xlin 0.1.28__py2.py3-none-any.whl → 0.1.29__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
xlin/statistic.py
CHANGED
@@ -111,11 +111,53 @@ Kurtosis: {float((data - mean).mean()**4 / std**4):.4f}\
|
|
111
111
|
plt.show()
|
112
112
|
|
113
113
|
|
114
|
-
|
114
|
+
|
115
|
+
def draw_preds_labels(preds: list[str], labels: list[str]):
|
116
|
+
from collections import Counter
|
115
117
|
import matplotlib.pyplot as plt
|
116
118
|
|
117
|
-
|
118
|
-
|
119
|
+
out_of_class = "out_of_class"
|
120
|
+
valid_values = list(set(labels)) + [out_of_class]
|
121
|
+
valid_preds = []
|
122
|
+
for pred in preds:
|
123
|
+
if pred not in valid_values:
|
124
|
+
valid_preds.append(out_of_class)
|
125
|
+
else:
|
126
|
+
valid_preds.append(pred)
|
127
|
+
|
128
|
+
counter = Counter(valid_preds)
|
129
|
+
pred_labels = list(counter.keys())
|
130
|
+
pred_values = list(counter.values())
|
131
|
+
|
132
|
+
# 绘制柱状图 pred
|
133
|
+
plt.figure(figsize=(12, 12))
|
134
|
+
plt.subplot(2, 2, 1)
|
135
|
+
plt.bar(pred_labels, pred_values)
|
136
|
+
plt.xlabel("class")
|
137
|
+
plt.ylabel("count")
|
138
|
+
plt.title("pred class distribution")
|
139
|
+
|
140
|
+
# 绘制饼图 pred
|
141
|
+
plt.subplot(2, 2, 2)
|
142
|
+
plt.pie(pred_values, labels=pred_labels, autopct="%1.1f%%")
|
143
|
+
plt.title("pred class distribution")
|
144
|
+
|
145
|
+
# 绘制柱状图 label
|
146
|
+
counter = Counter(labels)
|
147
|
+
label_labels = list(counter.keys())
|
148
|
+
label_values = list(counter.values())
|
149
|
+
plt.subplot(2, 2, 3)
|
150
|
+
plt.bar(label_labels, label_values)
|
151
|
+
plt.xlabel("class")
|
152
|
+
plt.ylabel("count")
|
153
|
+
plt.title("label class distribution")
|
154
|
+
# 绘制饼图 label
|
155
|
+
plt.subplot(2, 2, 4)
|
156
|
+
plt.pie(label_values, labels=label_labels, autopct="%1.1f%%")
|
157
|
+
plt.title("label class distribution")
|
158
|
+
plt.suptitle("Pred and Label Class Distribution")
|
159
|
+
|
160
|
+
plt.tight_layout()
|
119
161
|
plt.show()
|
120
162
|
|
121
163
|
|
@@ -256,6 +298,7 @@ def print_classification_report(predictions: List[str], labels: List[str]):
|
|
256
298
|
print("=== 分类报告 ===")
|
257
299
|
print(report["class_report"])
|
258
300
|
print()
|
301
|
+
return report
|
259
302
|
|
260
303
|
|
261
304
|
if __name__ == "__main__":
|
@@ -4,12 +4,12 @@ xlin/jsonl.py,sha256=IDRydHh2x-8iAGCxt9ScK2wfNLNA40PxNxR5hhr4v6k,7903
|
|
4
4
|
xlin/metric.py,sha256=N7wJ35y-C-IaBr1I1CJ_37lTG7gA69zmn9Xg6xSwKoI,1690
|
5
5
|
xlin/multiprocess_mapping.py,sha256=q4EVU8JPLcRAbNf9NUEzmn8rDLDfIQ3jaW0yxVKPECk,16669
|
6
6
|
xlin/read_as_dataframe.py,sha256=MqY57L7Wp9UoWTRlZLSBKQNaZa-dKw51-ufrKvHKf8s,9041
|
7
|
-
xlin/statistic.py,sha256=
|
7
|
+
xlin/statistic.py,sha256=VS8tL0rwhs3tBR0hC4IU-7FVIlHuxImMrqJzut8JKNI,10525
|
8
8
|
xlin/timing.py,sha256=XMT8dMcMolOMohDvAZOIM_BAiPMREhGQKnO1kc5s6PU,998
|
9
9
|
xlin/util.py,sha256=TTWJaqF5D_r-gAZ_fj0kyHomvCagjwHXQZ2OPSgwd54,10976
|
10
10
|
xlin/xls2xlsx.py,sha256=uSmXcDvIhi5Sq0LGidMXy0wErNBXdjaoa6EftYVjTXs,947
|
11
11
|
xlin/yaml.py,sha256=kICi7G3Td5q2MaSXXt85qNTWoHMgjzt7pvn7r3C4dME,183
|
12
|
-
xlin-0.1.
|
13
|
-
xlin-0.1.
|
14
|
-
xlin-0.1.
|
15
|
-
xlin-0.1.
|
12
|
+
xlin-0.1.29.dist-info/LICENSE,sha256=60ys6rRtc1dZOP8UjSUr9fAqhZudT3WpKe5WbMCralM,1066
|
13
|
+
xlin-0.1.29.dist-info/METADATA,sha256=oGtT05fTogUwHLtNFuLkmV8oxd_wzLIJfC69f6Q4JYg,1098
|
14
|
+
xlin-0.1.29.dist-info/WHEEL,sha256=IrRNNNJ-uuL1ggO5qMvT1GGhQVdQU54d6ZpYqEZfEWo,92
|
15
|
+
xlin-0.1.29.dist-info/RECORD,,
|
File without changes
|
File without changes
|