xinference 1.6.0.post1__py3-none-any.whl → 1.6.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (87) hide show
  1. xinference/_version.py +3 -3
  2. xinference/client/restful/restful_client.py +1 -1
  3. xinference/conftest.py +0 -7
  4. xinference/core/media_interface.py +9 -8
  5. xinference/core/model.py +13 -6
  6. xinference/core/scheduler.py +1 -10
  7. xinference/core/worker.py +0 -10
  8. xinference/model/audio/model_spec.json +53 -1
  9. xinference/model/audio/model_spec_modelscope.json +57 -1
  10. xinference/model/embedding/core.py +19 -11
  11. xinference/model/image/model_spec.json +10 -1
  12. xinference/model/image/model_spec_modelscope.json +20 -0
  13. xinference/model/llm/__init__.py +6 -54
  14. xinference/model/llm/core.py +19 -5
  15. xinference/model/llm/llama_cpp/core.py +59 -3
  16. xinference/model/llm/llama_cpp/memory.py +455 -0
  17. xinference/model/llm/llm_family.json +185 -397
  18. xinference/model/llm/llm_family.py +88 -16
  19. xinference/model/llm/llm_family_modelscope.json +199 -421
  20. xinference/model/llm/llm_family_openmind_hub.json +0 -34
  21. xinference/model/llm/sglang/core.py +4 -0
  22. xinference/model/llm/transformers/__init__.py +27 -6
  23. xinference/model/llm/transformers/chatglm.py +4 -2
  24. xinference/model/llm/transformers/core.py +49 -28
  25. xinference/model/llm/transformers/deepseek_v2.py +6 -49
  26. xinference/model/llm/transformers/gemma3.py +119 -164
  27. xinference/{thirdparty/omnilmm/train → model/llm/transformers/multimodal}/__init__.py +1 -1
  28. xinference/model/llm/transformers/{cogagent.py → multimodal/cogagent.py} +58 -95
  29. xinference/model/llm/transformers/multimodal/core.py +205 -0
  30. xinference/model/llm/transformers/{deepseek_vl2.py → multimodal/deepseek_vl2.py} +59 -120
  31. xinference/model/llm/transformers/multimodal/gemma3.py +117 -0
  32. xinference/model/llm/transformers/{glm4v.py → multimodal/glm4v.py} +57 -93
  33. xinference/model/llm/transformers/multimodal/intern_vl.py +412 -0
  34. xinference/model/llm/transformers/{minicpmv26.py → multimodal/minicpmv26.py} +55 -102
  35. xinference/model/llm/transformers/{ovis2.py → multimodal/ovis2.py} +114 -175
  36. xinference/model/llm/transformers/{qwen-omni.py → multimodal/qwen-omni.py} +82 -167
  37. xinference/model/llm/transformers/multimodal/qwen2_audio.py +131 -0
  38. xinference/model/llm/transformers/{qwen2_vl.py → multimodal/qwen2_vl.py} +224 -256
  39. xinference/model/llm/transformers/opt.py +4 -2
  40. xinference/model/llm/transformers/utils.py +6 -37
  41. xinference/model/llm/vllm/core.py +4 -0
  42. xinference/model/rerank/core.py +7 -1
  43. xinference/model/rerank/utils.py +17 -0
  44. xinference/web/ui/build/asset-manifest.json +3 -3
  45. xinference/web/ui/build/index.html +1 -1
  46. xinference/web/ui/build/static/js/main.ddf9eaee.js +3 -0
  47. xinference/web/ui/build/static/js/main.ddf9eaee.js.map +1 -0
  48. xinference/web/ui/node_modules/.cache/babel-loader/12e637ed5fa9ca6491b03892b6949c03afd4960fe36ac25744488e7e1982aa19.json +1 -0
  49. xinference/web/ui/node_modules/.cache/babel-loader/567e49df411efb24425d289bb484758cb57067ca54f8b5c67fe4505f698deb96.json +1 -0
  50. xinference/web/ui/node_modules/.cache/babel-loader/77ac2665a784e99501ae95d32ef5937837a0439a47e965d291b38e99cb619f5b.json +1 -0
  51. xinference/web/ui/node_modules/.cache/babel-loader/d4ed4e82bfe69915999ec83f5feaa4301c75ecc6bdf1c78f2d03e4671ecbefc8.json +1 -0
  52. xinference/web/ui/src/locales/en.json +3 -1
  53. xinference/web/ui/src/locales/zh.json +3 -1
  54. {xinference-1.6.0.post1.dist-info → xinference-1.6.1.dist-info}/METADATA +6 -4
  55. {xinference-1.6.0.post1.dist-info → xinference-1.6.1.dist-info}/RECORD +60 -76
  56. {xinference-1.6.0.post1.dist-info → xinference-1.6.1.dist-info}/WHEEL +1 -1
  57. xinference/model/llm/transformers/cogvlm2.py +0 -442
  58. xinference/model/llm/transformers/cogvlm2_video.py +0 -333
  59. xinference/model/llm/transformers/deepseek_vl.py +0 -280
  60. xinference/model/llm/transformers/glm_edge_v.py +0 -213
  61. xinference/model/llm/transformers/intern_vl.py +0 -526
  62. xinference/model/llm/transformers/internlm2.py +0 -94
  63. xinference/model/llm/transformers/minicpmv25.py +0 -193
  64. xinference/model/llm/transformers/omnilmm.py +0 -132
  65. xinference/model/llm/transformers/qwen2_audio.py +0 -179
  66. xinference/model/llm/transformers/qwen_vl.py +0 -360
  67. xinference/thirdparty/omnilmm/LICENSE +0 -201
  68. xinference/thirdparty/omnilmm/__init__.py +0 -0
  69. xinference/thirdparty/omnilmm/chat.py +0 -218
  70. xinference/thirdparty/omnilmm/constants.py +0 -4
  71. xinference/thirdparty/omnilmm/conversation.py +0 -332
  72. xinference/thirdparty/omnilmm/model/__init__.py +0 -1
  73. xinference/thirdparty/omnilmm/model/omnilmm.py +0 -595
  74. xinference/thirdparty/omnilmm/model/resampler.py +0 -166
  75. xinference/thirdparty/omnilmm/model/utils.py +0 -578
  76. xinference/thirdparty/omnilmm/train/train_utils.py +0 -150
  77. xinference/thirdparty/omnilmm/utils.py +0 -134
  78. xinference/web/ui/build/static/js/main.ae579a97.js +0 -3
  79. xinference/web/ui/build/static/js/main.ae579a97.js.map +0 -1
  80. xinference/web/ui/node_modules/.cache/babel-loader/2fdc61dcb6a9d1fbcb44be592d0e87d8c3f21297a7327559ef5345665f8343f7.json +0 -1
  81. xinference/web/ui/node_modules/.cache/babel-loader/3d596a3e8dd6430d7ce81d164e32c31f8d47cfa5f725c328a298754d78563e14.json +0 -1
  82. xinference/web/ui/node_modules/.cache/babel-loader/5c08e2cd07809ed3e41486b16652253404cbb63a3ff8d0366ee50f57e2413cea.json +0 -1
  83. xinference/web/ui/node_modules/.cache/babel-loader/8472e58a31720892d534f3febda31f746b25ec4aa60787eef34217b074e67965.json +0 -1
  84. /xinference/web/ui/build/static/js/{main.ae579a97.js.LICENSE.txt → main.ddf9eaee.js.LICENSE.txt} +0 -0
  85. {xinference-1.6.0.post1.dist-info → xinference-1.6.1.dist-info}/entry_points.txt +0 -0
  86. {xinference-1.6.0.post1.dist-info → xinference-1.6.1.dist-info}/licenses/LICENSE +0 -0
  87. {xinference-1.6.0.post1.dist-info → xinference-1.6.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,117 @@
1
+ # Copyright 2022-2025 XProbe Inc.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import logging
15
+ from threading import Thread
16
+ from typing import Any, Dict, Iterator, List, Optional, Tuple
17
+
18
+ from .....model.utils import select_device
19
+ from .....types import PytorchModelConfig
20
+ from ...llm_family import LLMFamilyV1, LLMSpecV1, register_transformer
21
+ from ..core import register_non_default_model
22
+ from .core import PytorchMultiModalModel
23
+
24
+ logger = logging.getLogger(__name__)
25
+
26
+
27
+ @register_transformer
28
+ @register_non_default_model("gemma-3-it")
29
+ class Gemma3ChatModel(PytorchMultiModalModel):
30
+ @classmethod
31
+ def match_json(
32
+ cls, model_family: "LLMFamilyV1", model_spec: "LLMSpecV1", quantization: str
33
+ ) -> bool:
34
+ if model_spec.model_format not in ["pytorch", "gptq", "awq"]:
35
+ return False
36
+ llm_family = model_family.model_family or model_family.model_name
37
+ if "gemma-3-it".lower() in llm_family.lower():
38
+ return True
39
+ return False
40
+
41
+ def _sanitize_model_config(
42
+ self, pytorch_model_config: Optional[PytorchModelConfig]
43
+ ) -> PytorchModelConfig:
44
+ pytorch_model_config = super()._sanitize_model_config(pytorch_model_config)
45
+ assert pytorch_model_config is not None
46
+ pytorch_model_config.setdefault("min_pixels", 256 * 28 * 28)
47
+ pytorch_model_config.setdefault("max_pixels", 1280 * 28 * 28)
48
+ return pytorch_model_config
49
+
50
+ def decide_device(self):
51
+ device = self._pytorch_model_config.get("device", "auto")
52
+ device = select_device(device)
53
+ self._device = device
54
+
55
+ def load_processor(self):
56
+ from transformers import AutoProcessor
57
+
58
+ min_pixels = self._pytorch_model_config.get("min_pixels")
59
+ max_pixels = self._pytorch_model_config.get("max_pixels")
60
+ self._processor = AutoProcessor.from_pretrained(
61
+ self.model_path,
62
+ min_pixels=min_pixels,
63
+ max_pixels=max_pixels,
64
+ )
65
+ self._tokenizer = self._processor.tokenizer
66
+
67
+ def load_multimodal_model(self):
68
+ from transformers import Gemma3ForConditionalGeneration
69
+
70
+ kwargs = self.apply_bnb_quantization()
71
+ self._model = Gemma3ForConditionalGeneration.from_pretrained(
72
+ self.model_path, device_map="auto", torch_dtype="bfloat16", **kwargs
73
+ )
74
+
75
+ def build_inputs_from_messages(
76
+ self,
77
+ messages: List[Dict],
78
+ generate_config: Dict,
79
+ ):
80
+ messages = self._transform_messages(messages)
81
+ inputs = self._processor.apply_chat_template(
82
+ messages,
83
+ add_generation_prompt=True,
84
+ tokenize=True,
85
+ return_dict=True,
86
+ return_tensors="pt",
87
+ ).to(self._device)
88
+ return inputs
89
+
90
+ def build_generate_kwargs(
91
+ self,
92
+ generate_config: Dict,
93
+ ) -> Dict[str, Any]:
94
+ return dict(
95
+ max_new_tokens=generate_config.get("max_tokens", 512),
96
+ temperature=generate_config.get("temperature", 1),
97
+ )
98
+
99
+ def build_streaming_iter(
100
+ self,
101
+ messages: List[Dict],
102
+ generate_config: Dict,
103
+ ) -> Tuple[Iterator, int]:
104
+ from transformers import TextIteratorStreamer
105
+
106
+ inputs = self.build_inputs_from_messages(messages, generate_config)
107
+ configs = self.build_generate_kwargs(generate_config)
108
+
109
+ tokenizer = self._tokenizer
110
+ streamer = TextIteratorStreamer(
111
+ tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True
112
+ )
113
+
114
+ gen_kwargs = {"streamer": streamer, **inputs, **configs}
115
+ t = Thread(target=self._model.generate, kwargs=gen_kwargs)
116
+ t.start()
117
+ return streamer, len(inputs.input_ids[0])
@@ -1,4 +1,4 @@
1
- # Copyright 2022-2023 XProbe Inc.
1
+ # Copyright 2022-2025 XProbe Inc.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -13,31 +13,28 @@
13
13
  # limitations under the License.
14
14
  import logging
15
15
  import typing
16
- import uuid
17
16
  from concurrent.futures import ThreadPoolExecutor
18
17
  from threading import Thread
19
- from typing import Dict, Iterator, List, Optional, Union
18
+ from typing import Any, Dict, Iterator, List, Optional, Tuple
20
19
 
21
20
  import torch
22
21
 
23
- from ....core.scheduler import InferenceRequest
24
- from ....types import ChatCompletion, ChatCompletionChunk, CompletionChunk
25
- from ...utils import select_device
26
- from ..llm_family import LLMFamilyV1, LLMSpecV1
27
- from ..utils import _decode_image, generate_chat_completion, generate_completion_chunk
28
- from .core import PytorchChatModel, PytorchGenerateConfig
29
- from .utils import cache_clean, get_max_src_len
22
+ from .....core.model import register_batching_multimodal_models
23
+ from .....core.scheduler import InferenceRequest
24
+ from .....model.utils import select_device
25
+ from ...llm_family import LLMFamilyV1, LLMSpecV1, register_transformer
26
+ from ...utils import _decode_image
27
+ from ..core import register_non_default_model
28
+ from ..utils import get_max_src_len
29
+ from .core import PytorchMultiModalModel
30
30
 
31
31
  logger = logging.getLogger(__name__)
32
32
 
33
33
 
34
- class Glm4VModel(PytorchChatModel):
35
- def __init__(self, *args, **kwargs):
36
- super().__init__(*args, **kwargs)
37
- self._device = None
38
- self._tokenizer = None
39
- self._model = None
40
-
34
+ @register_batching_multimodal_models("glm-4v")
35
+ @register_transformer
36
+ @register_non_default_model("glm-4v")
37
+ class Glm4VModel(PytorchMultiModalModel):
41
38
  @classmethod
42
39
  def match_json(
43
40
  cls, model_family: "LLMFamilyV1", model_spec: "LLMSpecV1", quantization: str
@@ -47,19 +44,23 @@ class Glm4VModel(PytorchChatModel):
47
44
  return True
48
45
  return False
49
46
 
50
- def load(self):
51
- from transformers import AutoModelForCausalLM, AutoTokenizer
52
-
47
+ def decide_device(self):
53
48
  device = self._pytorch_model_config.get("device", "auto")
54
49
  self._device = select_device(device)
55
50
 
51
+ def load_processor(self):
52
+ from transformers import AutoTokenizer
53
+
54
+ self._tokenizer = AutoTokenizer.from_pretrained(
55
+ self.model_path, trust_remote_code=True
56
+ )
57
+
58
+ def load_multimodal_model(self):
59
+ from transformers import AutoModelForCausalLM
60
+
56
61
  kwargs = {"device_map": self._device}
57
62
  kwargs = self.apply_bnb_quantization(kwargs)
58
63
 
59
- if self._check_tensorizer_integrity():
60
- self._model, self._tokenizer = self._load_tensorizer()
61
- return
62
-
63
64
  model = AutoModelForCausalLM.from_pretrained(
64
65
  self.model_path,
65
66
  low_cpu_mem_usage=True,
@@ -69,12 +70,6 @@ class Glm4VModel(PytorchChatModel):
69
70
  )
70
71
  self._model = model.eval()
71
72
 
72
- tokenizer = AutoTokenizer.from_pretrained(
73
- self.model_path, trust_remote_code=True
74
- )
75
- self._tokenizer = tokenizer
76
- self._save_tensorizer()
77
-
78
73
  @staticmethod
79
74
  def _get_processed_msgs(messages: List[Dict]) -> List[Dict]:
80
75
  res = []
@@ -111,20 +106,12 @@ class Glm4VModel(PytorchChatModel):
111
106
  res.append({"role": role, "content": text})
112
107
  return res
113
108
 
114
- @cache_clean
115
- def chat(
109
+ def build_inputs_from_messages(
116
110
  self,
117
111
  messages: List[Dict],
118
- generate_config: Optional[PytorchGenerateConfig] = None,
119
- ) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
120
- from transformers import TextIteratorStreamer
121
-
122
- if not generate_config:
123
- generate_config = {}
124
-
125
- stream = generate_config.get("stream", False)
112
+ generate_config: Dict,
113
+ ):
126
114
  msgs = self._get_processed_msgs(messages)
127
-
128
115
  inputs = self._tokenizer.apply_chat_template(
129
116
  msgs,
130
117
  add_generation_prompt=True,
@@ -133,68 +120,45 @@ class Glm4VModel(PytorchChatModel):
133
120
  return_dict=True,
134
121
  ) # chat mode
135
122
  inputs = inputs.to(self._model.device)
123
+ return inputs
136
124
 
137
- generate_kwargs = {
138
- **inputs,
125
+ def build_generate_kwargs(
126
+ self,
127
+ generate_config: Dict,
128
+ ) -> Dict[str, Any]:
129
+ return {
139
130
  "eos_token_id": [151329, 151336, 151338],
140
131
  "do_sample": True,
141
132
  "max_length": generate_config.get("max_tokens", 2048),
142
133
  "temperature": generate_config.get("temperature", 0.7),
143
134
  }
144
- stop_str = "<|endoftext|>"
145
-
146
- if stream:
147
- streamer = TextIteratorStreamer(
148
- tokenizer=self._tokenizer,
149
- timeout=60,
150
- skip_prompt=True,
151
- skip_special_tokens=True,
152
- )
153
- generate_kwargs = {
154
- **generate_kwargs,
155
- "streamer": streamer,
156
- }
157
- t = Thread(target=self._model.generate, kwargs=generate_kwargs)
158
- t.start()
159
135
 
160
- it = self.chat_stream(streamer, stop_str)
161
- return self._to_chat_completion_chunks(it)
162
- else:
163
- with torch.no_grad():
164
- outputs = self._model.generate(**generate_kwargs)
165
- outputs = outputs[:, inputs["input_ids"].shape[1] :]
166
- response = self._tokenizer.decode(outputs[0])
167
- if response.endswith(stop_str):
168
- response = response[: -len(stop_str)]
169
- return generate_chat_completion(self.model_uid, response)
136
+ def get_stop_strs(self) -> List[str]:
137
+ return ["<|endoftext|>"]
170
138
 
171
- def chat_stream(self, streamer, stop_str) -> Iterator[CompletionChunk]:
172
- completion_id = str(uuid.uuid1())
173
- for new_text in streamer:
174
- if not new_text.endswith(stop_str):
175
- yield generate_completion_chunk(
176
- chunk_text=new_text,
177
- finish_reason=None,
178
- chunk_id=completion_id,
179
- model_uid=self.model_uid,
180
- prompt_tokens=-1,
181
- completion_tokens=-1,
182
- total_tokens=-1,
183
- has_choice=True,
184
- has_content=True,
185
- )
139
+ def build_streaming_iter(
140
+ self,
141
+ messages: List[Dict],
142
+ generate_config: Dict,
143
+ ) -> Tuple[Iterator, int]:
144
+ from transformers import TextIteratorStreamer
186
145
 
187
- yield generate_completion_chunk(
188
- chunk_text=None,
189
- finish_reason="stop",
190
- chunk_id=completion_id,
191
- model_uid=self.model_uid,
192
- prompt_tokens=-1,
193
- completion_tokens=-1,
194
- total_tokens=-1,
195
- has_choice=True,
196
- has_content=False,
146
+ generate_kwargs = self.build_generate_kwargs(generate_config)
147
+ inputs = self.build_inputs_from_messages(messages, generate_config)
148
+ streamer = TextIteratorStreamer(
149
+ tokenizer=self._tokenizer,
150
+ timeout=60,
151
+ skip_prompt=True,
152
+ skip_special_tokens=True,
197
153
  )
154
+ kwargs = {
155
+ **inputs,
156
+ **generate_kwargs,
157
+ "streamer": streamer,
158
+ }
159
+ t = Thread(target=self._model.generate, kwargs=kwargs)
160
+ t.start()
161
+ return streamer, len(inputs.input_ids[0])
198
162
 
199
163
  def _get_full_prompt(self, messages, tools, generate_config: dict):
200
164
  msgs = self._get_processed_msgs(messages)