xinference 1.6.0.post1__py3-none-any.whl → 1.7.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +79 -2
- xinference/client/restful/restful_client.py +65 -3
- xinference/conftest.py +0 -7
- xinference/core/media_interface.py +132 -8
- xinference/core/model.py +44 -6
- xinference/core/scheduler.py +1 -10
- xinference/core/supervisor.py +8 -17
- xinference/core/worker.py +5 -27
- xinference/deploy/cmdline.py +6 -2
- xinference/model/audio/chattts.py +24 -39
- xinference/model/audio/cosyvoice.py +18 -30
- xinference/model/audio/funasr.py +42 -0
- xinference/model/audio/model_spec.json +71 -1
- xinference/model/audio/model_spec_modelscope.json +76 -2
- xinference/model/audio/utils.py +75 -0
- xinference/model/core.py +1 -0
- xinference/model/embedding/__init__.py +74 -18
- xinference/model/embedding/core.py +98 -589
- xinference/model/embedding/embed_family.py +133 -0
- xinference/{thirdparty/omnilmm/train → model/embedding/flag}/__init__.py +1 -1
- xinference/model/embedding/flag/core.py +282 -0
- xinference/model/embedding/model_spec.json +24 -0
- xinference/model/embedding/model_spec_modelscope.json +24 -0
- xinference/model/embedding/sentence_transformers/__init__.py +13 -0
- xinference/model/embedding/sentence_transformers/core.py +399 -0
- xinference/model/embedding/vllm/core.py +95 -0
- xinference/model/image/model_spec.json +30 -3
- xinference/model/image/model_spec_modelscope.json +41 -2
- xinference/model/image/stable_diffusion/core.py +144 -53
- xinference/model/llm/__init__.py +6 -54
- xinference/model/llm/core.py +19 -5
- xinference/model/llm/llama_cpp/core.py +59 -3
- xinference/model/llm/llama_cpp/memory.py +457 -0
- xinference/model/llm/llm_family.json +247 -402
- xinference/model/llm/llm_family.py +88 -16
- xinference/model/llm/llm_family_modelscope.json +260 -421
- xinference/model/llm/llm_family_openmind_hub.json +0 -34
- xinference/model/llm/sglang/core.py +8 -0
- xinference/model/llm/transformers/__init__.py +27 -6
- xinference/model/llm/transformers/chatglm.py +4 -2
- xinference/model/llm/transformers/core.py +49 -28
- xinference/model/llm/transformers/deepseek_v2.py +6 -49
- xinference/model/llm/transformers/gemma3.py +119 -164
- xinference/model/llm/transformers/multimodal/__init__.py +13 -0
- xinference/model/llm/transformers/{cogagent.py → multimodal/cogagent.py} +58 -95
- xinference/model/llm/transformers/multimodal/core.py +205 -0
- xinference/model/llm/transformers/{deepseek_vl2.py → multimodal/deepseek_vl2.py} +59 -120
- xinference/model/llm/transformers/multimodal/gemma3.py +117 -0
- xinference/model/llm/transformers/{glm4v.py → multimodal/glm4v.py} +57 -93
- xinference/model/llm/transformers/multimodal/intern_vl.py +412 -0
- xinference/model/llm/transformers/{minicpmv26.py → multimodal/minicpmv26.py} +55 -102
- xinference/model/llm/transformers/{ovis2.py → multimodal/ovis2.py} +114 -175
- xinference/model/llm/transformers/{qwen-omni.py → multimodal/qwen-omni.py} +82 -167
- xinference/model/llm/transformers/multimodal/qwen2_audio.py +131 -0
- xinference/model/llm/transformers/{qwen2_vl.py → multimodal/qwen2_vl.py} +224 -256
- xinference/model/llm/transformers/opt.py +4 -2
- xinference/model/llm/transformers/utils.py +6 -37
- xinference/model/llm/utils.py +11 -0
- xinference/model/llm/vllm/core.py +7 -0
- xinference/model/rerank/core.py +91 -3
- xinference/model/rerank/model_spec.json +24 -0
- xinference/model/rerank/model_spec_modelscope.json +24 -0
- xinference/model/rerank/utils.py +20 -2
- xinference/model/utils.py +38 -1
- xinference/model/video/diffusers.py +65 -3
- xinference/model/video/model_spec.json +31 -4
- xinference/model/video/model_spec_modelscope.json +32 -4
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.013f296b.css +2 -0
- xinference/web/ui/build/static/css/main.013f296b.css.map +1 -0
- xinference/web/ui/build/static/js/main.8a9e3ba0.js +3 -0
- xinference/web/ui/build/static/js/main.8a9e3ba0.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/34cfbfb7836e136ba3261cfd411cc554bf99ba24b35dcceebeaa4f008cb3c9dc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/55b9fb40b57fa926e8f05f31c2f96467e76e5ad62f033dca97c03f9e8c4eb4fe.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/567e49df411efb24425d289bb484758cb57067ca54f8b5c67fe4505f698deb96.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6595880facebca7ceace6f17cf21c3a5a9219a2f52fb0ba9f3cf1131eddbcf6b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/aa998bc2d9c11853add6b8a2e08f50327f56d8824ccaaec92d6dde1b305f0d85.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c748246b1d7bcebc16153be69f37e955bb2145526c47dd425aeeff70d3004dbc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e31234e95d60a5a7883fbcd70de2475dc1c88c90705df1a530abb68f86f80a51.json +1 -0
- xinference/web/ui/src/locales/en.json +21 -8
- xinference/web/ui/src/locales/ja.json +224 -0
- xinference/web/ui/src/locales/ko.json +224 -0
- xinference/web/ui/src/locales/zh.json +21 -8
- {xinference-1.6.0.post1.dist-info → xinference-1.7.0.dist-info}/METADATA +14 -11
- {xinference-1.6.0.post1.dist-info → xinference-1.7.0.dist-info}/RECORD +93 -100
- {xinference-1.6.0.post1.dist-info → xinference-1.7.0.dist-info}/WHEEL +1 -1
- xinference/model/llm/transformers/cogvlm2.py +0 -442
- xinference/model/llm/transformers/cogvlm2_video.py +0 -333
- xinference/model/llm/transformers/deepseek_vl.py +0 -280
- xinference/model/llm/transformers/glm_edge_v.py +0 -213
- xinference/model/llm/transformers/intern_vl.py +0 -526
- xinference/model/llm/transformers/internlm2.py +0 -94
- xinference/model/llm/transformers/minicpmv25.py +0 -193
- xinference/model/llm/transformers/omnilmm.py +0 -132
- xinference/model/llm/transformers/qwen2_audio.py +0 -179
- xinference/model/llm/transformers/qwen_vl.py +0 -360
- xinference/thirdparty/omnilmm/LICENSE +0 -201
- xinference/thirdparty/omnilmm/chat.py +0 -218
- xinference/thirdparty/omnilmm/constants.py +0 -4
- xinference/thirdparty/omnilmm/conversation.py +0 -332
- xinference/thirdparty/omnilmm/model/__init__.py +0 -1
- xinference/thirdparty/omnilmm/model/omnilmm.py +0 -595
- xinference/thirdparty/omnilmm/model/resampler.py +0 -166
- xinference/thirdparty/omnilmm/model/utils.py +0 -578
- xinference/thirdparty/omnilmm/train/train_utils.py +0 -150
- xinference/thirdparty/omnilmm/utils.py +0 -134
- xinference/web/ui/build/static/css/main.337afe76.css +0 -2
- xinference/web/ui/build/static/css/main.337afe76.css.map +0 -1
- xinference/web/ui/build/static/js/main.ae579a97.js +0 -3
- xinference/web/ui/build/static/js/main.ae579a97.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/12e02ee790dbf57ead09a241a93bb5f893393aa36628ca741d44390e836a103f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/2fdc61dcb6a9d1fbcb44be592d0e87d8c3f21297a7327559ef5345665f8343f7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/3d596a3e8dd6430d7ce81d164e32c31f8d47cfa5f725c328a298754d78563e14.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/5c08e2cd07809ed3e41486b16652253404cbb63a3ff8d0366ee50f57e2413cea.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8472e58a31720892d534f3febda31f746b25ec4aa60787eef34217b074e67965.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +0 -1
- /xinference/{thirdparty/omnilmm → model/embedding/vllm}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.ae579a97.js.LICENSE.txt → main.8a9e3ba0.js.LICENSE.txt} +0 -0
- {xinference-1.6.0.post1.dist-info → xinference-1.7.0.dist-info}/entry_points.txt +0 -0
- {xinference-1.6.0.post1.dist-info → xinference-1.7.0.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.6.0.post1.dist-info → xinference-1.7.0.dist-info}/top_level.txt +0 -0
|
@@ -1,333 +0,0 @@
|
|
|
1
|
-
# Copyright 2022-2023 XProbe Inc.
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
import logging
|
|
15
|
-
import uuid
|
|
16
|
-
from concurrent.futures import ThreadPoolExecutor
|
|
17
|
-
from typing import Dict, Iterator, List, Optional, Tuple, Union
|
|
18
|
-
|
|
19
|
-
import torch
|
|
20
|
-
|
|
21
|
-
from ....model.utils import select_device
|
|
22
|
-
from ....types import ChatCompletion, ChatCompletionChunk, CompletionChunk
|
|
23
|
-
from ..llm_family import LLMFamilyV1, LLMSpecV1
|
|
24
|
-
from ..utils import (
|
|
25
|
-
_decode_image,
|
|
26
|
-
generate_chat_completion,
|
|
27
|
-
generate_completion_chunk,
|
|
28
|
-
parse_messages,
|
|
29
|
-
)
|
|
30
|
-
from .core import PytorchChatModel, PytorchGenerateConfig
|
|
31
|
-
from .utils import cache_clean
|
|
32
|
-
|
|
33
|
-
logger = logging.getLogger(__name__)
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
LANGUAGE_TOKEN_TYPE = 0
|
|
37
|
-
VISION_TOKEN_TYPE = 1
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def recur_move_to(item, tgt, criterion_func):
|
|
41
|
-
"""
|
|
42
|
-
This function is copied from https://github.com/THUDM/CogVLM2/blob/main/basic_demo/cli_demo_batch_inference.py
|
|
43
|
-
"""
|
|
44
|
-
if criterion_func(item):
|
|
45
|
-
device_copy = item.to(tgt)
|
|
46
|
-
return device_copy
|
|
47
|
-
elif isinstance(item, list):
|
|
48
|
-
return [recur_move_to(v, tgt, criterion_func) for v in item]
|
|
49
|
-
elif isinstance(item, tuple):
|
|
50
|
-
return tuple([recur_move_to(v, tgt, criterion_func) for v in item])
|
|
51
|
-
elif isinstance(item, dict):
|
|
52
|
-
return {k: recur_move_to(v, tgt, criterion_func) for k, v in item.items()}
|
|
53
|
-
else:
|
|
54
|
-
return item
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
class CogVLM2VideoModel(PytorchChatModel):
|
|
58
|
-
def __init__(self, *args, **kwargs):
|
|
59
|
-
super().__init__(*args, **kwargs)
|
|
60
|
-
self._torch_type = None
|
|
61
|
-
self._device = None
|
|
62
|
-
self._tokenizer = None
|
|
63
|
-
self._model = None
|
|
64
|
-
|
|
65
|
-
@classmethod
|
|
66
|
-
def match_json(
|
|
67
|
-
cls, model_family: "LLMFamilyV1", model_spec: "LLMSpecV1", quantization: str
|
|
68
|
-
) -> bool:
|
|
69
|
-
family = model_family.model_family or model_family.model_name
|
|
70
|
-
if "cogvlm2" in family.lower() and "video" in family.lower():
|
|
71
|
-
return True
|
|
72
|
-
return False
|
|
73
|
-
|
|
74
|
-
def load(self):
|
|
75
|
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
76
|
-
from transformers.generation import GenerationConfig
|
|
77
|
-
|
|
78
|
-
device = self._pytorch_model_config.get("device", "auto")
|
|
79
|
-
self._device = select_device(device)
|
|
80
|
-
self._torch_type = (
|
|
81
|
-
torch.bfloat16
|
|
82
|
-
if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8
|
|
83
|
-
else torch.float16
|
|
84
|
-
)
|
|
85
|
-
|
|
86
|
-
if self._check_tensorizer_integrity():
|
|
87
|
-
self._model, self._tokenizer = self._load_tensorizer()
|
|
88
|
-
return
|
|
89
|
-
|
|
90
|
-
kwargs = self.apply_bnb_quantization()
|
|
91
|
-
|
|
92
|
-
self._tokenizer = AutoTokenizer.from_pretrained(
|
|
93
|
-
self.model_path,
|
|
94
|
-
trust_remote_code=True,
|
|
95
|
-
)
|
|
96
|
-
|
|
97
|
-
self._model = AutoModelForCausalLM.from_pretrained(
|
|
98
|
-
self.model_path,
|
|
99
|
-
torch_dtype=self._torch_type,
|
|
100
|
-
trust_remote_code=True,
|
|
101
|
-
low_cpu_mem_usage=True,
|
|
102
|
-
device_map="auto",
|
|
103
|
-
**kwargs
|
|
104
|
-
).eval()
|
|
105
|
-
|
|
106
|
-
# Specify hyperparameters for generation
|
|
107
|
-
self._model.generation_config = GenerationConfig.from_pretrained(
|
|
108
|
-
self.model_path,
|
|
109
|
-
trust_remote_code=True,
|
|
110
|
-
)
|
|
111
|
-
self._save_tensorizer()
|
|
112
|
-
|
|
113
|
-
def _load_video(self, video_path):
|
|
114
|
-
import numpy as np
|
|
115
|
-
from decord import VideoReader, bridge, cpu
|
|
116
|
-
|
|
117
|
-
bridge.set_bridge("torch")
|
|
118
|
-
num_frames = 24
|
|
119
|
-
|
|
120
|
-
decord_vr = VideoReader(video_path, ctx=cpu(0))
|
|
121
|
-
frame_id_list = None
|
|
122
|
-
total_frames = len(decord_vr)
|
|
123
|
-
timestamps = decord_vr.get_frame_timestamp(np.arange(total_frames))
|
|
124
|
-
timestamps = [i[0] for i in timestamps]
|
|
125
|
-
max_second = round(max(timestamps)) + 1
|
|
126
|
-
frame_id_list = []
|
|
127
|
-
for second in range(max_second):
|
|
128
|
-
closest_num = min(timestamps, key=lambda x: abs(x - second))
|
|
129
|
-
index = timestamps.index(closest_num)
|
|
130
|
-
frame_id_list.append(index)
|
|
131
|
-
if len(frame_id_list) >= num_frames:
|
|
132
|
-
break
|
|
133
|
-
video_data = decord_vr.get_batch(frame_id_list)
|
|
134
|
-
video_data = video_data.permute(3, 0, 1, 2)
|
|
135
|
-
return video_data
|
|
136
|
-
|
|
137
|
-
def _message_content_to_cogvlm2(self, content):
|
|
138
|
-
if not isinstance(content, str):
|
|
139
|
-
texts = []
|
|
140
|
-
image_urls = []
|
|
141
|
-
video_urls = []
|
|
142
|
-
for c in content:
|
|
143
|
-
c_type = c.get("type")
|
|
144
|
-
if c_type == "text":
|
|
145
|
-
texts.append(c["text"])
|
|
146
|
-
elif c_type == "image_url":
|
|
147
|
-
image_urls.append(c["image_url"]["url"])
|
|
148
|
-
elif c_type == "video_url":
|
|
149
|
-
video_urls.append(c["video_url"]["url"])
|
|
150
|
-
if len(video_urls) > 1:
|
|
151
|
-
raise RuntimeError("Only one video per message is supported")
|
|
152
|
-
image_futures = []
|
|
153
|
-
video = None
|
|
154
|
-
with ThreadPoolExecutor() as executor:
|
|
155
|
-
for image_url in image_urls:
|
|
156
|
-
fut = executor.submit(_decode_image, image_url)
|
|
157
|
-
image_futures.append(fut)
|
|
158
|
-
images = [fut.result() for fut in image_futures]
|
|
159
|
-
for v in video_urls:
|
|
160
|
-
video = self._load_video(v)
|
|
161
|
-
text = " ".join(texts)
|
|
162
|
-
return text, images, video
|
|
163
|
-
return content, [], None
|
|
164
|
-
|
|
165
|
-
def _history_content_to_cogvlm2(self, system_prompt: str, chat_history: List[Dict]):
|
|
166
|
-
query = system_prompt
|
|
167
|
-
history: List[Tuple] = []
|
|
168
|
-
pixel_values = None
|
|
169
|
-
video_urls: List[str] = []
|
|
170
|
-
for i in range(0, len(chat_history), 2):
|
|
171
|
-
user = chat_history[i]["content"]
|
|
172
|
-
if isinstance(user, List):
|
|
173
|
-
for content in user:
|
|
174
|
-
c_type = content.get("type")
|
|
175
|
-
if c_type == "text":
|
|
176
|
-
user = content["text"]
|
|
177
|
-
elif c_type == "image_url" and not pixel_values:
|
|
178
|
-
pixel_values = _decode_image(content["image_url"]["url"])
|
|
179
|
-
elif c_type == "video_url":
|
|
180
|
-
video_urls.append(content["video_url"]["url"])
|
|
181
|
-
assistant = chat_history[i + 1]["content"]
|
|
182
|
-
history.append((user, assistant))
|
|
183
|
-
query = assistant # type: ignore
|
|
184
|
-
if len(video_urls) > 1:
|
|
185
|
-
raise RuntimeError("Only one video per message is supported")
|
|
186
|
-
video = None
|
|
187
|
-
for v in video_urls:
|
|
188
|
-
video = self._load_video(v)
|
|
189
|
-
return query, history, [pixel_values], video
|
|
190
|
-
|
|
191
|
-
def get_query_and_history(
|
|
192
|
-
self,
|
|
193
|
-
prompt: Union[str, List[Dict]],
|
|
194
|
-
system_prompt: Optional[str] = None,
|
|
195
|
-
chat_history: Optional[List[Dict]] = None,
|
|
196
|
-
):
|
|
197
|
-
content, image, video = self._message_content_to_cogvlm2(prompt)
|
|
198
|
-
|
|
199
|
-
history = []
|
|
200
|
-
history_image = None
|
|
201
|
-
history_video = None
|
|
202
|
-
if chat_history:
|
|
203
|
-
(
|
|
204
|
-
query,
|
|
205
|
-
history,
|
|
206
|
-
history_image,
|
|
207
|
-
history_video,
|
|
208
|
-
) = self._history_content_to_cogvlm2(
|
|
209
|
-
system_prompt, chat_history # type: ignore
|
|
210
|
-
)
|
|
211
|
-
|
|
212
|
-
if image and history_image:
|
|
213
|
-
history = []
|
|
214
|
-
query = content
|
|
215
|
-
else:
|
|
216
|
-
image = image if image else history_image
|
|
217
|
-
query = content
|
|
218
|
-
|
|
219
|
-
if video is not None and history_video is not None:
|
|
220
|
-
history = []
|
|
221
|
-
query = content
|
|
222
|
-
else:
|
|
223
|
-
video = video if video is not None else history_video
|
|
224
|
-
query = content
|
|
225
|
-
|
|
226
|
-
return query, image, video, history
|
|
227
|
-
|
|
228
|
-
@cache_clean
|
|
229
|
-
def chat(
|
|
230
|
-
self,
|
|
231
|
-
messages: List[Dict],
|
|
232
|
-
generate_config: Optional[PytorchGenerateConfig] = None,
|
|
233
|
-
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
|
|
234
|
-
system_prompt = ""
|
|
235
|
-
if messages[0]["role"] == "system":
|
|
236
|
-
system_prompt = messages[0]["content"]
|
|
237
|
-
stream = generate_config.get("stream", False) if generate_config else False
|
|
238
|
-
|
|
239
|
-
sanitized_config = {
|
|
240
|
-
"pad_token_id": 128002,
|
|
241
|
-
"max_new_tokens": generate_config.get("max_tokens", 512)
|
|
242
|
-
if generate_config
|
|
243
|
-
else 512,
|
|
244
|
-
}
|
|
245
|
-
|
|
246
|
-
prompt, _, chat_history = parse_messages(messages)
|
|
247
|
-
query, image, video, history = self.get_query_and_history(
|
|
248
|
-
prompt, system_prompt=system_prompt, chat_history=chat_history
|
|
249
|
-
)
|
|
250
|
-
|
|
251
|
-
if video is not None:
|
|
252
|
-
image = [video]
|
|
253
|
-
|
|
254
|
-
input_by_model = self._model.build_conversation_input_ids(
|
|
255
|
-
self._tokenizer,
|
|
256
|
-
query=query,
|
|
257
|
-
history=history,
|
|
258
|
-
images=image,
|
|
259
|
-
template_version="chat",
|
|
260
|
-
)
|
|
261
|
-
|
|
262
|
-
inputs = {
|
|
263
|
-
"input_ids": input_by_model["input_ids"].unsqueeze(0).to(self._device),
|
|
264
|
-
"token_type_ids": input_by_model["token_type_ids"]
|
|
265
|
-
.unsqueeze(0)
|
|
266
|
-
.to(self._device),
|
|
267
|
-
"attention_mask": input_by_model["attention_mask"]
|
|
268
|
-
.unsqueeze(0)
|
|
269
|
-
.to(self._device),
|
|
270
|
-
"images": [
|
|
271
|
-
[input_by_model["images"][0].to(self._device).to(self._torch_type)]
|
|
272
|
-
]
|
|
273
|
-
if image is not None
|
|
274
|
-
else None,
|
|
275
|
-
}
|
|
276
|
-
|
|
277
|
-
if stream:
|
|
278
|
-
it = self._streaming_chat_response(inputs, sanitized_config)
|
|
279
|
-
return self._to_chat_completion_chunks(it)
|
|
280
|
-
else:
|
|
281
|
-
with torch.no_grad():
|
|
282
|
-
outputs = self._model.generate(**inputs, **sanitized_config)
|
|
283
|
-
outputs = outputs[:, inputs["input_ids"].shape[1] :]
|
|
284
|
-
response = self._tokenizer.decode(outputs[0])
|
|
285
|
-
response = response.split("<|end_of_text|>")[0]
|
|
286
|
-
|
|
287
|
-
return generate_chat_completion(self.model_uid, response)
|
|
288
|
-
|
|
289
|
-
def _streaming_chat_response(
|
|
290
|
-
self, inputs: Dict, config: Dict
|
|
291
|
-
) -> Iterator[CompletionChunk]:
|
|
292
|
-
from threading import Thread
|
|
293
|
-
|
|
294
|
-
from transformers import TextIteratorStreamer
|
|
295
|
-
|
|
296
|
-
streamer = TextIteratorStreamer(
|
|
297
|
-
self._tokenizer, skip_prompt=True, skip_special_tokens=True
|
|
298
|
-
)
|
|
299
|
-
generation_kwargs = {
|
|
300
|
-
"input_ids": inputs["input_ids"],
|
|
301
|
-
"attention_mask": inputs["attention_mask"],
|
|
302
|
-
"token_type_ids": inputs["token_type_ids"],
|
|
303
|
-
"images": inputs["images"],
|
|
304
|
-
"max_new_tokens": config["max_new_tokens"],
|
|
305
|
-
"pad_token_id": config["pad_token_id"],
|
|
306
|
-
"streamer": streamer,
|
|
307
|
-
}
|
|
308
|
-
|
|
309
|
-
thread = Thread(target=self._model.generate, kwargs=generation_kwargs)
|
|
310
|
-
thread.start()
|
|
311
|
-
|
|
312
|
-
completion_id = str(uuid.uuid1())
|
|
313
|
-
for new_text in streamer:
|
|
314
|
-
yield generate_completion_chunk(
|
|
315
|
-
chunk_text=new_text,
|
|
316
|
-
finish_reason=None,
|
|
317
|
-
chunk_id=completion_id,
|
|
318
|
-
model_uid=self.model_uid,
|
|
319
|
-
prompt_tokens=-1,
|
|
320
|
-
completion_tokens=-1,
|
|
321
|
-
total_tokens=-1,
|
|
322
|
-
)
|
|
323
|
-
yield generate_completion_chunk(
|
|
324
|
-
chunk_text=None,
|
|
325
|
-
finish_reason="stop",
|
|
326
|
-
chunk_id=completion_id,
|
|
327
|
-
model_uid=self.model_uid,
|
|
328
|
-
prompt_tokens=-1,
|
|
329
|
-
completion_tokens=-1,
|
|
330
|
-
total_tokens=-1,
|
|
331
|
-
has_choice=True,
|
|
332
|
-
has_content=False,
|
|
333
|
-
)
|
|
@@ -1,280 +0,0 @@
|
|
|
1
|
-
# Copyright 2022-2023 XProbe Inc.
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
import base64
|
|
15
|
-
import logging
|
|
16
|
-
import os.path
|
|
17
|
-
import tempfile
|
|
18
|
-
import uuid
|
|
19
|
-
from concurrent.futures import ThreadPoolExecutor
|
|
20
|
-
from io import BytesIO
|
|
21
|
-
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
|
|
22
|
-
|
|
23
|
-
import requests
|
|
24
|
-
import torch
|
|
25
|
-
|
|
26
|
-
from ....model.utils import select_device
|
|
27
|
-
from ....types import ChatCompletion, ChatCompletionChunk, CompletionChunk
|
|
28
|
-
from ..llm_family import LLMFamilyV1, LLMSpecV1
|
|
29
|
-
from ..utils import generate_chat_completion, generate_completion_chunk
|
|
30
|
-
from .core import PytorchChatModel, PytorchGenerateConfig
|
|
31
|
-
from .utils import cache_clean
|
|
32
|
-
|
|
33
|
-
logger = logging.getLogger(__name__)
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
class DeepSeekVLChatModel(PytorchChatModel):
|
|
37
|
-
def __init__(self, *args, **kwargs):
|
|
38
|
-
super().__init__(*args, **kwargs)
|
|
39
|
-
self._tokenizer = None
|
|
40
|
-
self._model = None
|
|
41
|
-
self._vl_chat_processor = None
|
|
42
|
-
self._type = None
|
|
43
|
-
|
|
44
|
-
@classmethod
|
|
45
|
-
def match_json(
|
|
46
|
-
cls, model_family: "LLMFamilyV1", model_spec: "LLMSpecV1", quantization: str
|
|
47
|
-
) -> bool:
|
|
48
|
-
llm_family = model_family.model_family or model_family.model_name
|
|
49
|
-
if "deepseek-vl-chat" == llm_family.lower():
|
|
50
|
-
return True
|
|
51
|
-
return False
|
|
52
|
-
|
|
53
|
-
def load(self):
|
|
54
|
-
from transformers import AutoModelForCausalLM
|
|
55
|
-
|
|
56
|
-
from ....thirdparty.deepseek_vl.models import (
|
|
57
|
-
MultiModalityCausalLM,
|
|
58
|
-
VLChatProcessor,
|
|
59
|
-
)
|
|
60
|
-
|
|
61
|
-
self._device = self._pytorch_model_config.get("device", "auto")
|
|
62
|
-
self._device = select_device(self._device)
|
|
63
|
-
self._type = torch.float16 if self._device == "mps" else torch.bfloat16
|
|
64
|
-
|
|
65
|
-
kwargs = self.apply_bnb_quantization()
|
|
66
|
-
|
|
67
|
-
# specify the path to the model
|
|
68
|
-
self._vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained( # type: ignore
|
|
69
|
-
self.model_path
|
|
70
|
-
)
|
|
71
|
-
self._tokenizer = self._vl_chat_processor.tokenizer
|
|
72
|
-
|
|
73
|
-
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( # type: ignore
|
|
74
|
-
self.model_path,
|
|
75
|
-
trust_remote_code=True,
|
|
76
|
-
device_map=self._device,
|
|
77
|
-
torch_dtype=self._type,
|
|
78
|
-
**kwargs,
|
|
79
|
-
)
|
|
80
|
-
self._model = vl_gpt.eval()
|
|
81
|
-
|
|
82
|
-
@staticmethod
|
|
83
|
-
def _message_content_to_deepseek(content) -> Tuple[str, List[str]]:
|
|
84
|
-
def _ensure_url(_url):
|
|
85
|
-
if _url.startswith("data:"):
|
|
86
|
-
logging.info("Parse url by base64 decoder.")
|
|
87
|
-
# https://platform.openai.com/docs/guides/vision/uploading-base-64-encoded-images
|
|
88
|
-
# e.g. f"data:image/jpeg;base64,{base64_image}"
|
|
89
|
-
_type, data = _url.split(";")
|
|
90
|
-
_, ext = _type.split("/")
|
|
91
|
-
data = data[len("base64,") :]
|
|
92
|
-
data = base64.b64decode(data.encode("utf-8"))
|
|
93
|
-
|
|
94
|
-
with tempfile.NamedTemporaryFile(suffix=f".{ext}", delete=False) as f:
|
|
95
|
-
f.write(data)
|
|
96
|
-
logging.info("Dump base64 data to %s", f.name)
|
|
97
|
-
return f.name
|
|
98
|
-
else:
|
|
99
|
-
if len(_url) > 2048:
|
|
100
|
-
raise Exception(f"Image url is too long, {len(_url)} > 2048.")
|
|
101
|
-
|
|
102
|
-
return _url
|
|
103
|
-
|
|
104
|
-
def _download(_images):
|
|
105
|
-
local_images = []
|
|
106
|
-
|
|
107
|
-
# To make requests.get works
|
|
108
|
-
headers = {
|
|
109
|
-
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36"
|
|
110
|
-
}
|
|
111
|
-
with ThreadPoolExecutor() as executor:
|
|
112
|
-
for url in images:
|
|
113
|
-
try:
|
|
114
|
-
if os.path.exists(url):
|
|
115
|
-
local_images.append(url)
|
|
116
|
-
continue
|
|
117
|
-
except Exception as e:
|
|
118
|
-
logger.debug("Image is remote: %s, e: %s", url, e)
|
|
119
|
-
pass
|
|
120
|
-
# Append a placeholder
|
|
121
|
-
local_images.append(None)
|
|
122
|
-
|
|
123
|
-
def _fill_placeholder(_url, _index):
|
|
124
|
-
response = requests.get(url, headers=headers)
|
|
125
|
-
local_images[_index] = BytesIO(response.content)
|
|
126
|
-
|
|
127
|
-
executor.submit(_fill_placeholder, url, len(local_images) - 1)
|
|
128
|
-
return local_images
|
|
129
|
-
|
|
130
|
-
if not isinstance(content, str):
|
|
131
|
-
# TODO(codingl2k1): Optimize _ensure_url
|
|
132
|
-
|
|
133
|
-
images = []
|
|
134
|
-
new_content = []
|
|
135
|
-
for c in content:
|
|
136
|
-
c_type = c.get("type")
|
|
137
|
-
if c_type == "image_url":
|
|
138
|
-
images.append(_ensure_url(c["image_url"]["url"]))
|
|
139
|
-
elif c_type == "text":
|
|
140
|
-
new_content.append(c["text"])
|
|
141
|
-
if images:
|
|
142
|
-
new_content.insert(0, "<image_placeholder>")
|
|
143
|
-
images = _download(images)
|
|
144
|
-
return "".join(new_content), images
|
|
145
|
-
return content, []
|
|
146
|
-
|
|
147
|
-
@cache_clean
|
|
148
|
-
def chat(
|
|
149
|
-
self,
|
|
150
|
-
messages: List[Dict],
|
|
151
|
-
generate_config: Optional[PytorchGenerateConfig] = None,
|
|
152
|
-
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
|
|
153
|
-
if not generate_config:
|
|
154
|
-
generate_config = {}
|
|
155
|
-
|
|
156
|
-
stream = generate_config.get("stream", False)
|
|
157
|
-
stream_options = generate_config.pop("stream_options", None)
|
|
158
|
-
include_usage = (
|
|
159
|
-
stream_options["include_usage"]
|
|
160
|
-
if isinstance(stream_options, dict)
|
|
161
|
-
else False
|
|
162
|
-
)
|
|
163
|
-
|
|
164
|
-
prompt = ""
|
|
165
|
-
deepseek_messages = []
|
|
166
|
-
for i, message in enumerate(messages):
|
|
167
|
-
role = message["role"]
|
|
168
|
-
content = message["content"]
|
|
169
|
-
if role == "user":
|
|
170
|
-
if isinstance(content, str):
|
|
171
|
-
deepseek_messages.append({"role": "User", "content": content})
|
|
172
|
-
else:
|
|
173
|
-
content, images = self._message_content_to_deepseek(content)
|
|
174
|
-
msg: Dict[str, Any] = {
|
|
175
|
-
"role": "User",
|
|
176
|
-
"content": content,
|
|
177
|
-
}
|
|
178
|
-
if images:
|
|
179
|
-
msg["images"] = images
|
|
180
|
-
deepseek_messages.append(msg)
|
|
181
|
-
if i == len(messages) - 1:
|
|
182
|
-
prompt = content
|
|
183
|
-
elif role == "assistant":
|
|
184
|
-
deepseek_messages.append({"role": "Assistant", "content": content})
|
|
185
|
-
else:
|
|
186
|
-
logger.error(
|
|
187
|
-
f"Unexpected message in messages: role: {role}, message: {message}"
|
|
188
|
-
)
|
|
189
|
-
|
|
190
|
-
from ....thirdparty.deepseek_vl.serve.inference import generate
|
|
191
|
-
from ....thirdparty.deepseek_vl.utils.io import load_pil_images
|
|
192
|
-
|
|
193
|
-
# load images and prepare for inputs
|
|
194
|
-
pil_images = load_pil_images(deepseek_messages)
|
|
195
|
-
prepare_inputs = self._vl_chat_processor(
|
|
196
|
-
conversations=deepseek_messages, images=pil_images, force_batchify=True
|
|
197
|
-
).to(self._model.device, self._model.dtype)
|
|
198
|
-
|
|
199
|
-
temperature = generate_config.get("temperature", 0.2)
|
|
200
|
-
top_p = generate_config.get("top_p", 0.95)
|
|
201
|
-
max_new_tokens = generate_config.get("max_tokens", 512)
|
|
202
|
-
repetition_penalty = generate_config.get("repetition_penalty", 1.1)
|
|
203
|
-
|
|
204
|
-
conversation = self._vl_chat_processor.new_chat_template()
|
|
205
|
-
stop_str = conversation.sep2
|
|
206
|
-
stop_words = [stop_str]
|
|
207
|
-
|
|
208
|
-
streamer = generate(
|
|
209
|
-
vl_gpt=self._model,
|
|
210
|
-
tokenizer=self._tokenizer,
|
|
211
|
-
prepare_inputs=prepare_inputs,
|
|
212
|
-
max_gen_len=max_new_tokens,
|
|
213
|
-
temperature=temperature,
|
|
214
|
-
repetition_penalty=repetition_penalty,
|
|
215
|
-
top_p=top_p,
|
|
216
|
-
stop_words=stop_words,
|
|
217
|
-
)
|
|
218
|
-
|
|
219
|
-
if stream:
|
|
220
|
-
it = self._generate_stream(streamer, stop_str, include_usage, prompt)
|
|
221
|
-
return self._to_chat_completion_chunks(it)
|
|
222
|
-
else:
|
|
223
|
-
return self._generate(streamer, stop_str)
|
|
224
|
-
|
|
225
|
-
def _generate(self, streamer, stop_str) -> ChatCompletion:
|
|
226
|
-
generated_text = ""
|
|
227
|
-
for new_text in streamer:
|
|
228
|
-
if new_text.endswith(stop_str):
|
|
229
|
-
new_text = new_text[: -len(stop_str)]
|
|
230
|
-
generated_text += new_text
|
|
231
|
-
|
|
232
|
-
return generate_chat_completion(self.model_uid, generated_text)
|
|
233
|
-
|
|
234
|
-
def _generate_stream(
|
|
235
|
-
self, streamer, stop_str, include_usage, prompt
|
|
236
|
-
) -> Iterator[CompletionChunk]:
|
|
237
|
-
completion_id = str(uuid.uuid1())
|
|
238
|
-
prompt_tokens, completion_tokens, total_tokens = 0, 0, 0
|
|
239
|
-
input_ids = self._tokenizer(prompt).input_ids
|
|
240
|
-
prompt_tokens = len(input_ids)
|
|
241
|
-
for i, new_text in enumerate(streamer):
|
|
242
|
-
if new_text.endswith(stop_str):
|
|
243
|
-
new_text = new_text[: -len(stop_str)]
|
|
244
|
-
completion_tokens = i
|
|
245
|
-
total_tokens = prompt_tokens + completion_tokens
|
|
246
|
-
yield generate_completion_chunk(
|
|
247
|
-
chunk_text=new_text,
|
|
248
|
-
finish_reason=None,
|
|
249
|
-
chunk_id=completion_id,
|
|
250
|
-
model_uid=self.model_uid,
|
|
251
|
-
prompt_tokens=prompt_tokens,
|
|
252
|
-
completion_tokens=completion_tokens,
|
|
253
|
-
total_tokens=total_tokens,
|
|
254
|
-
has_choice=True,
|
|
255
|
-
has_content=True,
|
|
256
|
-
)
|
|
257
|
-
yield generate_completion_chunk(
|
|
258
|
-
chunk_text=None,
|
|
259
|
-
finish_reason="stop",
|
|
260
|
-
chunk_id=completion_id,
|
|
261
|
-
model_uid=self.model_uid,
|
|
262
|
-
prompt_tokens=prompt_tokens,
|
|
263
|
-
completion_tokens=completion_tokens,
|
|
264
|
-
total_tokens=total_tokens,
|
|
265
|
-
has_choice=True,
|
|
266
|
-
has_content=False,
|
|
267
|
-
)
|
|
268
|
-
|
|
269
|
-
if include_usage:
|
|
270
|
-
yield generate_completion_chunk(
|
|
271
|
-
chunk_text=None,
|
|
272
|
-
finish_reason=None,
|
|
273
|
-
chunk_id=completion_id,
|
|
274
|
-
model_uid=self.model_uid,
|
|
275
|
-
prompt_tokens=prompt_tokens,
|
|
276
|
-
completion_tokens=completion_tokens,
|
|
277
|
-
total_tokens=total_tokens,
|
|
278
|
-
has_choice=False,
|
|
279
|
-
has_content=False,
|
|
280
|
-
)
|