xmos-ai-tools 1.3.2.dev19__py3-none-macosx_11_0_arm64.whl → 1.3.2.dev37__py3-none-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (206) hide show
  1. xmos_ai_tools/runtime/include/lib_tflite_micro/api/inference_engine.h +9 -9
  2. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_common.h +2 -2
  3. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_custom_options.h +2 -2
  4. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_error_reporter.h +3 -3
  5. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_interpreter.h +8 -8
  6. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_ops.h +3 -3
  7. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_profiler.h +4 -4
  8. xmos_ai_tools/runtime/include/lib_tflite_micro/src/tflite-xcore-kernels/xcore_utils.h +5 -5
  9. xmos_ai_tools/runtime/include/lib_xud/lib_xud/api/xud.h +3 -3
  10. xmos_ai_tools/runtime/include/tensorflow/lite/array.h +4 -4
  11. xmos_ai_tools/runtime/include/tensorflow/lite/context_util.h +2 -2
  12. xmos_ai_tools/runtime/include/tensorflow/lite/core/api/error_reporter.h +3 -3
  13. xmos_ai_tools/runtime/include/tensorflow/lite/core/api/flatbuffer_conversions.h +2 -2
  14. xmos_ai_tools/runtime/include/tensorflow/lite/core/api/tensor_utils.h +2 -2
  15. xmos_ai_tools/runtime/include/tensorflow/lite/core/c/c_api_types.h +3 -3
  16. xmos_ai_tools/runtime/include/tensorflow/lite/core/c/common.h +17 -17
  17. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/common.h +2 -2
  18. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/cppmath.h +2 -2
  19. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/max.h +2 -2
  20. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/min.h +2 -2
  21. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/portable_tensor.h +2 -2
  22. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/portable_tensor_utils.h +2 -2
  23. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/quantization_util.h +2 -2
  24. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/add.h +3 -3
  25. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/add_n.h +2 -2
  26. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/arg_min_max.h +2 -2
  27. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/batch_matmul.h +2 -2
  28. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/batch_to_space_nd.h +2 -2
  29. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/binary_function.h +2 -2
  30. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/broadcast_args.h +2 -2
  31. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/broadcast_to.h +2 -2
  32. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/ceil.h +2 -2
  33. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/comparisons.h +2 -2
  34. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/concatenation.h +3 -3
  35. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/conv.h +2 -2
  36. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/cumsum.h +2 -2
  37. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/depth_to_space.h +3 -3
  38. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h +1 -1
  39. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h +1 -1
  40. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/dequantize.h +4 -4
  41. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/div.h +2 -2
  42. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/elu.h +2 -2
  43. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/exp.h +2 -2
  44. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/fill.h +2 -2
  45. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/floor.h +2 -2
  46. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/floor_div.h +2 -2
  47. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/floor_mod.h +2 -2
  48. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/fully_connected.h +2 -2
  49. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/hard_swish.h +2 -2
  50. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/add.h +2 -2
  51. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/conv.h +2 -2
  52. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h +2 -2
  53. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h +2 -2
  54. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/l2normalization.h +2 -2
  55. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h +2 -2
  56. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/mul.h +2 -2
  57. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h +2 -2
  58. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h +2 -2
  59. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/integer_ops/transpose_conv.h +2 -2
  60. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/l2normalization.h +4 -4
  61. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/leaky_relu.h +3 -3
  62. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/log_softmax.h +2 -2
  63. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/logistic.h +2 -2
  64. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/lstm_cell.h +5 -5
  65. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/maximum_minimum.h +2 -2
  66. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/mul.h +2 -2
  67. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/neg.h +2 -2
  68. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/pad.h +8 -8
  69. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/pooling.h +2 -2
  70. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/portable_tensor_utils.h +2 -2
  71. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/portable_tensor_utils_impl.h +2 -2
  72. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/prelu.h +2 -2
  73. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h +3 -3
  74. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/quantize.h +4 -4
  75. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/reduce.h +3 -3
  76. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/requantize.h +2 -2
  77. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/resize_bilinear.h +4 -4
  78. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/resize_nearest_neighbor.h +3 -3
  79. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/round.h +2 -2
  80. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/select.h +2 -2
  81. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/slice.h +5 -5
  82. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/softmax.h +2 -2
  83. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/space_to_batch_nd.h +2 -2
  84. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/space_to_depth.h +3 -3
  85. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/strided_slice.h +6 -6
  86. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/sub.h +2 -2
  87. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/tanh.h +2 -2
  88. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/transpose.h +2 -2
  89. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/reference/transpose_conv.h +2 -2
  90. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/runtime_shape.h +2 -2
  91. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/strided_slice_logic.h +9 -9
  92. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/tensor_ctypes.h +2 -2
  93. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/internal/types.h +2 -2
  94. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/kernel_util.h +2 -2
  95. xmos_ai_tools/runtime/include/tensorflow/lite/kernels/padding.h +2 -2
  96. xmos_ai_tools/runtime/include/tensorflow/lite/micro/arena_allocator/ibuffer_allocator.h +2 -2
  97. xmos_ai_tools/runtime/include/tensorflow/lite/micro/arena_allocator/non_persistent_arena_buffer_allocator.h +2 -2
  98. xmos_ai_tools/runtime/include/tensorflow/lite/micro/arena_allocator/persistent_arena_buffer_allocator.h +2 -2
  99. xmos_ai_tools/runtime/include/tensorflow/lite/micro/arena_allocator/recording_single_arena_buffer_allocator.h +2 -2
  100. xmos_ai_tools/runtime/include/tensorflow/lite/micro/arena_allocator/single_arena_buffer_allocator.h +2 -2
  101. xmos_ai_tools/runtime/include/tensorflow/lite/micro/benchmarks/micro_benchmark.h +7 -7
  102. xmos_ai_tools/runtime/include/tensorflow/lite/micro/fake_micro_context.h +2 -2
  103. xmos_ai_tools/runtime/include/tensorflow/lite/micro/flatbuffer_utils.h +2 -2
  104. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/activation_utils.h +2 -2
  105. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/activations.h +2 -2
  106. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/add.h +2 -2
  107. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/arc_mli/mli_function_specializations.h +2 -2
  108. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/arc_mli/mli_interface.h +2 -2
  109. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/arc_mli/mli_slicers.h +2 -2
  110. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/arc_mli/mli_tf_utils.h +4 -4
  111. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/arc_mli/scratch_buf_mgr.h +2 -2
  112. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/arc_mli/scratch_buffers.h +2 -2
  113. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/ceva/types.h +6 -6
  114. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/circular_buffer.h +2 -2
  115. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/conv.h +2 -2
  116. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/conv_test.h +2 -2
  117. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/depthwise_conv.h +2 -2
  118. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/dequantize.h +3 -3
  119. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/ethosu.h +2 -2
  120. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/fully_connected.h +2 -2
  121. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/hard_swish.h +2 -2
  122. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/kernel_runner.h +2 -2
  123. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/kernel_util.h +2 -2
  124. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/leaky_relu.h +2 -2
  125. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/logical.h +2 -2
  126. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/logistic.h +2 -2
  127. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/lstm_eval.h +48 -48
  128. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/lstm_eval_test.h +57 -57
  129. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/lstm_shared.h +2 -2
  130. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/micro_ops.h +2 -2
  131. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/micro_tensor_utils.h +2 -2
  132. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/mul.h +2 -2
  133. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/pad.h +2 -2
  134. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/pooling.h +15 -15
  135. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/prelu.h +2 -2
  136. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/quantize.h +3 -3
  137. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/reduce.h +2 -2
  138. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/reshape.h +2 -2
  139. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/softmax.h +2 -2
  140. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/strided_slice.h +2 -2
  141. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/sub.h +2 -2
  142. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/svdf.h +2 -2
  143. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/testdata/conv_test_data.h +2 -2
  144. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/testdata/lstm_test_data.h +7 -7
  145. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/unidirectional_sequence_lstm.h +2 -2
  146. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/hifimini/fixedpoint_utils.h +2 -2
  147. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/lstm_eval.h +2 -2
  148. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/lstm_shared.h +2 -2
  149. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_add.h +2 -2
  150. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_conv.h +2 -2
  151. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_depthwise_conv.h +2 -2
  152. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_fully_connected.h +2 -2
  153. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_pad.h +2 -2
  154. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_pooling.h +2 -2
  155. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_reduce.h +2 -2
  156. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_reshape.h +2 -2
  157. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_softmax.h +2 -2
  158. xmos_ai_tools/runtime/include/tensorflow/lite/micro/kernels/xtensa/xtensa_svdf.h +2 -2
  159. xmos_ai_tools/runtime/include/tensorflow/lite/micro/memory_helpers.h +3 -3
  160. xmos_ai_tools/runtime/include/tensorflow/lite/micro/memory_planner/greedy_memory_planner.h +2 -2
  161. xmos_ai_tools/runtime/include/tensorflow/lite/micro/memory_planner/linear_memory_planner.h +2 -2
  162. xmos_ai_tools/runtime/include/tensorflow/lite/micro/memory_planner/memory_plan_struct.h +2 -2
  163. xmos_ai_tools/runtime/include/tensorflow/lite/micro/memory_planner/micro_memory_planner.h +2 -2
  164. xmos_ai_tools/runtime/include/tensorflow/lite/micro/memory_planner/non_persistent_buffer_planner_shim.h +2 -2
  165. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_allocation_info.h +3 -3
  166. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_allocator.h +3 -3
  167. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_arena_constants.h +2 -2
  168. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_context.h +3 -3
  169. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_graph.h +4 -4
  170. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_interpreter.h +2 -2
  171. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_interpreter_context.h +2 -2
  172. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_interpreter_graph.h +4 -4
  173. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_log.h +4 -4
  174. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_mutable_op_resolver.h +50 -50
  175. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_op_resolver.h +2 -2
  176. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_profiler.h +2 -2
  177. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_profiler_interface.h +2 -2
  178. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_resource_variable.h +2 -2
  179. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_time.h +2 -2
  180. xmos_ai_tools/runtime/include/tensorflow/lite/micro/micro_utils.h +2 -2
  181. xmos_ai_tools/runtime/include/tensorflow/lite/micro/mock_micro_graph.h +2 -2
  182. xmos_ai_tools/runtime/include/tensorflow/lite/micro/python/tflite_size/src/flatbuffer_size.h +2 -2
  183. xmos_ai_tools/runtime/include/tensorflow/lite/micro/python/tflite_size/src/flatbuffer_size_wrapper.h +2 -2
  184. xmos_ai_tools/runtime/include/tensorflow/lite/micro/recording_micro_allocator.h +2 -2
  185. xmos_ai_tools/runtime/include/tensorflow/lite/micro/recording_micro_interpreter.h +2 -2
  186. xmos_ai_tools/runtime/include/tensorflow/lite/micro/system_setup.h +2 -2
  187. xmos_ai_tools/runtime/include/tensorflow/lite/micro/test_helper_custom_ops.h +2 -2
  188. xmos_ai_tools/runtime/include/tensorflow/lite/micro/test_helpers.h +6 -6
  189. xmos_ai_tools/runtime/include/tensorflow/lite/micro/testing/micro_test.h +4 -4
  190. xmos_ai_tools/runtime/include/tensorflow/lite/micro/tflite_bridge/flatbuffer_conversions_bridge.h +2 -2
  191. xmos_ai_tools/runtime/include/tensorflow/lite/micro/tflite_bridge/micro_error_reporter.h +2 -2
  192. xmos_ai_tools/runtime/include/tensorflow/lite/micro/tools/benchmarking/log_utils.h +2 -2
  193. xmos_ai_tools/runtime/include/tensorflow/lite/micro/tools/benchmarking/metrics.h +3 -3
  194. xmos_ai_tools/runtime/include/tensorflow/lite/micro/tools/benchmarking/op_resolver.h +3 -3
  195. xmos_ai_tools/runtime/include/tensorflow/lite/portable_type_to_tflitetype.h +2 -2
  196. xmos_ai_tools/runtime/include/tensorflow/lite/schema/schema_generated.h +2731 -2731
  197. xmos_ai_tools/runtime/include/tensorflow/lite/schema/schema_utils.h +2 -2
  198. xmos_ai_tools/runtime/lib/libhost_xtflitemicro.a +0 -0
  199. xmos_ai_tools/runtime/lib/libxtflitemicro.a +0 -0
  200. xmos_ai_tools/xinterpreters/libs/macos/xtflm_python.1.0.1.dylib +0 -0
  201. xmos_ai_tools/xinterpreters/libs/macos/xtflm_python.dylib +0 -0
  202. {xmos_ai_tools-1.3.2.dev19.data → xmos_ai_tools-1.3.2.dev37.data}/data/bin/xcore-opt +0 -0
  203. {xmos_ai_tools-1.3.2.dev19.dist-info → xmos_ai_tools-1.3.2.dev37.dist-info}/METADATA +2 -2
  204. {xmos_ai_tools-1.3.2.dev19.dist-info → xmos_ai_tools-1.3.2.dev37.dist-info}/RECORD +206 -206
  205. {xmos_ai_tools-1.3.2.dev19.dist-info → xmos_ai_tools-1.3.2.dev37.dist-info}/WHEEL +0 -0
  206. {xmos_ai_tools-1.3.2.dev19.dist-info → xmos_ai_tools-1.3.2.dev37.dist-info}/top_level.txt +0 -0
@@ -24,7 +24,7 @@ limitations under the License.
24
24
  #include "tensorflow/lite/micro/test_helpers.h"
25
25
  #include "tensorflow/lite/micro/testing/micro_test.h"
26
26
 
27
- namespace tflite {
27
+ namespace tflite_micro {
28
28
  namespace testing {
29
29
 
30
30
  /*Helper Functions (mainly about mimicking the kernel preparation)*/
@@ -35,7 +35,7 @@ namespace testing {
35
35
  // (put into stack memory) CalculateOpDataFullyConnected in
36
36
  // tensorflow/lite/micro/kernels/fully_connected_common.cc
37
37
  template <typename CellType>
38
- tflite::FullyConnectedParams CreateFCParams(
38
+ tflite_micro::FullyConnectedParams CreateFCParams(
39
39
  const TensorQuantizationParameters& input_quant_params,
40
40
  const TensorQuantizationParameters& weight_quant_params,
41
41
  const float nonlinear_activation_input_scale) {
@@ -57,10 +57,10 @@ tflite::FullyConnectedParams CreateFCParams(
57
57
  data.output_activation_min = std::numeric_limits<CellType>::min();
58
58
  data.output_activation_max = std::numeric_limits<CellType>::max();
59
59
 
60
- return tflite::FullyConnectedParamsQuantized(data);
60
+ return tflite_micro::FullyConnectedParamsQuantized(data);
61
61
  }
62
62
 
63
- inline tflite::FullyConnectedParams CreateFCParamsFloat() {
63
+ inline tflite_micro::FullyConnectedParams CreateFCParamsFloat() {
64
64
  FullyConnectedParams op_params;
65
65
  CalculateActivationRange(kTfLiteActNone, &op_params.float_activation_min,
66
66
  &op_params.float_activation_max);
@@ -69,12 +69,12 @@ inline tflite::FullyConnectedParams CreateFCParamsFloat() {
69
69
 
70
70
  // Wrapper function to create gate parameters for the four internal LSTM gates
71
71
  template <typename CellType>
72
- tflite::GateParameters CreateGateParams(
72
+ tflite_micro::GateParameters CreateGateParams(
73
73
  const TensorQuantizationParameters& input_quant_params,
74
74
  const TensorQuantizationParameters& hidden_state_quant_params,
75
75
  const GateQuantizationParameters& gate_quantization_settings,
76
76
  const float nonlinear_activation_input_scale) {
77
- tflite::GateParameters gate_params = {};
77
+ tflite_micro::GateParameters gate_params = {};
78
78
  gate_params.input_fc_params = CreateFCParams<CellType>(
79
79
  input_quant_params, gate_quantization_settings.activation_weight,
80
80
  nonlinear_activation_input_scale);
@@ -84,8 +84,8 @@ tflite::GateParameters CreateGateParams(
84
84
  return gate_params;
85
85
  }
86
86
 
87
- inline tflite::GateParameters CreateGateParamsFloat() {
88
- tflite::GateParameters gate_params = {};
87
+ inline tflite_micro::GateParameters CreateGateParamsFloat() {
88
+ tflite_micro::GateParameters gate_params = {};
89
89
  gate_params.input_fc_params = CreateFCParamsFloat();
90
90
  gate_params.recurrent_fc_params = CreateFCParamsFloat();
91
91
  return gate_params;
@@ -97,11 +97,11 @@ inline tflite::GateParameters CreateGateParamsFloat() {
97
97
  // output is the updated hidden state, which is asymmetrically quantized. Thus
98
98
  // output may require zero point
99
99
  template <typename OutputType>
100
- tflite::ArithmeticParams CreateInterGateMulParams(const float input1_scale,
100
+ tflite_micro::ArithmeticParams CreateInterGateMulParams(const float input1_scale,
101
101
  const float input2_scale,
102
102
  const float output_scale,
103
103
  const int output_zp = 0) {
104
- tflite::ArithmeticParams op_params = {};
104
+ tflite_micro::ArithmeticParams op_params = {};
105
105
  op_params.quantized_activation_min = std::numeric_limits<OutputType>::min();
106
106
  op_params.quantized_activation_max = std::numeric_limits<OutputType>::max();
107
107
  op_params.input1_offset = 0;
@@ -118,8 +118,8 @@ tflite::ArithmeticParams CreateInterGateMulParams(const float input1_scale,
118
118
  return op_params;
119
119
  }
120
120
 
121
- inline tflite::ArithmeticParams CreateInterGateMulParamsFloat() {
122
- tflite::ArithmeticParams op_params = {};
121
+ inline tflite_micro::ArithmeticParams CreateInterGateMulParamsFloat() {
122
+ tflite_micro::ArithmeticParams op_params = {};
123
123
  CalculateActivationRange(kTfLiteActNone, &op_params.float_activation_min,
124
124
  &op_params.float_activation_max);
125
125
  return op_params;
@@ -133,7 +133,7 @@ CellStateInfo CreateLstmCellStateInfo(const float cell_state_scale,
133
133
  CellStateInfo cell_state_info;
134
134
  // cell_state_scale_power: 2^-cell_state_scale_power = cell state scale
135
135
  int buffer;
136
- tflite::CheckedLog2(cell_state_scale, &buffer);
136
+ tflite_micro::CheckedLog2(cell_state_scale, &buffer);
137
137
  cell_state_info.cell_state_scale_power = buffer;
138
138
  // Cell state specifics
139
139
  cell_state_info.cell_clip = cell_clip;
@@ -344,16 +344,16 @@ void TestCalculateLstmGateFloat(const TfLiteEvalTensor* input,
344
344
  float gate_output[batch_size * state_dimension] = {};
345
345
  float fc_output_buffer[batch_size * state_dimension] = {};
346
346
 
347
- tflite::GateParameters gate_params = CreateGateParamsFloat();
347
+ tflite_micro::GateParameters gate_params = CreateGateParamsFloat();
348
348
 
349
349
  // Create step information: only one time step, no need to update
350
- auto size_info = tflite::testing::CreateLstmSizeInfo(
350
+ auto size_info = tflite_micro::testing::CreateLstmSizeInfo(
351
351
  /*time_major*/ false, input->dims, recurrent->dims);
352
352
  // revise time_major = true to enable batch inference
353
353
  size_info.time_major = true;
354
- tflite::lstm_internal::LstmStepManager step_info(&size_info);
354
+ tflite_micro::lstm_internal::LstmStepManager step_info(&size_info);
355
355
 
356
- tflite::lstm_internal::CalculateLstmGate<float, float, float, float>(
356
+ tflite_micro::lstm_internal::CalculateLstmGate<float, float, float, float>(
357
357
  step_info, gate_params,
358
358
  // Input FC
359
359
  input, input_weight, input_bias,
@@ -385,20 +385,20 @@ void TestCalculateLstmGateInteger(
385
385
  CellType gate_output[batch_size * state_dimension] = {};
386
386
  CellType fc_output_buffer[batch_size * state_dimension] = {};
387
387
 
388
- tflite::GateParameters gate_params = CreateGateParams<CellType>(
388
+ tflite_micro::GateParameters gate_params = CreateGateParams<CellType>(
389
389
  node_quantization_settings.input, node_quantization_settings.hidden_state,
390
390
  gate_quantization_settings,
391
391
  node_quantization_settings.nonlinear_activation_input_scale);
392
392
 
393
393
  // Create step information: only one time step, no need to update
394
- auto size_info = tflite::testing::CreateLstmSizeInfo(
394
+ auto size_info = tflite_micro::testing::CreateLstmSizeInfo(
395
395
  /*time_major*/ false, input->dims, recurrent->dims);
396
396
  // revise time_major = true to enable batch inference
397
397
  size_info.time_major = true;
398
- tflite::lstm_internal::LstmStepManager step_info(&size_info);
398
+ tflite_micro::lstm_internal::LstmStepManager step_info(&size_info);
399
399
 
400
400
  // only int8 weight is supported now
401
- tflite::lstm_internal::CalculateLstmGate<ActivationType, WeightType, CellType,
401
+ tflite_micro::lstm_internal::CalculateLstmGate<ActivationType, WeightType, CellType,
402
402
  BiasType>(
403
403
  step_info, gate_params,
404
404
  // Input FC
@@ -434,13 +434,13 @@ void TestUpdateLstmCellFloat(
434
434
 
435
435
  auto cell_state = node_content.CellStateEvalTensor();
436
436
  // Create step information: only one time step, no need to update
437
- auto size_info = tflite::testing::CreateLstmSizeInfo(
437
+ auto size_info = tflite_micro::testing::CreateLstmSizeInfo(
438
438
  /*time_major*/ false,
439
- node_content.GetEvalTensor(tflite::kLstmInputTensor)->dims,
439
+ node_content.GetEvalTensor(tflite_micro::kLstmInputTensor)->dims,
440
440
  node_content.HiddenStateEvalTensor()->dims);
441
441
  // revise time_major = true to enable batch inference
442
442
  size_info.time_major = true;
443
- tflite::lstm_internal::LstmStepManager step_info(&size_info);
443
+ tflite_micro::lstm_internal::LstmStepManager step_info(&size_info);
444
444
 
445
445
  // copy the data since it will be updated
446
446
  float forget_gate[batch_size * state_dimension] = {};
@@ -450,14 +450,14 @@ void TestUpdateLstmCellFloat(
450
450
  CellStateInfo cell_state_info;
451
451
  cell_state_info.cell_clip = node_content.BuiltinData().cell_clip;
452
452
  // Call the function to be tested
453
- tflite::lstm_internal::UpdateLstmCell<float>(
453
+ tflite_micro::lstm_internal::UpdateLstmCell<float>(
454
454
  step_info, cell_state, forget_gate,
455
455
  gate_output_data.expected_input_gate_output,
456
456
  gate_output_data.expected_cell_gate_output, forget_cell_mul_params,
457
457
  input_mul_params, cell_state_info, buffer);
458
458
 
459
459
  ValidateResultGoldens(gate_output_data.expected_updated_cell,
460
- tflite::micro::GetTensorData<float>(cell_state),
460
+ tflite_micro::micro::GetTensorData<float>(cell_state),
461
461
  batch_size * state_dimension, tolerance);
462
462
  }
463
463
 
@@ -472,17 +472,17 @@ void TestUpdateLstmCellInteger(
472
472
  const float tolerance) {
473
473
  const auto& quantization_settings = node_content.QuantizationSettings();
474
474
  CellType quantized_forget_gate[batch_size * state_dimension] = {};
475
- tflite::Quantize(gate_output_data.expected_forget_gate_output,
475
+ tflite_micro::Quantize(gate_output_data.expected_forget_gate_output,
476
476
  quantized_forget_gate, batch_size * state_dimension,
477
477
  quantization_settings.nonlinear_activation_output_scale, 0);
478
478
 
479
479
  CellType quantized_input_gate[batch_size * state_dimension] = {};
480
- tflite::Quantize(gate_output_data.expected_input_gate_output,
480
+ tflite_micro::Quantize(gate_output_data.expected_input_gate_output,
481
481
  quantized_input_gate, batch_size * state_dimension,
482
482
  quantization_settings.nonlinear_activation_output_scale, 0);
483
483
 
484
484
  CellType quantized_cell_gate[batch_size * state_dimension] = {};
485
- tflite::Quantize(gate_output_data.expected_cell_gate_output,
485
+ tflite_micro::Quantize(gate_output_data.expected_cell_gate_output,
486
486
  quantized_cell_gate, batch_size * state_dimension,
487
487
  quantization_settings.nonlinear_activation_output_scale, 0);
488
488
 
@@ -503,22 +503,22 @@ void TestUpdateLstmCellInteger(
503
503
 
504
504
  auto cell_state = node_content.CellStateEvalTensor();
505
505
  // Create step information: only one time step, no need to update
506
- auto size_info = tflite::testing::CreateLstmSizeInfo(
506
+ auto size_info = tflite_micro::testing::CreateLstmSizeInfo(
507
507
  /*time_major*/ false,
508
- node_content.GetEvalTensor(tflite::kLstmInputTensor)->dims,
508
+ node_content.GetEvalTensor(tflite_micro::kLstmInputTensor)->dims,
509
509
  node_content.HiddenStateEvalTensor()->dims);
510
510
  // revise time_major = true to enable batch inference
511
511
  size_info.time_major = true;
512
- tflite::lstm_internal::LstmStepManager step_info(&size_info);
512
+ tflite_micro::lstm_internal::LstmStepManager step_info(&size_info);
513
513
 
514
514
  // Call the function to be tested
515
- tflite::lstm_internal::UpdateLstmCell<CellType>(
515
+ tflite_micro::lstm_internal::UpdateLstmCell<CellType>(
516
516
  step_info, cell_state, quantized_forget_gate, quantized_input_gate,
517
517
  quantized_cell_gate, forget_cell_mul_params, input_mul_params,
518
518
  cell_state_info, buffer);
519
519
 
520
520
  float cell_state_float[batch_size * state_dimension] = {};
521
- Dequantize(tflite::micro::GetTensorData<CellType>(cell_state),
521
+ Dequantize(tflite_micro::micro::GetTensorData<CellType>(cell_state),
522
522
  batch_size * state_dimension,
523
523
  quantization_settings.cell_state.scale,
524
524
  quantization_settings.cell_state.zero_point, cell_state_float);
@@ -543,24 +543,24 @@ void TestUpdateLstmHiddenFloat(
543
543
  int32_t cell_state_scale_power = 0;
544
544
 
545
545
  // Create step information: only one time step, no need to update
546
- auto size_info = tflite::testing::CreateLstmSizeInfo(
546
+ auto size_info = tflite_micro::testing::CreateLstmSizeInfo(
547
547
  /*time_major*/ false,
548
- node_content.GetEvalTensor(tflite::kLstmInputTensor)->dims,
548
+ node_content.GetEvalTensor(tflite_micro::kLstmInputTensor)->dims,
549
549
  node_content.HiddenStateEvalTensor()->dims);
550
550
  // revise time_major = true to enable batch inference
551
551
  size_info.time_major = true;
552
- tflite::lstm_internal::LstmStepManager step_info(&size_info);
552
+ tflite_micro::lstm_internal::LstmStepManager step_info(&size_info);
553
553
 
554
554
  auto cell_state = node_content.CellStateEvalTensor();
555
555
  auto hidden_state = node_content.HiddenStateEvalTensor();
556
556
 
557
- tflite::lstm_internal::UpdateLstmHidden<float, float>(
557
+ tflite_micro::lstm_internal::UpdateLstmHidden<float, float>(
558
558
  step_info, cell_state, hidden_state,
559
559
  gate_output_data.expected_output_gate_output, mul_params,
560
560
  cell_state_scale_power, buffer);
561
561
 
562
562
  ValidateResultGoldens(gate_output_data.expected_updated_hidden,
563
- tflite::micro::GetTensorData<float>(hidden_state),
563
+ tflite_micro::micro::GetTensorData<float>(hidden_state),
564
564
  batch_size * state_dimension, tolerance);
565
565
  }
566
566
 
@@ -575,7 +575,7 @@ void TestUpdateLstmHiddenInteger(
575
575
  const float tolerance) {
576
576
  const auto& quantization_settings = node_content.QuantizationSettings();
577
577
  CellType quantized_output_gate[batch_size * state_dimension] = {};
578
- tflite::Quantize(gate_output_data.expected_output_gate_output,
578
+ tflite_micro::Quantize(gate_output_data.expected_output_gate_output,
579
579
  quantized_output_gate, batch_size * state_dimension,
580
580
  quantization_settings.nonlinear_activation_output_scale, 0);
581
581
 
@@ -588,28 +588,28 @@ void TestUpdateLstmHiddenInteger(
588
588
  quantization_settings.hidden_state.zero_point);
589
589
 
590
590
  int cell_state_scale_power_buffer;
591
- tflite::CheckedLog2(quantization_settings.cell_state.scale,
591
+ tflite_micro::CheckedLog2(quantization_settings.cell_state.scale,
592
592
  &cell_state_scale_power_buffer);
593
593
  int32_t cell_state_scale_power = cell_state_scale_power_buffer;
594
594
 
595
595
  // Create step information: only one time step, no need to update
596
- auto size_info = tflite::testing::CreateLstmSizeInfo(
596
+ auto size_info = tflite_micro::testing::CreateLstmSizeInfo(
597
597
  /*time_major*/ false,
598
- node_content.GetEvalTensor(tflite::kLstmInputTensor)->dims,
598
+ node_content.GetEvalTensor(tflite_micro::kLstmInputTensor)->dims,
599
599
  node_content.HiddenStateEvalTensor()->dims);
600
600
  // revise time_major = true to enable batch inference
601
601
  size_info.time_major = true;
602
- tflite::lstm_internal::LstmStepManager step_info(&size_info);
602
+ tflite_micro::lstm_internal::LstmStepManager step_info(&size_info);
603
603
 
604
604
  auto cell_state = node_content.CellStateEvalTensor();
605
605
  auto hidden_state = node_content.HiddenStateEvalTensor();
606
606
 
607
- tflite::lstm_internal::UpdateLstmHidden<CellType, ActivationType>(
607
+ tflite_micro::lstm_internal::UpdateLstmHidden<CellType, ActivationType>(
608
608
  step_info, cell_state, hidden_state, quantized_output_gate, mul_params,
609
609
  cell_state_scale_power, buffer);
610
610
 
611
611
  float hidden_state_float[batch_size * state_dimension] = {};
612
- Dequantize(tflite::micro::GetTensorData<ActivationType>(hidden_state),
612
+ Dequantize(tflite_micro::micro::GetTensorData<ActivationType>(hidden_state),
613
613
  batch_size * state_dimension,
614
614
  quantization_settings.hidden_state.scale,
615
615
  quantization_settings.hidden_state.zero_point, hidden_state_float);
@@ -644,17 +644,17 @@ void TestLstmStepFloat(
644
644
  OpDataLSTM op_data = CreateLstmOpDataFloat(node_contents);
645
645
  // set time_major to true to test batch inference
646
646
  op_data.size_info.time_major = true;
647
- tflite::lstm_internal::LstmStepManager step_info(&op_data.size_info);
648
- tflite::lstm_internal::LstmStep<float, float, float, float>(
647
+ tflite_micro::lstm_internal::LstmStepManager step_info(&op_data.size_info);
648
+ tflite_micro::lstm_internal::LstmStep<float, float, float, float>(
649
649
  step_info, op_data, kernel_content, buffers);
650
650
 
651
651
  ValidateResultGoldens(
652
652
  gate_output_data.expected_updated_hidden,
653
- tflite::micro::GetTensorData<float>(kernel_content.HiddenStateTensor()),
653
+ tflite_micro::micro::GetTensorData<float>(kernel_content.HiddenStateTensor()),
654
654
  batch_size * state_dimension, hidden_state_tolerance);
655
655
  ValidateResultGoldens(
656
656
  gate_output_data.expected_updated_cell,
657
- tflite::micro::GetTensorData<float>(kernel_content.CellStateTensor()),
657
+ tflite_micro::micro::GetTensorData<float>(kernel_content.CellStateTensor()),
658
658
  batch_size * state_dimension, cell_state_tolerance);
659
659
  }
660
660
 
@@ -686,22 +686,22 @@ void TestLstmStepInteger(
686
686
  OpDataLSTM op_data = CreateLstmOpData(node_contents);
687
687
  // set time_major to true to test batch inference
688
688
  op_data.size_info.time_major = true;
689
- tflite::lstm_internal::LstmStepManager step_info(&op_data.size_info);
690
- tflite::lstm_internal::LstmStep<ActivationType, WeightType, CellType,
689
+ tflite_micro::lstm_internal::LstmStepManager step_info(&op_data.size_info);
690
+ tflite_micro::lstm_internal::LstmStep<ActivationType, WeightType, CellType,
691
691
  BiasType>(step_info, op_data, kernel_content,
692
692
  buffers);
693
693
 
694
694
  const auto& quantization_settings = node_contents.QuantizationSettings();
695
695
  float dequantized_hidden_state[batch_size * state_dimension] = {};
696
696
  Dequantize(
697
- tflite::micro::GetTensorData<ActivationType>(
697
+ tflite_micro::micro::GetTensorData<ActivationType>(
698
698
  kernel_content.HiddenStateTensor()),
699
699
  batch_size * state_dimension, quantization_settings.hidden_state.scale,
700
700
  quantization_settings.hidden_state.zero_point, dequantized_hidden_state);
701
701
 
702
702
  float dequantized_cell_state[batch_size * state_dimension] = {};
703
703
  Dequantize(
704
- tflite::micro::GetTensorData<CellType>(kernel_content.CellStateTensor()),
704
+ tflite_micro::micro::GetTensorData<CellType>(kernel_content.CellStateTensor()),
705
705
  batch_size * state_dimension, quantization_settings.cell_state.scale,
706
706
  quantization_settings.cell_state.zero_point, dequantized_cell_state);
707
707
 
@@ -737,7 +737,7 @@ void TestEvalLstmFloat(
737
737
 
738
738
  OpDataLSTM op_data = CreateLstmOpDataFloat(node_contents);
739
739
 
740
- tflite::EvalLstm<float, float, float, float>(op_data, kernel_content,
740
+ tflite_micro::EvalLstm<float, float, float, float>(op_data, kernel_content,
741
741
  buffers);
742
742
 
743
743
  ValidateResultGoldens(eval_check_data.expected_hidden_state,
@@ -779,7 +779,7 @@ void TestEvalLstmInteger(
779
779
 
780
780
  OpDataLSTM op_data = CreateLstmOpData(node_contents);
781
781
 
782
- tflite::EvalLstm<ActivationType, WeightType, CellType, BiasType>(
782
+ tflite_micro::EvalLstm<ActivationType, WeightType, CellType, BiasType>(
783
783
  op_data, kernel_content, buffers);
784
784
 
785
785
  const auto& quantization_settings = node_contents.QuantizationSettings();
@@ -812,6 +812,6 @@ void TestEvalLstmInteger(
812
812
  }
813
813
 
814
814
  } // namespace testing
815
- } // namespace tflite
815
+ } // namespace tflite_micro
816
816
 
817
817
  #endif // TENSORFLOW_LITE_MICRO_KERNELS_LSTM_EVAL_TEST_H_
@@ -18,7 +18,7 @@ limitations under the License.
18
18
  #include "tensorflow/lite/c/builtin_op_data.h"
19
19
  #include "tensorflow/lite/kernels/internal/types.h"
20
20
 
21
- namespace tflite {
21
+ namespace tflite_micro {
22
22
 
23
23
  // Input Tensors of size {n_batch, n_input}
24
24
  constexpr int kLstmInputTensor = 0;
@@ -146,5 +146,5 @@ struct LSTMBuffers {
146
146
  CellType* buffer3;
147
147
  };
148
148
 
149
- } // namespace tflite
149
+ } // namespace tflite_micro
150
150
  #endif // TENSORFLOW_LITE_MICRO_KERNELS_LSTM_SHARED_H_
@@ -27,7 +27,7 @@ limitations under the License.
27
27
  // their model requires, using a custom `(Micro)MutableOpResolver`. Selective
28
28
  // registration in turn allows the linker to strip unused kernels.
29
29
 
30
- namespace tflite {
30
+ namespace tflite_micro {
31
31
 
32
32
  // TFLM is incrementally moving towards a flat tflite namespace
33
33
  // (https://abseil.io/tips/130). Any new ops (or cleanup of existing ops should
@@ -153,6 +153,6 @@ TFLMRegistration* Register_STACKER();
153
153
  TFLMRegistration* Register_WINDOW();
154
154
  } // namespace tflm_signal
155
155
 
156
- } // namespace tflite
156
+ } // namespace tflite_micro
157
157
 
158
158
  #endif // TENSORFLOW_LITE_MICRO_KERNELS_MICRO_OPS_H_
@@ -34,7 +34,7 @@ limitations under the License.
34
34
  #define __restrict__ __restrict
35
35
  #endif
36
36
 
37
- namespace tflite {
37
+ namespace tflite_micro {
38
38
 
39
39
  // Not all backends support CpuBackendContext usage, so forward declare to avoid
40
40
  // pulling in its implementation.
@@ -51,6 +51,6 @@ void PortableApplyActivationToVector(const float* vector, int v_size,
51
51
  TfLiteFusedActivation activation,
52
52
  float* result);
53
53
 
54
- } // namespace tflite
54
+ } // namespace tflite_micro
55
55
 
56
56
  #endif // TENSORFLOW_LITE_MICRO_KERNELS_MICRO_TENSOR_UTILS_H_
@@ -21,7 +21,7 @@ limitations under the License.
21
21
  #include "tensorflow/lite/c/builtin_op_data.h"
22
22
  #include "tensorflow/lite/micro/micro_common.h"
23
23
 
24
- namespace tflite {
24
+ namespace tflite_micro {
25
25
 
26
26
  extern const int kMulInput1Tensor;
27
27
  extern const int kMulInput2Tensor;
@@ -69,6 +69,6 @@ TFLMRegistration Register_MUL_INT8();
69
69
  // Fallback registration
70
70
  inline TFLMRegistration Register_MUL_INT8() { return Register_MUL(); }
71
71
  #endif
72
- } // namespace tflite
72
+ } // namespace tflite_micro
73
73
 
74
74
  #endif // TENSORFLOW_LITE_MICRO_KERNELS_MUL_H_
@@ -18,10 +18,10 @@ limitations under the License.
18
18
 
19
19
  #include "tensorflow/lite/c/common.h"
20
20
 
21
- namespace tflite {
21
+ namespace tflite_micro {
22
22
 
23
23
  TfLiteStatus PadPrepare(TfLiteContext* context, TfLiteNode* node);
24
24
 
25
- } // namespace tflite
25
+ } // namespace tflite_micro
26
26
 
27
27
  #endif // TENSORFLOW_LITE_MICRO_KERNELS_PAD_H_
@@ -29,7 +29,7 @@ limitations under the License.
29
29
  #include "tensorflow/lite/micro/kernels/micro_ops.h"
30
30
  #include "tensorflow/lite/micro/micro_log.h"
31
31
 
32
- namespace tflite {
32
+ namespace tflite_micro {
33
33
 
34
34
  extern const int kPoolingInputTensor;
35
35
  extern const int kPoolingOutputTensor;
@@ -76,10 +76,10 @@ void AveragePoolingEvalQuantized(TfLiteContext* context, const TfLiteNode* node,
76
76
  op_params.quantized_activation_max = data->activation_max;
77
77
 
78
78
  reference_integer_ops::AveragePool(op_params,
79
- tflite::micro::GetTensorShape(input),
80
- tflite::micro::GetTensorData<T>(input),
81
- tflite::micro::GetTensorShape(output),
82
- tflite::micro::GetTensorData<T>(output));
79
+ tflite_micro::micro::GetTensorShape(input),
80
+ tflite_micro::micro::GetTensorData<T>(input),
81
+ tflite_micro::micro::GetTensorShape(output),
82
+ tflite_micro::micro::GetTensorData<T>(output));
83
83
  }
84
84
 
85
85
  void MaxPoolingEvalFloat(TfLiteContext* context, TfLiteNode* node,
@@ -95,7 +95,7 @@ void MaxPoolingEvalQuantized(TfLiteContext* context, TfLiteNode* node,
95
95
  TfLiteEvalTensor* output) {
96
96
  TFLITE_DCHECK(input->type == kTfLiteInt8 || input->type == kTfLiteInt16);
97
97
 
98
- tflite::PoolParams op_params;
98
+ tflite_micro::PoolParams op_params;
99
99
  op_params.stride_height = params->stride_height;
100
100
  op_params.stride_width = params->stride_width;
101
101
  op_params.filter_height = params->filter_height;
@@ -106,10 +106,10 @@ void MaxPoolingEvalQuantized(TfLiteContext* context, TfLiteNode* node,
106
106
  op_params.quantized_activation_max = data->activation_max;
107
107
 
108
108
  reference_integer_ops::MaxPool(op_params,
109
- tflite::micro::GetTensorShape(input),
110
- tflite::micro::GetTensorData<T>(input),
111
- tflite::micro::GetTensorShape(output),
112
- tflite::micro::GetTensorData<T>(output));
109
+ tflite_micro::micro::GetTensorShape(input),
110
+ tflite_micro::micro::GetTensorData<T>(input),
111
+ tflite_micro::micro::GetTensorShape(output),
112
+ tflite_micro::micro::GetTensorData<T>(output));
113
113
  }
114
114
 
115
115
  #if defined(CMSIS_NN) || defined(XTENSA)
@@ -122,21 +122,21 @@ TFLMRegistration Register_AVERAGE_POOL_2D_INT16();
122
122
  TFLMRegistration Register_MAX_POOL_2D_INT16();
123
123
  #else
124
124
  inline TFLMRegistration Register_AVERAGE_POOL_2D_INT8() {
125
- return tflite::Register_AVERAGE_POOL_2D();
125
+ return tflite_micro::Register_AVERAGE_POOL_2D();
126
126
  }
127
127
 
128
128
  inline TFLMRegistration Register_MAX_POOL_2D_INT8() {
129
- return tflite::Register_MAX_POOL_2D();
129
+ return tflite_micro::Register_MAX_POOL_2D();
130
130
  }
131
131
 
132
132
  inline TFLMRegistration Register_AVERAGE_POOL_2D_INT16() {
133
- return tflite::Register_AVERAGE_POOL_2D();
133
+ return tflite_micro::Register_AVERAGE_POOL_2D();
134
134
  }
135
135
 
136
136
  inline TFLMRegistration Register_MAX_POOL_2D_INT16() {
137
- return tflite::Register_MAX_POOL_2D();
137
+ return tflite_micro::Register_MAX_POOL_2D();
138
138
  }
139
139
  #endif
140
- } // namespace tflite
140
+ } // namespace tflite_micro
141
141
 
142
142
  #endif // TENSORFLOW_LITE_MICRO_KERNELS_POOLING_H_
@@ -19,7 +19,7 @@ limitations under the License.
19
19
  #include "tensorflow/lite/c/common.h"
20
20
  #include "tensorflow/lite/kernels/internal/types.h"
21
21
 
22
- namespace tflite {
22
+ namespace tflite_micro {
23
23
 
24
24
  TfLiteStatus CalculatePreluParams(const TfLiteTensor* input,
25
25
  const TfLiteTensor* alpha,
@@ -34,6 +34,6 @@ void BroadcastPrelu4DSlowFloat(const RuntimeShape& unextended_input1_shape,
34
34
 
35
35
  TfLiteStatus PreluPrepare(TfLiteContext* context, TfLiteNode* node);
36
36
 
37
- } // namespace tflite
37
+ } // namespace tflite_micro
38
38
 
39
39
  #endif // TENSORFLOW_LITE_MICRO_KERNELS_PRELU_H_
@@ -18,10 +18,10 @@ limitations under the License.
18
18
  #include "tensorflow/lite/c/common.h"
19
19
  #include "tensorflow/lite/kernels/internal/types.h"
20
20
 
21
- namespace tflite {
21
+ namespace tflite_micro {
22
22
 
23
23
  struct OpDataQuantizeReference {
24
- tflite::QuantizationParams quantization_params;
24
+ tflite_micro::QuantizationParams quantization_params;
25
25
  // The scaling factor from input to output (aka the 'real multiplier') can
26
26
  // be represented as a fixed point multiplier plus a left shift.
27
27
  int32_t requantize_output_multiplier;
@@ -32,6 +32,6 @@ struct OpDataQuantizeReference {
32
32
 
33
33
  TfLiteStatus EvalQuantizeReference(TfLiteContext* context, TfLiteNode* node);
34
34
  TfLiteStatus PrepareQuantizeReference(TfLiteContext* context, TfLiteNode* node);
35
- } // namespace tflite
35
+ } // namespace tflite_micro
36
36
 
37
37
  #endif // TENSORFLOW_LITE_MICRO_KERNELS_QUANTIZE_H_
@@ -22,7 +22,7 @@ limitations under the License.
22
22
  #include "tensorflow/lite/kernels/internal/types.h"
23
23
  #include "tensorflow/lite/micro/micro_common.h"
24
24
 
25
- namespace tflite {
25
+ namespace tflite_micro {
26
26
 
27
27
  extern const int kMaxNumberOfAxis;
28
28
  extern const int kMaxNumberOfReducedAxis;
@@ -60,6 +60,6 @@ TFLMRegistration Register_MEAN();
60
60
  TFLMRegistration Register_REDUCE_MAX();
61
61
  TFLMRegistration Register_SUM();
62
62
 
63
- } // namespace tflite
63
+ } // namespace tflite_micro
64
64
 
65
65
  #endif // TENSORFLOW_LITE_MICRO_KERNELS_REDUCE_H_
@@ -16,11 +16,11 @@ limitations under the License.
16
16
  #include "tensorflow/lite/c/builtin_op_data.h"
17
17
  #include "tensorflow/lite/c/common.h"
18
18
 
19
- namespace tflite {
19
+ namespace tflite_micro {
20
20
 
21
21
  constexpr int kReshapeInputTensor = 0;
22
22
  constexpr int kReshapeOutputTensor = 0;
23
23
 
24
24
  TfLiteStatus PrepareReshapeReference(TfLiteContext* context, TfLiteNode* node);
25
25
 
26
- } // namespace tflite
26
+ } // namespace tflite_micro
@@ -19,7 +19,7 @@ limitations under the License.
19
19
  #include "tensorflow/lite/kernels/internal/types.h"
20
20
  #include "tensorflow/lite/micro/micro_common.h"
21
21
 
22
- namespace tflite {
22
+ namespace tflite_micro {
23
23
 
24
24
  void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length);
25
25
 
@@ -62,6 +62,6 @@ inline TFLMRegistration Register_SOFTMAX_INT8() { return Register_SOFTMAX(); }
62
62
  inline TFLMRegistration Register_SOFTMAX_INT16() { return Register_SOFTMAX(); }
63
63
  #endif
64
64
 
65
- } // namespace tflite
65
+ } // namespace tflite_micro
66
66
 
67
67
  #endif // TENSORFLOW_LITE_MICRO_KERNELS_SOFTMAX_H_
@@ -22,7 +22,7 @@ limitations under the License.
22
22
  #include "tensorflow/lite/c/common.h"
23
23
  #include "tensorflow/lite/micro/micro_common.h"
24
24
 
25
- namespace tflite {
25
+ namespace tflite_micro {
26
26
 
27
27
  constexpr int kStridedSliceInputTensor = 0;
28
28
  constexpr int kStridedSliceBeginTensor = 1;
@@ -35,6 +35,6 @@ void* StridedSliceInit(TfLiteContext* context, const char* buffer,
35
35
 
36
36
  TfLiteStatus StridedSlicePrepare(TfLiteContext* context, TfLiteNode* node);
37
37
 
38
- } // namespace tflite
38
+ } // namespace tflite_micro
39
39
 
40
40
  #endif // TENSORFLOW_LITE_MICRO_KERNELS_STRIDED_SLICE_H_
@@ -21,7 +21,7 @@ limitations under the License.
21
21
  #include "tensorflow/lite/c/builtin_op_data.h"
22
22
  #include "tensorflow/lite/c/common.h"
23
23
 
24
- namespace tflite {
24
+ namespace tflite_micro {
25
25
 
26
26
  extern const int kSubInputTensor1;
27
27
  extern const int kSubInputTensor2;
@@ -55,6 +55,6 @@ TfLiteStatus CalculateOpDataSub(TfLiteContext* context, TfLiteSubParams* params,
55
55
 
56
56
  TfLiteStatus SubPrepare(TfLiteContext* context, TfLiteNode* node);
57
57
 
58
- } // namespace tflite
58
+ } // namespace tflite_micro
59
59
 
60
60
  #endif // TENSORFLOW_LITE_MICRO_KERNELS_SUB_H_