xprof-nightly 2.22.3a20251208__cp311-none-manylinux2014_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- xprof/__init__.py +22 -0
- xprof/convert/_pywrap_profiler_plugin.so +0 -0
- xprof/convert/csv_writer.py +87 -0
- xprof/convert/raw_to_tool_data.py +232 -0
- xprof/convert/trace_events_json.py +105 -0
- xprof/integration_tests/tf_mnist.py +100 -0
- xprof/integration_tests/tf_profiler_session.py +40 -0
- xprof/integration_tests/tpu/tensorflow/tpu_tf2_keras_test.py +183 -0
- xprof/profile_plugin.py +1521 -0
- xprof/profile_plugin_loader.py +82 -0
- xprof/protobuf/dcn_collective_info_pb2.py +44 -0
- xprof/protobuf/dcn_slack_analysis_pb2.py +42 -0
- xprof/protobuf/diagnostics_pb2.py +36 -0
- xprof/protobuf/event_time_fraction_analyzer_pb2.py +42 -0
- xprof/protobuf/hardware_types_pb2.py +40 -0
- xprof/protobuf/hlo_stats_pb2.py +39 -0
- xprof/protobuf/inference_stats_pb2.py +86 -0
- xprof/protobuf/input_pipeline_pb2.py +52 -0
- xprof/protobuf/kernel_stats_pb2.py +38 -0
- xprof/protobuf/memory_profile_pb2.py +54 -0
- xprof/protobuf/memory_viewer_preprocess_pb2.py +49 -0
- xprof/protobuf/op_metrics_pb2.py +65 -0
- xprof/protobuf/op_profile_pb2.py +49 -0
- xprof/protobuf/op_stats_pb2.py +71 -0
- xprof/protobuf/overview_page_pb2.py +64 -0
- xprof/protobuf/pod_stats_pb2.py +45 -0
- xprof/protobuf/pod_viewer_pb2.py +61 -0
- xprof/protobuf/power_metrics_pb2.py +38 -0
- xprof/protobuf/roofline_model_pb2.py +42 -0
- xprof/protobuf/smart_suggestion_pb2.py +38 -0
- xprof/protobuf/source_info_pb2.py +36 -0
- xprof/protobuf/source_stats_pb2.py +48 -0
- xprof/protobuf/steps_db_pb2.py +76 -0
- xprof/protobuf/task_pb2.py +37 -0
- xprof/protobuf/tf_data_stats_pb2.py +72 -0
- xprof/protobuf/tf_function_pb2.py +52 -0
- xprof/protobuf/tf_stats_pb2.py +40 -0
- xprof/protobuf/tfstreamz_pb2.py +40 -0
- xprof/protobuf/topology_pb2.py +50 -0
- xprof/protobuf/tpu_input_pipeline_pb2.py +43 -0
- xprof/protobuf/trace_events_old_pb2.py +54 -0
- xprof/protobuf/trace_events_pb2.py +64 -0
- xprof/protobuf/trace_events_raw_pb2.py +45 -0
- xprof/protobuf/trace_filter_config_pb2.py +40 -0
- xprof/server.py +319 -0
- xprof/standalone/base_plugin.py +52 -0
- xprof/standalone/context.py +22 -0
- xprof/standalone/data_provider.py +32 -0
- xprof/standalone/plugin_asset_util.py +131 -0
- xprof/standalone/plugin_event_multiplexer.py +185 -0
- xprof/standalone/tensorboard_shim.py +31 -0
- xprof/static/bundle.js +130500 -0
- xprof/static/index.html +64 -0
- xprof/static/index.js +3 -0
- xprof/static/materialicons.woff2 +0 -0
- xprof/static/styles.css +1 -0
- xprof/static/trace_viewer_index.html +3929 -0
- xprof/static/trace_viewer_index.js +15906 -0
- xprof/static/zone.js +3558 -0
- xprof/version.py +17 -0
- xprof_nightly-2.22.3a20251208.dist-info/METADATA +301 -0
- xprof_nightly-2.22.3a20251208.dist-info/RECORD +65 -0
- xprof_nightly-2.22.3a20251208.dist-info/WHEEL +5 -0
- xprof_nightly-2.22.3a20251208.dist-info/entry_points.txt +5 -0
- xprof_nightly-2.22.3a20251208.dist-info/top_level.txt +1 -0
xprof/version.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Version information for tensorboard-plugin-profile."""
|
|
16
|
+
|
|
17
|
+
__version__ = "2.22.3a20251208"
|
|
@@ -0,0 +1,301 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: xprof-nightly
|
|
3
|
+
Version: 2.22.3a20251208
|
|
4
|
+
Summary: XProf Profiler Plugin
|
|
5
|
+
Home-page: https://github.com/openxla/xprof
|
|
6
|
+
Author: Google Inc.
|
|
7
|
+
Author-email: packages@tensorflow.org
|
|
8
|
+
License: Apache 2.0
|
|
9
|
+
Keywords: jax pytorch xla tensorflow tensorboard xprof profile plugin
|
|
10
|
+
Classifier: Intended Audience :: Developers
|
|
11
|
+
Classifier: Intended Audience :: Education
|
|
12
|
+
Classifier: Intended Audience :: Science/Research
|
|
13
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
|
14
|
+
Classifier: Programming Language :: Python :: 2
|
|
15
|
+
Classifier: Programming Language :: Python :: 3
|
|
16
|
+
Classifier: Topic :: Scientific/Engineering :: Mathematics
|
|
17
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
18
|
+
Classifier: Topic :: Software Development :: Libraries
|
|
19
|
+
Requires-Python: >= 2.7, != 3.0.*, != 3.1.*
|
|
20
|
+
Description-Content-Type: text/markdown
|
|
21
|
+
Requires-Dist: gviz_api>=1.9.0
|
|
22
|
+
Requires-Dist: protobuf>=3.19.6
|
|
23
|
+
Requires-Dist: setuptools>=41.0.0
|
|
24
|
+
Requires-Dist: six>=1.10.0
|
|
25
|
+
Requires-Dist: werkzeug>=0.11.15
|
|
26
|
+
Requires-Dist: etils[epath]>=1.0.0
|
|
27
|
+
Requires-Dist: cheroot>=10.0.1
|
|
28
|
+
Requires-Dist: fsspec>=2024.3.1
|
|
29
|
+
Requires-Dist: gcsfs>=2024.3.1
|
|
30
|
+
Dynamic: author
|
|
31
|
+
Dynamic: author-email
|
|
32
|
+
Dynamic: classifier
|
|
33
|
+
Dynamic: description
|
|
34
|
+
Dynamic: description-content-type
|
|
35
|
+
Dynamic: home-page
|
|
36
|
+
Dynamic: keywords
|
|
37
|
+
Dynamic: license
|
|
38
|
+
Dynamic: requires-dist
|
|
39
|
+
Dynamic: requires-python
|
|
40
|
+
Dynamic: summary
|
|
41
|
+
|
|
42
|
+
# XProf (+ Tensorboard Profiler Plugin)
|
|
43
|
+
|
|
44
|
+
XProf offers a number of tools to analyse and visualize the
|
|
45
|
+
performance of your model across multiple devices. Some of the tools include:
|
|
46
|
+
|
|
47
|
+
* **Overview**: A high-level overview of the performance of your model. This
|
|
48
|
+
is an aggregated overview for your host and all devices. It includes:
|
|
49
|
+
* Performance summary and breakdown of step times.
|
|
50
|
+
* A graph of individual step times.
|
|
51
|
+
* High level details of the run environment.
|
|
52
|
+
* **Trace Viewer**: Displays a timeline of the execution of your model that shows:
|
|
53
|
+
* The duration of each op.
|
|
54
|
+
* Which part of the system (host or device) executed an op.
|
|
55
|
+
* The communication between devices.
|
|
56
|
+
* **Memory Profile Viewer**: Monitors the memory usage of your model.
|
|
57
|
+
* **Graph Viewer**: A visualization of the graph structure of HLOs of your model.
|
|
58
|
+
|
|
59
|
+
To learn more about the various XProf tools, check out the [XProf documentation](https://openxla.org/xprof)
|
|
60
|
+
|
|
61
|
+
## Demo
|
|
62
|
+
First time user? Come and check out this [Colab Demo](https://docs.jaxstack.ai/en/latest/JAX_for_LLM_pretraining.html).
|
|
63
|
+
|
|
64
|
+
## Quick Start
|
|
65
|
+
|
|
66
|
+
### Prerequisites
|
|
67
|
+
|
|
68
|
+
* xprof >= 2.20.0
|
|
69
|
+
* (optional) TensorBoard >= 2.20.0
|
|
70
|
+
|
|
71
|
+
Note: XProf requires access to the Internet to load the [Google Chart library](https://developers.google.com/chart/interactive/docs/basic_load_libs#basic-library-loading).
|
|
72
|
+
Some charts and tables may be missing if you run XProf entirely offline on
|
|
73
|
+
your local machine, behind a corporate firewall, or in a datacenter.
|
|
74
|
+
|
|
75
|
+
If you use Google Cloud to run your workloads, we recommend the
|
|
76
|
+
[xprofiler tool](https://github.com/AI-Hypercomputer/cloud-diagnostics-xprof).
|
|
77
|
+
It provides a streamlined profile collection and viewing experience using VMs
|
|
78
|
+
running XProf.
|
|
79
|
+
|
|
80
|
+
### Installation
|
|
81
|
+
|
|
82
|
+
To get the most recent release version of XProf, install it via pip:
|
|
83
|
+
|
|
84
|
+
```
|
|
85
|
+
$ pip install xprof
|
|
86
|
+
```
|
|
87
|
+
|
|
88
|
+
## Running XProf
|
|
89
|
+
|
|
90
|
+
XProf can be launched as a standalone server or used as a plugin within
|
|
91
|
+
TensorBoard. For large-scale use, it can be deployed in a distributed mode with
|
|
92
|
+
separate aggregator and worker instances ([more details on it later in the
|
|
93
|
+
doc](#distributed-profiling)).
|
|
94
|
+
|
|
95
|
+
### Command-Line Arguments
|
|
96
|
+
|
|
97
|
+
When launching XProf from the command line, you can use the following arguments:
|
|
98
|
+
|
|
99
|
+
* **`logdir`** (optional): The directory containing XProf profile data (files
|
|
100
|
+
ending in `.xplane.pb`). This can be provided as a positional argument or
|
|
101
|
+
with `-l` or `--logdir`. If provided, XProf will load and display profiles
|
|
102
|
+
from this directory. If omitted, XProf will start without loading any
|
|
103
|
+
profiles, and you can dynamically load profiles using `session_path` or
|
|
104
|
+
`run_path` URL parameters, as described in the [Log Directory
|
|
105
|
+
Structure](#log-directory-structure) section.
|
|
106
|
+
* **`-p <port>`**, **`--port <port>`**: The port for the XProf web server.
|
|
107
|
+
Defaults to `8791`.
|
|
108
|
+
* **`-gp <grpc_port>`**, **`--grpc_port <grpc_port>`**: The port for the gRPC
|
|
109
|
+
server used for distributed processing. Defaults to `50051`. This must be
|
|
110
|
+
different from `--port`.
|
|
111
|
+
* **`-wsa <addresses>`**, **`--worker_service_address <addresses>`**: A
|
|
112
|
+
comma-separated list of worker addresses (e.g., `host1:50051,host2:50051`)
|
|
113
|
+
for distributed processing. Defaults to to `0.0.0.0:<grpc_port>`.
|
|
114
|
+
* **`-hcpb`**, **`--hide_capture_profile_button`**: If set, hides the 'Capture
|
|
115
|
+
Profile' button in the UI.
|
|
116
|
+
|
|
117
|
+
### Standalone
|
|
118
|
+
|
|
119
|
+
If you have profile data in a directory (e.g., `profiler/demo`), you can view it
|
|
120
|
+
by running:
|
|
121
|
+
|
|
122
|
+
```
|
|
123
|
+
$ xprof profiler/demo --port=6006
|
|
124
|
+
```
|
|
125
|
+
|
|
126
|
+
Or with the optional flag:
|
|
127
|
+
|
|
128
|
+
```
|
|
129
|
+
$ xprof --logdir=profiler/demo --port=6006
|
|
130
|
+
```
|
|
131
|
+
|
|
132
|
+
### With TensorBoard
|
|
133
|
+
|
|
134
|
+
If you have TensorBoard installed, you can run:
|
|
135
|
+
|
|
136
|
+
```
|
|
137
|
+
$ tensorboard --logdir=profiler/demo
|
|
138
|
+
```
|
|
139
|
+
|
|
140
|
+
If you are behind a corporate firewall, you may need to include the `--bind_all`
|
|
141
|
+
tensorboard flag.
|
|
142
|
+
|
|
143
|
+
Go to `localhost:6006/#profile` of your browser, you should now see the demo
|
|
144
|
+
overview page show up.
|
|
145
|
+
Congratulations! You're now ready to capture a profile.
|
|
146
|
+
|
|
147
|
+
### Log Directory Structure
|
|
148
|
+
|
|
149
|
+
When using XProf, profile data must be placed in a specific directory structure.
|
|
150
|
+
XProf expects `.xplane.pb` files to be in the following path:
|
|
151
|
+
|
|
152
|
+
```
|
|
153
|
+
<log_dir>/plugins/profile/<session_name>/
|
|
154
|
+
```
|
|
155
|
+
|
|
156
|
+
* `<log_dir>`: This is the root directory that you supply to `tensorboard
|
|
157
|
+
--logdir`.
|
|
158
|
+
* `plugins/profile/`: This is a required subdirectory.
|
|
159
|
+
* `<session_name>/`: Each subdirectory inside `plugins/profile/` represents a
|
|
160
|
+
single profiling session. The name of this directory will appear in the
|
|
161
|
+
TensorBoard UI dropdown to select the session.
|
|
162
|
+
|
|
163
|
+
**Example:**
|
|
164
|
+
|
|
165
|
+
If your log directory is structured like this:
|
|
166
|
+
|
|
167
|
+
```
|
|
168
|
+
/path/to/your/log_dir/
|
|
169
|
+
└── plugins/
|
|
170
|
+
└── profile/
|
|
171
|
+
├── my_experiment_run_1/
|
|
172
|
+
│ └── host0.xplane.pb
|
|
173
|
+
└── benchmark_20251107/
|
|
174
|
+
└── host1.xplane.pb
|
|
175
|
+
```
|
|
176
|
+
|
|
177
|
+
You would launch TensorBoard with:
|
|
178
|
+
|
|
179
|
+
```bash
|
|
180
|
+
tensorboard --logdir /path/to/your/log_dir/
|
|
181
|
+
```
|
|
182
|
+
|
|
183
|
+
The runs `my_experiment_run_1` and `benchmark_20251107` will be available in the
|
|
184
|
+
"Sessions" tab of the UI.
|
|
185
|
+
|
|
186
|
+
You can also dynamically load sessions from a GCS bucket or local filesystem by
|
|
187
|
+
passing URL parameters when loading XProf in your browser. This method works
|
|
188
|
+
whether or not you provided a `logdir` at startup and is useful for viewing
|
|
189
|
+
profiles from various locations without restarting XProf.
|
|
190
|
+
|
|
191
|
+
For example, if you start XProf with no log directory:
|
|
192
|
+
|
|
193
|
+
```bash
|
|
194
|
+
xprof
|
|
195
|
+
```
|
|
196
|
+
|
|
197
|
+
You can load sessions using the following URL parameters.
|
|
198
|
+
|
|
199
|
+
Assume you have profile data stored on GCS or locally, structured like this:
|
|
200
|
+
|
|
201
|
+
```
|
|
202
|
+
gs://your-bucket/profile_runs/
|
|
203
|
+
├── my_experiment_run_1/
|
|
204
|
+
│ ├── host0.xplane.pb
|
|
205
|
+
│ └── host1.xplane.pb
|
|
206
|
+
└── benchmark_20251107/
|
|
207
|
+
└── host0.xplane.pb
|
|
208
|
+
```
|
|
209
|
+
|
|
210
|
+
There are two URL parameters you can use:
|
|
211
|
+
|
|
212
|
+
* **`session_path`**: Use this to load a *single* session directly. The path
|
|
213
|
+
should point to a directory containing `.xplane.pb` files for one session.
|
|
214
|
+
|
|
215
|
+
* GCS Example:
|
|
216
|
+
`http://localhost:8791/?session_path=gs://your-bucket/profile_runs/my_experiment_run_1`
|
|
217
|
+
* Local Path Example:
|
|
218
|
+
`http://localhost:8791/?session_path=/path/to/profile_runs/my_experiment_run_1`
|
|
219
|
+
* Result: XProf will load the `my_experiment_run_1`
|
|
220
|
+
session, and you will see its data in the UI.
|
|
221
|
+
|
|
222
|
+
* **`run_path`**: Use this to point to a directory that contains *multiple*
|
|
223
|
+
session directories.
|
|
224
|
+
|
|
225
|
+
* GCS Example:
|
|
226
|
+
`http://localhost:8791/?run_path=gs://your-bucket/profile_runs/`
|
|
227
|
+
* Local Path Example:
|
|
228
|
+
`http://localhost:8791/?run_path=/path/to/profile_runs/`
|
|
229
|
+
* Result: XProf will list all session directories found under `run_path`
|
|
230
|
+
(i.e., `my_experiment_run_1` and `benchmark_20251107`) in the "Sessions"
|
|
231
|
+
dropdown in the UI, allowing you to switch between them.
|
|
232
|
+
|
|
233
|
+
**Loading Precedence**
|
|
234
|
+
|
|
235
|
+
If multiple sources are provided, XProf uses the following order of precedence
|
|
236
|
+
to determine which profiles to load:
|
|
237
|
+
|
|
238
|
+
1. **`session_path`** URL parameter
|
|
239
|
+
2. **`run_path`** URL parameter
|
|
240
|
+
3. **`logdir`** command-line argument
|
|
241
|
+
|
|
242
|
+
### Distributed Profiling
|
|
243
|
+
|
|
244
|
+
XProf supports distributed profile processing by using an aggregator that
|
|
245
|
+
distributes work to multiple XProf workers. This is useful for processing large
|
|
246
|
+
profiles or handling multiple users.
|
|
247
|
+
|
|
248
|
+
**Note**: Currently, distributed processing only benefits the following tools:
|
|
249
|
+
`overview_page`, `framework_op_stats`, `input_pipeline`, and `pod_viewer`.
|
|
250
|
+
|
|
251
|
+
**Note**: The ports used in these examples (`6006` for the aggregator HTTP
|
|
252
|
+
server, `9999` for the worker HTTP server, and `50051` for the worker gRPC
|
|
253
|
+
server) are suggestions and can be customized.
|
|
254
|
+
|
|
255
|
+
**Worker Node**
|
|
256
|
+
|
|
257
|
+
Each worker node should run XProf with a gRPC port exposed so it can receive
|
|
258
|
+
processing requests. You should also hide the capture button as workers are not
|
|
259
|
+
meant to be interacted with directly.
|
|
260
|
+
|
|
261
|
+
```
|
|
262
|
+
$ xprof --grpc_port=50051 --port=9999 --hide_capture_profile_button
|
|
263
|
+
```
|
|
264
|
+
|
|
265
|
+
**Aggregator Node**
|
|
266
|
+
|
|
267
|
+
The aggregator node runs XProf with the `--worker_service_address` flag pointing
|
|
268
|
+
to all available workers. Users will interact with aggregator node's UI.
|
|
269
|
+
|
|
270
|
+
```
|
|
271
|
+
$ xprof --worker_service_address=<worker1_ip>:50051,<worker2_ip>:50051 --port=6006 --logdir=profiler/demo
|
|
272
|
+
```
|
|
273
|
+
|
|
274
|
+
Replace `<worker1_ip>, <worker2_ip>` with the addresses of your worker machines.
|
|
275
|
+
Requests sent to the aggregator on port 6006 will be distributed among the
|
|
276
|
+
workers for processing.
|
|
277
|
+
|
|
278
|
+
For deploying a distributed XProf setup in a Kubernetes environment, see
|
|
279
|
+
[Kubernetes Deployment Guide](docs/kubernetes_deployment.md).
|
|
280
|
+
|
|
281
|
+
## Nightlies
|
|
282
|
+
|
|
283
|
+
Every night, a nightly version of the package is released under the name of
|
|
284
|
+
`xprof-nightly`. This package contains the latest changes made by the XProf
|
|
285
|
+
developers.
|
|
286
|
+
|
|
287
|
+
To install the nightly version of profiler:
|
|
288
|
+
|
|
289
|
+
```
|
|
290
|
+
$ pip uninstall xprof tensorboard-plugin-profile
|
|
291
|
+
$ pip install xprof-nightly
|
|
292
|
+
```
|
|
293
|
+
|
|
294
|
+
## Next Steps
|
|
295
|
+
|
|
296
|
+
* [JAX Profiling Guide](https://jax.readthedocs.io/en/latest/profiling.html#xprof-tensorboard-profiling)
|
|
297
|
+
* [PyTorch/XLA Profiling Guide](https://cloud.google.com/tpu/docs/pytorch-xla-performance-profiling-tpu-vm)
|
|
298
|
+
* [TensorFlow Profiling Guide](https://tensorflow.org/guide/profiler)
|
|
299
|
+
* [Cloud TPU Profiling Guide](https://cloud.google.com/tpu/docs/cloud-tpu-tools)
|
|
300
|
+
* [Colab Tutorial](https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras)
|
|
301
|
+
* [Tensorflow Colab](https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras)
|
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
xprof/__init__.py,sha256=78OA7RY_Liq0MjrozS91P2gcJlQBCQNmop-HJZWW-Hg,967
|
|
2
|
+
xprof/profile_plugin.py,sha256=cdGDaXNwfh1e2OQbSa0YKGudtVuIhSW2H8iRpJEIdTQ,51890
|
|
3
|
+
xprof/profile_plugin_loader.py,sha256=Cj8FKMU1zopF8xI0t2BNRFwrl3VCg5LuORvr4PSm6Fo,2844
|
|
4
|
+
xprof/server.py,sha256=pXj-le7_FxvXSiGYZqbBaPwo1SGoRa2CYB88LixuG5A,9363
|
|
5
|
+
xprof/version.py,sha256=p8prIIx4mK_OQsvNxSKb9i-zU0s23rMZQ2nkLIMzVRM,780
|
|
6
|
+
xprof/convert/_pywrap_profiler_plugin.so,sha256=XRZzwJcjx4INIwEDiMCo3C_X3_99Iofofq5bTzVu4yM,55494392
|
|
7
|
+
xprof/convert/csv_writer.py,sha256=KWbJ_iZTusHWqePu0dt7dAv-wMTUw4b6QWEQfI4Gp-0,2594
|
|
8
|
+
xprof/convert/raw_to_tool_data.py,sha256=bEc3R0Oftmd2xYOjzfSgtyJ8NcpGB4P4WDVngri60dw,8244
|
|
9
|
+
xprof/convert/trace_events_json.py,sha256=Ob3_G4udJJbwTFhTdmjehYb0DWOyzyftTD2sLXCqYN0,3482
|
|
10
|
+
xprof/integration_tests/tf_mnist.py,sha256=QRhDRWd4EGr-iJgKR5xvvHpSKDS0f84gD0DnmWFgkSI,3693
|
|
11
|
+
xprof/integration_tests/tf_profiler_session.py,sha256=ojn5w3H66aKbWx0vIG93CbQv-H3Fyk4IdvZ0WFk294k,1570
|
|
12
|
+
xprof/integration_tests/tpu/tensorflow/tpu_tf2_keras_test.py,sha256=WwkPJO60EIh8jh06PlAJnNbi6TBrOBe_zX1wfnTrozs,6178
|
|
13
|
+
xprof/protobuf/dcn_collective_info_pb2.py,sha256=nRBYAifPKJD1Q5r2Mfgywg6cPb2ysqUksldWJuSnAfQ,3041
|
|
14
|
+
xprof/protobuf/dcn_slack_analysis_pb2.py,sha256=qPkEO6eZ4qz_v9yU1F-0j91st-lnsyvyoeZ9-ZbrZBA,3528
|
|
15
|
+
xprof/protobuf/diagnostics_pb2.py,sha256=TR9h0uB6wB2hsYHXywXiMRqYeIgxxNn4s3fOMKpc78Q,1458
|
|
16
|
+
xprof/protobuf/event_time_fraction_analyzer_pb2.py,sha256=qJCSEWdgQvQUici9CRa8QArVlkvZg0egXkZl8ZhPmdY,2436
|
|
17
|
+
xprof/protobuf/hardware_types_pb2.py,sha256=l5rimwnRwgTSVbmFBDiXZqNRQNuNhOOY8o3-YoUibuI,2169
|
|
18
|
+
xprof/protobuf/hlo_stats_pb2.py,sha256=kOYJ5eqP7063kd05jmtclvTrWfAtB7h4imnA_yyJAsM,3512
|
|
19
|
+
xprof/protobuf/inference_stats_pb2.py,sha256=Fm0MtsXjyxToKgHN-3wn3DHIBj2CTv9u11u9iKIrdEY,11600
|
|
20
|
+
xprof/protobuf/input_pipeline_pb2.py,sha256=FZ0Mvz23p2dybFcMQWwzVEiqzHwt3r2i91rlzHqbH1w,6895
|
|
21
|
+
xprof/protobuf/kernel_stats_pb2.py,sha256=VQVv0qCQzycqS1aqSMlrRKCeMiPWfn9gehJiNjShsCY,2183
|
|
22
|
+
xprof/protobuf/memory_profile_pb2.py,sha256=GjSyu66CfuzghEenNr5wyhVjprlDUyCQ8kJc0j5d2C0,5146
|
|
23
|
+
xprof/protobuf/memory_viewer_preprocess_pb2.py,sha256=TqF7g7a43zn9g2YCe_9TJ_jbtT6wP9CgbxZ92ocdsfY,4783
|
|
24
|
+
xprof/protobuf/op_metrics_pb2.py,sha256=_R3GK-WNRszXJd49qTncF54E8PpR_-gqJTypzlvLa0Y,7598
|
|
25
|
+
xprof/protobuf/op_profile_pb2.py,sha256=41Ikf2ktT1aPGe_giUrAp0BLBYwjJe6b9eNZBSWU8OM,4979
|
|
26
|
+
xprof/protobuf/op_stats_pb2.py,sha256=FazYLgDDrNSZohQSZtswzwMCaOcJnm0BUJhsEP2k40c,8367
|
|
27
|
+
xprof/protobuf/overview_page_pb2.py,sha256=GhDMKKmTLtrWwWuyl16wpvBK3MsACJdsLxqJ79VdPUc,9701
|
|
28
|
+
xprof/protobuf/pod_stats_pb2.py,sha256=RXyLmXYrfdndahkVZ6NgeWnYNMxb5GtDujLqHvsYKRA,3135
|
|
29
|
+
xprof/protobuf/pod_viewer_pb2.py,sha256=u731Yc2ommVCqBE6ZmtzBhEq9xaBNBr-4jUSZghC3sM,5898
|
|
30
|
+
xprof/protobuf/power_metrics_pb2.py,sha256=ywJZ-40er8VqQ6oE35ddyWF40IOpJaiqIWKTViOB4_8,2033
|
|
31
|
+
xprof/protobuf/roofline_model_pb2.py,sha256=1O1QdCTv1Y6xY0fuxF_5rZ_5o0qQop8vPokd6RcVwf0,5018
|
|
32
|
+
xprof/protobuf/smart_suggestion_pb2.py,sha256=rCgNgdcXO400ra4WWLWiXDEtBfTjEdMLuxwKWRWIj5M,1687
|
|
33
|
+
xprof/protobuf/source_info_pb2.py,sha256=hzQT_w4KpIEPyJ7yKMi-CezpY-2Mh7xjAvdhuhibiO0,1460
|
|
34
|
+
xprof/protobuf/source_stats_pb2.py,sha256=gxHcmAGrzHAaUCyEBxzRzbGQTaCejXJxCVjgptD4SiM,3075
|
|
35
|
+
xprof/protobuf/steps_db_pb2.py,sha256=EakwPVEyc5ZXA1FOkuY5LYk7W3a5P98A7-EamU_NxZQ,8072
|
|
36
|
+
xprof/protobuf/task_pb2.py,sha256=7cJW9WuO1EPsYUu4GP5qhSOSut7Kv6xSdU7jZQ55VUE,2091
|
|
37
|
+
xprof/protobuf/tf_data_stats_pb2.py,sha256=579_nnLxjlOPTsKgLmYHCV8RjW4gr7NKI9lWsHjh1Bk,6886
|
|
38
|
+
xprof/protobuf/tf_function_pb2.py,sha256=ybsgfWM9xOhU9E8UAJjLd1zOOjR22cYINg5tGAJ14ic,3527
|
|
39
|
+
xprof/protobuf/tf_stats_pb2.py,sha256=k3pl73NIuVp8TDYOScvTPBdg1GBl3XkRgJjpYU5mhyE,3708
|
|
40
|
+
xprof/protobuf/tfstreamz_pb2.py,sha256=EFc36V2kn_g5o5XHfh9cJ0RHWAiADMBWKr_YEegNdxE,2309
|
|
41
|
+
xprof/protobuf/topology_pb2.py,sha256=9eOA5jAbVpUPSkSPw7AcyCqdDc3Tk7OYYs0F96BzPBs,3720
|
|
42
|
+
xprof/protobuf/tpu_input_pipeline_pb2.py,sha256=_g2HwRPZk5uDa2GsyYAzBacDMYi4hC_DhFOw40I6HPc,4930
|
|
43
|
+
xprof/protobuf/trace_events_old_pb2.py,sha256=mS2hbO8_AGX4KcugIdDBRC4vemlB_OYEhR5Z9hbyBmY,3399
|
|
44
|
+
xprof/protobuf/trace_events_pb2.py,sha256=LNvHSkW_g9X6h0_pMvImRJeTG7I_ehxYUjYpd07cBi8,5345
|
|
45
|
+
xprof/protobuf/trace_events_raw_pb2.py,sha256=HHtNSuRf8pLv2Y6uZP6BxSaO1T1OicsDeeDarJsb3Y8,3078
|
|
46
|
+
xprof/protobuf/trace_filter_config_pb2.py,sha256=Mr-CxIkfdyKRf02MkC3wkUlkUiormYE9HkFXw5bpgMY,2570
|
|
47
|
+
xprof/standalone/base_plugin.py,sha256=wkUAZ5PSysYzyvnAmFcIxXZRedwGVipLtRWA0P_DuIg,1585
|
|
48
|
+
xprof/standalone/context.py,sha256=BKlQeHWTbfC6KwaKkHYt3QfnUERIAWYUGxCkz4oZ9sA,867
|
|
49
|
+
xprof/standalone/data_provider.py,sha256=pyfeARB-UBB3tGWv5B0b9ml9L3F1p2LXsvCKoJohvkQ,1214
|
|
50
|
+
xprof/standalone/plugin_asset_util.py,sha256=I0bFgqc_8dTf54TjMXURblkyOYvoyhEga9x4z0obOrA,4023
|
|
51
|
+
xprof/standalone/plugin_event_multiplexer.py,sha256=Si4Xh1AZsBJiKBqJQPQkdNOHtZfEQVoAutmTJ3Ruq6M,5151
|
|
52
|
+
xprof/standalone/tensorboard_shim.py,sha256=2I8a3InvfbMIi0HZqLa7yO97t7eMvapqy-ykl-VNv1A,1436
|
|
53
|
+
xprof/static/bundle.js,sha256=mcqPYsGxo13Pz25lMMMQVuLXqOklWszRDj2wxMBRbGY,25006556
|
|
54
|
+
xprof/static/index.html,sha256=TBDEDCCieTgrUcWGDbHRgU5z0jp-0OoR_m2Q3WrkfY0,1733
|
|
55
|
+
xprof/static/index.js,sha256=6k9xoStOyq8WLqAbeujc6RnudtedUiKSHgwGNg9_yPc,76
|
|
56
|
+
xprof/static/materialicons.woff2,sha256=RRfwo4kyIt8HMUExPBeMy8mTQ_OQP7EgIxc7DZ3nirk,60832
|
|
57
|
+
xprof/static/styles.css,sha256=p0jlPi8L57wDLox9m5G-psyqJJZwTqPu9fc-AYxP-aU,210865
|
|
58
|
+
xprof/static/trace_viewer_index.html,sha256=JUcGQyu-JwFjwP5bRCbttBljWM3poHMvDtThjOlg22k,136561
|
|
59
|
+
xprof/static/trace_viewer_index.js,sha256=DQX8KAClj4g2OHY59-Hc8g1x05q80BPFr5C0tXocynA,2842835
|
|
60
|
+
xprof/static/zone.js,sha256=YMw-4VujXc6xhxsSyJ15ImBvBq2aKPlsCy5v82GTk20,572373
|
|
61
|
+
xprof_nightly-2.22.3a20251208.dist-info/METADATA,sha256=br-T37G5F5893IbUNdywztY94TI0urvu2rxMVRy3-DQ,10804
|
|
62
|
+
xprof_nightly-2.22.3a20251208.dist-info/WHEEL,sha256=HlfSuhSmZKaxRybW83AJqf6QGccQ3l_ux9bKThlZuzo,110
|
|
63
|
+
xprof_nightly-2.22.3a20251208.dist-info/entry_points.txt,sha256=xltzdsFMJnbkt_VqqEd3E-AkWwECarbEs9zyalYs8Fw,125
|
|
64
|
+
xprof_nightly-2.22.3a20251208.dist-info/top_level.txt,sha256=ZQblo3gDytpGjmOhiN_dK7Ou2EA-Z0mBUUprE63CkeM,6
|
|
65
|
+
xprof_nightly-2.22.3a20251208.dist-info/RECORD,,
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
xprof
|