1460
-
1461
- // Sharding by column is the default
1462
- // ... unless there is enough data for vectorization over rows
1463
- if (m / num_threads >= Traits::nr &&
1464
- // and not enough data for vectorization over columns
1465
- (n / num_threads < Traits::nr ||
1466
- // ... or barely enough data for vectorization over columns,
1467
- // but it is not evenly dividable across threads
1468
- (n / num_threads < 4 * Traits::nr &&
1469
- (n % (num_threads * Traits::nr)) != 0 &&
1470
- // ... and it is evenly dividable across threads for rows
1471
- ((m % (num_threads * Traits::nr)) == 0 ||
1472
- // .. or it is not evenly dividable for both dimensions but
1473
- // there is much more data over rows so that corner effects are
1474
- // mitigated.
1475
- (m / n >= 6)))))
1476
- return false;
1477
- // Wait, or if matrices are just substantially prolonged over the other
1478
- // dimension.
1479
- if (n / num_threads < 16 * Traits::nr && m > n * 32) return false;
1480
- return true;
1481
- }
1482
-
1483
- Index coarsenM(Index m, Index n, Index bm, Index bn, Index bk, Index gn,
1484
- int num_threads, bool shard_by_col) const {
1485
- Index gm = 1;
1486
- Index gm1 = 1;
1487
- Index nm0 = divup(m, bm);
1488
- Index nm1 = nm0;
1489
- for (;;) {
1490
- // Find the next candidate for m grain size. It needs to result in
1491
- // different number of blocks. E.g. if we have 10 kernels, we want to try
1492
- // 5 and 10, but not 6, 7, 8 and 9.
1493
- while (gm1 <= nm0 && nm1 == divup(nm0, gm1)) gm1++;
1494
- if (gm1 > nm0) break;
1495
- // Check the candidate.
1496
- int res = checkGrain(m, n, bm, bn, bk, gm1, gn, gm, gn, num_threads,
1497
- shard_by_col);
1498
- if (res < 0) break;
1499
- nm1 = divup(nm0, gm1);
1500
- if (res == 0) continue;
1501
- // Commit new grain size.
1502
- gm = gm1;
1503
- }
1504
- return gm;
1505
- }
1506
-
1507
- Index coarsenN(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
1508
- int num_threads, bool shard_by_col) const {
1509
- Index gn = 1;
1510
- Index gn1 = 1;
1511
- Index nn0 = divup(n, bn);
1512
- Index nn1 = nn0;
1513
- for (;;) {
1514
- while (gn1 <= nn0 && nn1 == divup(nn0, gn1)) gn1++;
1515
- if (gn1 > nn0) break;
1516
- int res = checkGrain(m, n, bm, bn, bk, gm, gn1, gm, gn, num_threads,
1517
- shard_by_col);
1518
- if (res < 0) break;
1519
- nn1 = divup(nn0, gn1);
1520
- if (res == 0) continue;
1521
- gn = gn1;
1522
- }
1523
- return gn;
1524
- }
1525
-
1526
- // checkGrain checks whether grain (gm, gn) is suitable and is better than
1527
- // (oldgm, oldgn).
1528
- int checkGrain(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
1529
- Index gn, Index oldgm, Index oldgn, int num_threads,
1530
- bool shard_by_col) const {
1531
- const TensorOpCost cost =
1532
- contractionCost(bm * gm, bn * gn, bm, bn, bk, shard_by_col, true);
1533
- double taskSize = TensorCostModel<ThreadPoolDevice>::taskSize(
1534
- static_cast<double>(bm) * gm * bn * gn, cost);
1535
- // If the task is too small, then we agree on it regardless of anything
1536
- // else. Otherwise synchronization overheads will dominate.
1537
- if (taskSize < 1) return 1;
1538
- // If it is too large, then we reject it and all larger tasks.
1539
- if (taskSize > 2) return -1;
1540
- // Now we are in presumably good task size range.
1541
- // The main deciding factor here is parallelism. Consider that we have 12
1542
- // kernels and 4 threads. Grains of 2, 3 and 4 all yield good task sizes.
1543
- // But 2/4 yield 6/3 tasks, which gives us parallelism of 0.75 (at most 3/4
1544
- // of cores will be busy). While grain size 3 gives us 4 tasks, which gives
1545
- // us parallelism of 1 (we can load all cores).
1546
- Index nm0 = divup(m, bm);
1547
- Index nn0 = divup(n, bn);
1548
- Index new_tasks = divup(nm0, gm) * divup(nn0, gn);
1549
- double new_parallelism = static_cast<double>(new_tasks) /
1550
- (divup<int>(new_tasks, num_threads) * num_threads);
1551
- Index old_tasks = divup(nm0, oldgm) * divup(nn0, oldgn);
1552
- double old_parallelism = static_cast<double>(old_tasks) /
1553
- (divup<int>(old_tasks, num_threads) * num_threads);
1554
- if (new_parallelism > old_parallelism || new_parallelism == 1) return 1;
1555
- return 0;
1556
- }
1557
-
1558
- TensorOpCost contractionCost(Index m, Index n, Index bm, Index bn, Index bk,
1559
- bool shard_by_col, bool prepacked) const {
1560
- const int packed_size = std::min<int>(PacketType<LhsScalar, Device>::size,
1561
- PacketType<RhsScalar, Device>::size);
1562
- const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
1563
- const double kd = static_cast<double>(bk);
1564
- double compute_bandwidth = computeBandwidth(false, bm, bn, bk);
1565
- // Computations.
1566
- TensorOpCost cost = TensorOpCost(0, 0, kd * compute_bandwidth, true, packed_size);
1567
- // Output stores.
1568
- cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
1569
- if (prepacked) {
1570
- // Packing and kernels are executed in different tasks. When we calculate
1571
- // task grain size we look only at kernel cost assuming that kernel
1572
- // is more expensive than packing.
1573
- return cost;
1574
- }
1575
- // Lhs/rhs loads + computations.
1576
- TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * (kd / n);
1577
- TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * (kd / m);
1578
- // Lhs packing memory cost does not contribute considerably to overall
1579
- // execution time because lhs is prefetched early and accessed sequentially.
1580
- if (shard_by_col)
1581
- lhsCost.dropMemoryCost();
1582
- else
1583
- rhsCost.dropMemoryCost();
1584
- return cost + lhsCost + rhsCost;
1585
- }
1586
-
1587
- // Decide whether we want to shard m x k x n contraction over the inner
1588
- // (contraction) dimension (k).
1589
- static bool shardByInnerDim(Index m, Index n, Index k, int num_threads,
1590
- int num_threads_by_k) {
1591
- std::ptrdiff_t bufsize = m * n * sizeof(Scalar);
1592
- bool shard_by_k = false;
1593
- if (n == 1 || // If mat*vec or...
1594
- num_threads_by_k < 2 || // running single threaded or...
1595
- num_threads_by_k <
1596
- num_threads || // sharding by k gives less parallelism or...
1597
- bufsize > l3CacheSize() / num_threads_by_k || // need more buffer space
1598
- // than L3 cache or...
1599
- k / num_threads_by_k < 2 * Traits::nr) { // k per thread is tiny.
1600
- shard_by_k = false;
1601
- } else if (numext::maxi(m, n) / num_threads <
1602
- Traits::nr || // both other dimensions are tiny or...
1603
- // k per thread is not small and...
1604
- (k / num_threads_by_k > 8 * Traits::nr &&
1605
- // one of the outer dimensions is tiny or sharding by k offers
1606
- // more parallelism.
1607
- (numext::mini(m, n) < 2 * Traits::nr ||
1608
- num_threads_by_k > num_threads))) {
1609
- shard_by_k = true;
1610
- }
1611
- return shard_by_k;
1612
- }
1613
-
1614
- TensorOpCost contractionCostPerInnerDim(Index m, Index n, Index k) const {
1615
- // Compute cost.
1616
- const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
1617
- TensorOpCost cost(0, 0, (computeBandwidth(true, m, n, k) * m) * n, true, output_packet_size);
1618
- // Output stores.
1619
- cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
1620
- TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * m;
1621
- TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * n;
1622
- // Since the inner gemm kernel is always sharded by column, the lhs
1623
- // load cost is negligible.
1624
- lhsCost.dropMemoryCost();
1625
- return cost + lhsCost + rhsCost;
1626
- }
1627
-
1628
- int numThreadsInnerDim(Index m, Index n, Index k) const {
1629
- const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
1630
- TensorOpCost cost = contractionCostPerInnerDim(m, n, k);
1631
- double total_parallel_cost =
1632
- TensorCostModel<ThreadPoolDevice>::totalCost(k, cost);
1633
- // Cost of reduction step accumulating the m*n per-thread buffers into the
1634
- // result.
1635
- double reduction_cost = TensorCostModel<ThreadPoolDevice>::totalCost(
1636
- m * n, TensorOpCost(2, 1, 1, true, output_packet_size));
1637
- int num_threads = 1;
1638
- double min_cost = total_parallel_cost;
1639
- double kPerThreadOverHead = 3000;
1640
- double kFixedOverHead = 100000;
1641
- for (int nt = 2; nt <= this->m_device.numThreads(); nt += 2) {
1642
- double sequential_cost =
1643
- kFixedOverHead + nt * (reduction_cost + kPerThreadOverHead);
1644
- double parallel_cost = total_parallel_cost / nt + sequential_cost;
1645
- if (parallel_cost < min_cost) {
1646
- num_threads = nt;
1647
- min_cost = parallel_cost;
1648
- }
1649
- }
1650
- return num_threads;
1651
- }
1652
-
1653
- double computeBandwidth(bool shard_by_col, Index bm, Index bn,
1654
- Index bk) const {
1655
- // Peak VFMA bandwidth is 0.5. However if we have not enough data for
1656
- // vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined
1657
- // experimentally.
1658
- double computeBandwidth =
1659
- bk == 1 ? 4.0
1660
- : (shard_by_col ? bn : bm) < Traits::nr ||
1661
- (shard_by_col ? bm : bn) < Traits::mr
1662
- ? 2.0
1663
- : 0.5;
1664
- #ifndef EIGEN_VECTORIZE_FMA
1665
- // Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors.
1666
- // However for MULPS/ADDPS we have dependent sequence of 2 such
1667
- // instructions,
1668
- // so overall bandwidth is 1.0.
1669
- if (computeBandwidth == 0.5) computeBandwidth = 1.0;
1670
- #endif
1671
- return computeBandwidth;
1672
- }
1673
-
1674
- };
1675
-
1676
- } // end namespace Eigen
1677
-
1678
- #endif // EIGEN_USE_THREADS
1679
- #endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H