xinference 1.4.1__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +50 -1
- xinference/client/restful/restful_client.py +82 -2
- xinference/constants.py +3 -0
- xinference/core/chat_interface.py +297 -83
- xinference/core/model.py +1 -0
- xinference/core/progress_tracker.py +16 -8
- xinference/core/supervisor.py +45 -1
- xinference/core/worker.py +262 -37
- xinference/deploy/cmdline.py +33 -1
- xinference/model/audio/core.py +11 -1
- xinference/model/audio/megatts.py +105 -0
- xinference/model/audio/model_spec.json +24 -1
- xinference/model/audio/model_spec_modelscope.json +26 -1
- xinference/model/core.py +14 -0
- xinference/model/embedding/core.py +6 -1
- xinference/model/flexible/core.py +6 -1
- xinference/model/image/core.py +6 -1
- xinference/model/image/model_spec.json +17 -1
- xinference/model/image/model_spec_modelscope.json +17 -1
- xinference/model/llm/__init__.py +0 -4
- xinference/model/llm/core.py +4 -0
- xinference/model/llm/llama_cpp/core.py +40 -16
- xinference/model/llm/llm_family.json +413 -84
- xinference/model/llm/llm_family.py +24 -1
- xinference/model/llm/llm_family_modelscope.json +447 -0
- xinference/model/llm/mlx/core.py +16 -2
- xinference/model/llm/transformers/__init__.py +14 -0
- xinference/model/llm/transformers/core.py +30 -6
- xinference/model/llm/transformers/gemma3.py +17 -2
- xinference/model/llm/transformers/intern_vl.py +28 -18
- xinference/model/llm/transformers/minicpmv26.py +21 -2
- xinference/model/llm/transformers/qwen-omni.py +308 -0
- xinference/model/llm/transformers/qwen2_audio.py +1 -1
- xinference/model/llm/transformers/qwen2_vl.py +20 -4
- xinference/model/llm/utils.py +11 -1
- xinference/model/llm/vllm/core.py +35 -0
- xinference/model/llm/vllm/distributed_executor.py +8 -2
- xinference/model/rerank/core.py +6 -1
- xinference/model/utils.py +118 -1
- xinference/model/video/core.py +6 -1
- xinference/thirdparty/megatts3/__init__.py +0 -0
- xinference/thirdparty/megatts3/tts/frontend_function.py +175 -0
- xinference/thirdparty/megatts3/tts/gradio_api.py +93 -0
- xinference/thirdparty/megatts3/tts/infer_cli.py +277 -0
- xinference/thirdparty/megatts3/tts/modules/aligner/whisper_small.py +318 -0
- xinference/thirdparty/megatts3/tts/modules/ar_dur/ar_dur_predictor.py +362 -0
- xinference/thirdparty/megatts3/tts/modules/ar_dur/commons/layers.py +64 -0
- xinference/thirdparty/megatts3/tts/modules/ar_dur/commons/nar_tts_modules.py +73 -0
- xinference/thirdparty/megatts3/tts/modules/ar_dur/commons/rel_transformer.py +403 -0
- xinference/thirdparty/megatts3/tts/modules/ar_dur/commons/rot_transformer.py +649 -0
- xinference/thirdparty/megatts3/tts/modules/ar_dur/commons/seq_utils.py +342 -0
- xinference/thirdparty/megatts3/tts/modules/ar_dur/commons/transformer.py +767 -0
- xinference/thirdparty/megatts3/tts/modules/llm_dit/cfm.py +309 -0
- xinference/thirdparty/megatts3/tts/modules/llm_dit/dit.py +180 -0
- xinference/thirdparty/megatts3/tts/modules/llm_dit/time_embedding.py +44 -0
- xinference/thirdparty/megatts3/tts/modules/llm_dit/transformer.py +230 -0
- xinference/thirdparty/megatts3/tts/modules/wavvae/decoder/diag_gaussian.py +67 -0
- xinference/thirdparty/megatts3/tts/modules/wavvae/decoder/hifigan_modules.py +283 -0
- xinference/thirdparty/megatts3/tts/modules/wavvae/decoder/seanet_encoder.py +38 -0
- xinference/thirdparty/megatts3/tts/modules/wavvae/decoder/wavvae_v3.py +60 -0
- xinference/thirdparty/megatts3/tts/modules/wavvae/encoder/common_modules/conv.py +154 -0
- xinference/thirdparty/megatts3/tts/modules/wavvae/encoder/common_modules/lstm.py +51 -0
- xinference/thirdparty/megatts3/tts/modules/wavvae/encoder/common_modules/seanet.py +126 -0
- xinference/thirdparty/megatts3/tts/utils/audio_utils/align.py +36 -0
- xinference/thirdparty/megatts3/tts/utils/audio_utils/io.py +95 -0
- xinference/thirdparty/megatts3/tts/utils/audio_utils/plot.py +90 -0
- xinference/thirdparty/megatts3/tts/utils/commons/ckpt_utils.py +171 -0
- xinference/thirdparty/megatts3/tts/utils/commons/hparams.py +215 -0
- xinference/thirdparty/megatts3/tts/utils/text_utils/dict.json +1 -0
- xinference/thirdparty/megatts3/tts/utils/text_utils/ph_tone_convert.py +94 -0
- xinference/thirdparty/megatts3/tts/utils/text_utils/split_text.py +90 -0
- xinference/thirdparty/megatts3/tts/utils/text_utils/text_encoder.py +280 -0
- xinference/types.py +10 -0
- xinference/utils.py +54 -0
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.0f6523be.css +2 -0
- xinference/web/ui/build/static/css/main.0f6523be.css.map +1 -0
- xinference/web/ui/build/static/js/main.58bd483c.js +3 -0
- xinference/web/ui/build/static/js/main.58bd483c.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3bff8cbe9141f937f4d98879a9771b0f48e0e4e0dbee8e647adbfe23859e7048.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/4500b1a622a031011f0a291701e306b87e08cbc749c50e285103536b85b6a914.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/51709f5d3e53bcf19e613662ef9b91fb9174942c5518987a248348dd4e1e0e02.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69081049f0c7447544b7cfd73dd13d8846c02fe5febe4d81587e95c89a412d5b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b8551e9775a01b28ae674125c688febe763732ea969ae344512e64ea01bf632e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bf2b211b0d1b6465eff512d64c869d748f803c5651a7c24e48de6ea3484a7bfe.json +1 -0
- xinference/web/ui/src/locales/en.json +2 -1
- xinference/web/ui/src/locales/zh.json +2 -1
- {xinference-1.4.1.dist-info → xinference-1.5.0.dist-info}/METADATA +127 -114
- {xinference-1.4.1.dist-info → xinference-1.5.0.dist-info}/RECORD +96 -60
- {xinference-1.4.1.dist-info → xinference-1.5.0.dist-info}/WHEEL +1 -1
- xinference/web/ui/build/static/css/main.b494ae7e.css +0 -2
- xinference/web/ui/build/static/css/main.b494ae7e.css.map +0 -1
- xinference/web/ui/build/static/js/main.5ca4eea1.js +0 -3
- xinference/web/ui/build/static/js/main.5ca4eea1.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/0f0967acaec5df1d45b80010949c258d64297ebbb0f44b8bb3afcbd45c6f0ec4.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/27bcada3ee8f89d21184b359f022fc965f350ffaca52c9814c29f1fc37121173.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/68249645124f37d01eef83b1d897e751f895bea919b6fb466f907c1f87cebc84.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e547bbb18abb4a474b675a8d5782d25617566bea0af8caa9b836ce5649e2250a.json +0 -1
- /xinference/web/ui/build/static/js/{main.5ca4eea1.js.LICENSE.txt → main.58bd483c.js.LICENSE.txt} +0 -0
- {xinference-1.4.1.dist-info → xinference-1.5.0.dist-info}/entry_points.txt +0 -0
- {xinference-1.4.1.dist-info → xinference-1.5.0.dist-info/licenses}/LICENSE +0 -0
- {xinference-1.4.1.dist-info → xinference-1.5.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,154 @@
|
|
|
1
|
+
# MIT License
|
|
2
|
+
|
|
3
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
4
|
+
|
|
5
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
# in the Software without restriction, including without limitation the rights
|
|
8
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
# furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
# copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
# SOFTWARE.
|
|
22
|
+
|
|
23
|
+
# Copyright (c) [2023] [Meta Platforms, Inc. and affiliates.]
|
|
24
|
+
# Copyright (c) [2025] [Ziyue Jiang]
|
|
25
|
+
# SPDX-License-Identifier: MIT
|
|
26
|
+
# This file has been modified by Ziyue Jiang on 2025/03/19
|
|
27
|
+
# Original file was released under MIT, with the full license text # available at https://github.com/facebookresearch/encodec/blob/gh-pages/LICENSE.
|
|
28
|
+
# This modified file is released under the same license.
|
|
29
|
+
|
|
30
|
+
"""Convolutional layers wrappers and utilities."""
|
|
31
|
+
|
|
32
|
+
import math
|
|
33
|
+
import typing as tp
|
|
34
|
+
import warnings
|
|
35
|
+
import einops
|
|
36
|
+
|
|
37
|
+
import torch
|
|
38
|
+
from torch import nn
|
|
39
|
+
from torch.nn import functional as F
|
|
40
|
+
from torch.nn.utils import spectral_norm, weight_norm
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
|
|
44
|
+
'time_layer_norm', 'layer_norm', 'time_group_norm'])
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module:
|
|
48
|
+
assert norm in CONV_NORMALIZATIONS
|
|
49
|
+
if norm == 'weight_norm':
|
|
50
|
+
return weight_norm(module)
|
|
51
|
+
elif norm == 'spectral_norm':
|
|
52
|
+
return spectral_norm(module)
|
|
53
|
+
else:
|
|
54
|
+
return module
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module:
|
|
58
|
+
assert norm in CONV_NORMALIZATIONS
|
|
59
|
+
if norm == 'layer_norm':
|
|
60
|
+
assert isinstance(module, nn.modules.conv._ConvNd)
|
|
61
|
+
return ConvLayerNorm(module.out_channels, **norm_kwargs)
|
|
62
|
+
elif norm == 'time_group_norm':
|
|
63
|
+
if causal:
|
|
64
|
+
raise ValueError("GroupNorm doesn't support causal evaluation.")
|
|
65
|
+
assert isinstance(module, nn.modules.conv._ConvNd)
|
|
66
|
+
return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
|
|
67
|
+
else:
|
|
68
|
+
return nn.Identity()
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
|
|
72
|
+
padding_total: int = 0) -> int:
|
|
73
|
+
length = x.shape[-1]
|
|
74
|
+
n_frames = (length - kernel_size + padding_total) / stride + 1
|
|
75
|
+
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
|
|
76
|
+
return ideal_length - length
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.):
|
|
80
|
+
length = x.shape[-1]
|
|
81
|
+
padding_left, padding_right = paddings
|
|
82
|
+
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
|
83
|
+
if mode == 'reflect':
|
|
84
|
+
max_pad = max(padding_left, padding_right)
|
|
85
|
+
extra_pad = 0
|
|
86
|
+
if length <= max_pad:
|
|
87
|
+
extra_pad = max_pad - length + 1
|
|
88
|
+
x = F.pad(x, (0, extra_pad))
|
|
89
|
+
padded = F.pad(x, paddings, mode, value)
|
|
90
|
+
end = padded.shape[-1] - extra_pad
|
|
91
|
+
return padded[..., :end]
|
|
92
|
+
else:
|
|
93
|
+
return F.pad(x, paddings, mode, value)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
class ConvLayerNorm(nn.LayerNorm):
|
|
97
|
+
def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs):
|
|
98
|
+
super().__init__(normalized_shape, **kwargs)
|
|
99
|
+
|
|
100
|
+
def forward(self, x):
|
|
101
|
+
x = einops.rearrange(x, 'b ... t -> b t ...')
|
|
102
|
+
x = super().forward(x)
|
|
103
|
+
x = einops.rearrange(x, 'b t ... -> b ... t')
|
|
104
|
+
return
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
class NormConv1d(nn.Module):
|
|
108
|
+
def __init__(self, *args, causal: bool = False, norm: str = 'none',
|
|
109
|
+
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
|
110
|
+
super().__init__()
|
|
111
|
+
self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
|
|
112
|
+
self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
|
|
113
|
+
self.norm_type = norm
|
|
114
|
+
|
|
115
|
+
def forward(self, x):
|
|
116
|
+
x = self.conv(x)
|
|
117
|
+
x = self.norm(x)
|
|
118
|
+
return x
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
class SConv1d(nn.Module):
|
|
122
|
+
def __init__(self, in_channels: int, out_channels: int,
|
|
123
|
+
kernel_size: int, stride: int = 1, dilation: int = 1,
|
|
124
|
+
groups: int = 1, bias: bool = True, causal: bool = False,
|
|
125
|
+
norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
|
|
126
|
+
pad_mode: str = 'reflect'):
|
|
127
|
+
super().__init__()
|
|
128
|
+
# warn user on unusual setup between dilation and stride
|
|
129
|
+
if stride > 1 and dilation > 1:
|
|
130
|
+
warnings.warn('SConv1d has been initialized with stride > 1 and dilation > 1'
|
|
131
|
+
f' (kernel_size={kernel_size} stride={stride}, dilation={dilation}).')
|
|
132
|
+
self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
|
|
133
|
+
dilation=dilation, groups=groups, bias=bias, causal=causal,
|
|
134
|
+
norm=norm, norm_kwargs=norm_kwargs)
|
|
135
|
+
self.causal = causal
|
|
136
|
+
self.pad_mode = pad_mode
|
|
137
|
+
|
|
138
|
+
def forward(self, x):
|
|
139
|
+
B, C, T = x.shape
|
|
140
|
+
kernel_size = self.conv.conv.kernel_size[0]
|
|
141
|
+
stride = self.conv.conv.stride[0]
|
|
142
|
+
dilation = self.conv.conv.dilation[0]
|
|
143
|
+
kernel_size = (kernel_size - 1) * dilation + 1 # effective kernel size with dilations
|
|
144
|
+
padding_total = kernel_size - stride
|
|
145
|
+
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
|
|
146
|
+
if self.causal:
|
|
147
|
+
# Left padding for causal
|
|
148
|
+
x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
|
|
149
|
+
else:
|
|
150
|
+
# Asymmetric padding required for odd strides
|
|
151
|
+
padding_right = padding_total // 2
|
|
152
|
+
padding_left = padding_total - padding_right
|
|
153
|
+
x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
|
|
154
|
+
return self.conv(x)
|
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
# MIT License
|
|
2
|
+
|
|
3
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
4
|
+
|
|
5
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
# in the Software without restriction, including without limitation the rights
|
|
8
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
# furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
# copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
# SOFTWARE.
|
|
22
|
+
|
|
23
|
+
# Copyright (c) [2023] [Meta Platforms, Inc. and affiliates.]
|
|
24
|
+
# Copyright (c) [2025] [Ziyue Jiang]
|
|
25
|
+
# SPDX-License-Identifier: MIT
|
|
26
|
+
# This file has been modified by Ziyue Jiang on 2025/03/19
|
|
27
|
+
# Original file was released under MIT, with the full license text # available at https://github.com/facebookresearch/encodec/blob/gh-pages/LICENSE.
|
|
28
|
+
# This modified file is released under the same license.
|
|
29
|
+
|
|
30
|
+
"""LSTM layers module."""
|
|
31
|
+
from torch import nn
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class SLSTM(nn.Module):
|
|
35
|
+
"""
|
|
36
|
+
LSTM without worrying about the hidden state, nor the layout of the data.
|
|
37
|
+
Expects input as convolutional layout.
|
|
38
|
+
"""
|
|
39
|
+
def __init__(self, dimension: int, num_layers: int = 2, skip: bool = True):
|
|
40
|
+
super().__init__()
|
|
41
|
+
self.skip = skip
|
|
42
|
+
self.lstm = nn.LSTM(dimension, dimension, num_layers)
|
|
43
|
+
|
|
44
|
+
# 修改transpose顺序
|
|
45
|
+
def forward(self, x):
|
|
46
|
+
x1 = x.permute(2, 0, 1)
|
|
47
|
+
y, _ = self.lstm(x1)
|
|
48
|
+
y = y.permute(1, 2, 0)
|
|
49
|
+
if self.skip:
|
|
50
|
+
y = y + x
|
|
51
|
+
return y
|
|
@@ -0,0 +1,126 @@
|
|
|
1
|
+
# MIT License
|
|
2
|
+
|
|
3
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
4
|
+
|
|
5
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
# in the Software without restriction, including without limitation the rights
|
|
8
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
# furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
# copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
# SOFTWARE.
|
|
22
|
+
|
|
23
|
+
# Copyright (c) [2023] [Meta Platforms, Inc. and affiliates.]
|
|
24
|
+
# Copyright (c) [2025] [Ziyue Jiang]
|
|
25
|
+
# SPDX-License-Identifier: MIT
|
|
26
|
+
# This file has been modified by Ziyue Jiang on 2025/03/19
|
|
27
|
+
# Original file was released under MIT, with the full license text # available at https://github.com/facebookresearch/encodec/blob/gh-pages/LICENSE.
|
|
28
|
+
# This modified file is released under the same license.
|
|
29
|
+
|
|
30
|
+
"""Encodec SEANet-based encoder and decoder implementation."""
|
|
31
|
+
|
|
32
|
+
import typing as tp
|
|
33
|
+
|
|
34
|
+
import numpy as np
|
|
35
|
+
import torch.nn as nn
|
|
36
|
+
|
|
37
|
+
from .conv import SConv1d
|
|
38
|
+
from .lstm import SLSTM
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class SEANetResnetBlock(nn.Module):
|
|
42
|
+
def __init__(self, dim: int, kernel_sizes: tp.List[int] = [3, 1], dilations: tp.List[int] = [1, 1],
|
|
43
|
+
activation: str = 'ELU', activation_params: dict = {'alpha': 1.0},
|
|
44
|
+
norm: str = 'weight_norm', norm_params: tp.Dict[str, tp.Any] = {}, causal: bool = False,
|
|
45
|
+
pad_mode: str = 'reflect', compress: int = 2, true_skip: bool = True):
|
|
46
|
+
super().__init__()
|
|
47
|
+
assert len(kernel_sizes) == len(dilations), 'Number of kernel sizes should match number of dilations'
|
|
48
|
+
act = getattr(nn, activation)
|
|
49
|
+
hidden = dim // compress
|
|
50
|
+
block = []
|
|
51
|
+
for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)):
|
|
52
|
+
in_chs = dim if i == 0 else hidden
|
|
53
|
+
out_chs = dim if i == len(kernel_sizes) - 1 else hidden
|
|
54
|
+
block += [
|
|
55
|
+
act(**activation_params),
|
|
56
|
+
SConv1d(in_chs, out_chs, kernel_size=kernel_size, dilation=dilation,
|
|
57
|
+
norm=norm, norm_kwargs=norm_params,
|
|
58
|
+
causal=causal, pad_mode=pad_mode),
|
|
59
|
+
]
|
|
60
|
+
self.block = nn.Sequential(*block)
|
|
61
|
+
self.shortcut: nn.Module
|
|
62
|
+
if true_skip:
|
|
63
|
+
self.shortcut = nn.Identity()
|
|
64
|
+
else:
|
|
65
|
+
self.shortcut = SConv1d(dim, dim, kernel_size=1, norm=norm, norm_kwargs=norm_params,
|
|
66
|
+
causal=causal, pad_mode=pad_mode)
|
|
67
|
+
|
|
68
|
+
def forward(self, x):
|
|
69
|
+
return self.shortcut(x) + self.block(x)
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class SEANetEncoder(nn.Module):
|
|
73
|
+
def __init__(self, channels: int = 1, dimension: int = 128, n_filters: int = 32, n_residual_layers: int = 1,
|
|
74
|
+
ratios: tp.List[int] = [8, 5, 4, 2], activation: str = 'ELU', activation_params: dict = {'alpha': 1.0},
|
|
75
|
+
norm: str = 'weight_norm', norm_params: tp.Dict[str, tp.Any] = {}, kernel_size: int = 7,
|
|
76
|
+
last_kernel_size: int = 7, residual_kernel_size: int = 3, dilation_base: int = 2, causal: bool = False,
|
|
77
|
+
pad_mode: str = 'reflect', true_skip: bool = False, compress: int = 2, lstm: int = 2):
|
|
78
|
+
super().__init__()
|
|
79
|
+
self.channels = channels
|
|
80
|
+
self.dimension = dimension
|
|
81
|
+
self.n_filters = n_filters
|
|
82
|
+
self.ratios = list(reversed(ratios))
|
|
83
|
+
del ratios
|
|
84
|
+
self.n_residual_layers = n_residual_layers
|
|
85
|
+
self.hop_length = np.prod(self.ratios)
|
|
86
|
+
|
|
87
|
+
act = getattr(nn, activation)
|
|
88
|
+
mult = 1
|
|
89
|
+
model: tp.List[nn.Module] = [
|
|
90
|
+
SConv1d(channels, mult * n_filters, kernel_size, norm=norm, norm_kwargs=norm_params,
|
|
91
|
+
causal=causal, pad_mode=pad_mode)
|
|
92
|
+
]
|
|
93
|
+
# Downsample to raw audio scale
|
|
94
|
+
for i, ratio in enumerate(self.ratios):
|
|
95
|
+
# Add residual layers
|
|
96
|
+
for j in range(n_residual_layers):
|
|
97
|
+
model += [
|
|
98
|
+
SEANetResnetBlock(mult * n_filters, kernel_sizes=[residual_kernel_size, 1],
|
|
99
|
+
dilations=[dilation_base ** j, 1],
|
|
100
|
+
norm=norm, norm_params=norm_params,
|
|
101
|
+
activation=activation, activation_params=activation_params,
|
|
102
|
+
causal=causal, pad_mode=pad_mode, compress=compress, true_skip=true_skip)]
|
|
103
|
+
|
|
104
|
+
# Add downsampling layers
|
|
105
|
+
model += [
|
|
106
|
+
act(**activation_params),
|
|
107
|
+
SConv1d(mult * n_filters, mult * n_filters * 2,
|
|
108
|
+
kernel_size=ratio * 2, stride=ratio,
|
|
109
|
+
norm=norm, norm_kwargs=norm_params,
|
|
110
|
+
causal=causal, pad_mode=pad_mode),
|
|
111
|
+
]
|
|
112
|
+
mult *= 2
|
|
113
|
+
|
|
114
|
+
if lstm:
|
|
115
|
+
model += [SLSTM(mult * n_filters, num_layers=lstm)]
|
|
116
|
+
|
|
117
|
+
model += [
|
|
118
|
+
act(**activation_params),
|
|
119
|
+
SConv1d(mult * n_filters, dimension, last_kernel_size, norm=norm, norm_kwargs=norm_params,
|
|
120
|
+
causal=causal, pad_mode=pad_mode)
|
|
121
|
+
]
|
|
122
|
+
|
|
123
|
+
self.model = nn.Sequential(*model)
|
|
124
|
+
|
|
125
|
+
def forward(self, x):
|
|
126
|
+
return self.model(x)
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# Copyright 2025 ByteDance and/or its affiliates.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import torch
|
|
16
|
+
|
|
17
|
+
def mel2token_to_dur(mel2token, T_txt=None, max_dur=None):
|
|
18
|
+
is_torch = isinstance(mel2token, torch.Tensor)
|
|
19
|
+
has_batch_dim = True
|
|
20
|
+
if not is_torch:
|
|
21
|
+
mel2token = torch.LongTensor(mel2token)
|
|
22
|
+
if T_txt is None:
|
|
23
|
+
T_txt = mel2token.max()
|
|
24
|
+
if len(mel2token.shape) == 1:
|
|
25
|
+
mel2token = mel2token[None, ...]
|
|
26
|
+
has_batch_dim = False
|
|
27
|
+
B, _ = mel2token.shape
|
|
28
|
+
dur = mel2token.new_zeros(B, T_txt + 1).scatter_add(1, mel2token, torch.ones_like(mel2token))
|
|
29
|
+
dur = dur[:, 1:]
|
|
30
|
+
if max_dur is not None:
|
|
31
|
+
dur = dur.clamp(max=max_dur)
|
|
32
|
+
if not is_torch:
|
|
33
|
+
dur = dur.numpy()
|
|
34
|
+
if not has_batch_dim:
|
|
35
|
+
dur = dur[0]
|
|
36
|
+
return dur
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
# Copyright 2025 ByteDance and/or its affiliates.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import io
|
|
16
|
+
import os
|
|
17
|
+
import subprocess
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
from scipy.io import wavfile
|
|
21
|
+
import pyloudnorm as pyln
|
|
22
|
+
from pydub import AudioSegment
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def to_wav_bytes(wav, sr, norm=False):
|
|
26
|
+
wav = wav.astype(float)
|
|
27
|
+
if norm:
|
|
28
|
+
meter = pyln.Meter(sr) # create BS.1770 meter
|
|
29
|
+
loudness = meter.integrated_loudness(wav)
|
|
30
|
+
wav = pyln.normalize.loudness(wav, loudness, -18.0)
|
|
31
|
+
if np.abs(wav).max() >= 1:
|
|
32
|
+
wav = wav / np.abs(wav).max() * 0.95
|
|
33
|
+
wav = wav * 32767
|
|
34
|
+
bytes_io = io.BytesIO()
|
|
35
|
+
wavfile.write(bytes_io, sr, wav.astype(np.int16))
|
|
36
|
+
return bytes_io.getvalue()
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def save_wav(wav_bytes, path):
|
|
40
|
+
with open(path[:-4] + '.wav', 'wb') as file:
|
|
41
|
+
file.write(wav_bytes)
|
|
42
|
+
if path[-4:] == '.mp3':
|
|
43
|
+
to_mp3(path[:-4])
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
def to_mp3(out_path):
|
|
47
|
+
if out_path[-4:] == '.wav':
|
|
48
|
+
out_path = out_path[:-4]
|
|
49
|
+
subprocess.check_call(
|
|
50
|
+
f'ffmpeg -threads 1 -loglevel error -i "{out_path}.wav" -vn -b:a 192k -y -hide_banner -async 1 "{out_path}.mp3"',
|
|
51
|
+
shell=True, stdin=subprocess.PIPE)
|
|
52
|
+
subprocess.check_call(f'rm -f "{out_path}.wav"', shell=True)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def convert_to_wav(wav_path):
|
|
56
|
+
# Check if the file exists
|
|
57
|
+
if not os.path.exists(wav_path):
|
|
58
|
+
print(f"The file '{wav_path}' does not exist.")
|
|
59
|
+
return
|
|
60
|
+
|
|
61
|
+
# Check if the file already has a .wav extension
|
|
62
|
+
if not wav_path.endswith(".wav"):
|
|
63
|
+
# Define the output path with a .wav extension
|
|
64
|
+
out_path = os.path.splitext(wav_path)[0] + ".wav"
|
|
65
|
+
|
|
66
|
+
# Load the audio file using pydub and convert it to WAV
|
|
67
|
+
audio = AudioSegment.from_file(wav_path)
|
|
68
|
+
audio.export(out_path, format="wav")
|
|
69
|
+
|
|
70
|
+
print(f"Converted '{wav_path}' to '{out_path}'")
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def convert_to_wav_bytes(audio_binary):
|
|
74
|
+
# Load the audio binary using pydub and convert it to WAV
|
|
75
|
+
audio = AudioSegment.from_file(io.BytesIO(audio_binary))
|
|
76
|
+
wav_bytes = io.BytesIO()
|
|
77
|
+
audio.export(wav_bytes, format="wav")
|
|
78
|
+
wav_bytes.seek(0)
|
|
79
|
+
return wav_bytes
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
''' Smoothly combine audio segments using crossfade transitions." '''
|
|
83
|
+
def combine_audio_segments(segments, crossfade_duration=0.16, sr=24000):
|
|
84
|
+
window_length = int(sr * crossfade_duration)
|
|
85
|
+
hanning_window = np.hanning(2 * window_length)
|
|
86
|
+
# Combine
|
|
87
|
+
for i, segment in enumerate(segments):
|
|
88
|
+
if i == 0:
|
|
89
|
+
combined_audio = segment
|
|
90
|
+
else:
|
|
91
|
+
overlap = combined_audio[-window_length:] * hanning_window[window_length:] + segment[:window_length] * hanning_window[:window_length]
|
|
92
|
+
combined_audio = np.concatenate(
|
|
93
|
+
[combined_audio[:-window_length], overlap, segment[window_length:]]
|
|
94
|
+
)
|
|
95
|
+
return combined_audio
|
|
@@ -0,0 +1,90 @@
|
|
|
1
|
+
# Copyright 2025 ByteDance and/or its affiliates.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import matplotlib
|
|
16
|
+
|
|
17
|
+
matplotlib.use('Agg')
|
|
18
|
+
import matplotlib.pyplot as plt
|
|
19
|
+
import numpy as np
|
|
20
|
+
import torch
|
|
21
|
+
|
|
22
|
+
LINE_COLORS = ['w', 'r', 'orange', 'k', 'cyan', 'm', 'b', 'lime', 'g', 'brown', 'navy']
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def spec_to_figure(spec, vmin=None, vmax=None, title='', f0s=None, dur_info=None, figsize=(12, 6)):
|
|
26
|
+
if isinstance(spec, torch.Tensor):
|
|
27
|
+
spec = spec.cpu().numpy()
|
|
28
|
+
H = spec.shape[1] // 2
|
|
29
|
+
fig = plt.figure(figsize=figsize)
|
|
30
|
+
plt.title(title)
|
|
31
|
+
plt.pcolor(spec.T, vmin=vmin, vmax=vmax)
|
|
32
|
+
|
|
33
|
+
if dur_info is not None:
|
|
34
|
+
assert isinstance(dur_info, dict)
|
|
35
|
+
txt = dur_info['txt']
|
|
36
|
+
dur_gt = dur_info['dur_gt']
|
|
37
|
+
if isinstance(dur_gt, torch.Tensor):
|
|
38
|
+
dur_gt = dur_gt.cpu().numpy()
|
|
39
|
+
dur_gt = np.cumsum(dur_gt).astype(int)
|
|
40
|
+
for i in range(len(dur_gt)):
|
|
41
|
+
shift = (i % 8) + 1
|
|
42
|
+
plt.text(dur_gt[i], shift * 4, txt[i])
|
|
43
|
+
plt.vlines(dur_gt[i], 0, H // 2, colors='b') # blue is gt
|
|
44
|
+
plt.xlim(0, dur_gt[-1])
|
|
45
|
+
if 'dur_pred' in dur_info:
|
|
46
|
+
dur_pred = dur_info['dur_pred']
|
|
47
|
+
if isinstance(dur_pred, torch.Tensor):
|
|
48
|
+
dur_pred = dur_pred.cpu().numpy()
|
|
49
|
+
dur_pred = np.cumsum(dur_pred).astype(int)
|
|
50
|
+
for i in range(len(dur_pred)):
|
|
51
|
+
shift = (i % 8) + 1
|
|
52
|
+
plt.text(dur_pred[i], H + shift * 4, txt[i])
|
|
53
|
+
plt.vlines(dur_pred[i], H, H * 1.5, colors='r') # red is pred
|
|
54
|
+
plt.xlim(0, max(dur_gt[-1], dur_pred[-1]))
|
|
55
|
+
if f0s is not None:
|
|
56
|
+
ax = plt.gca()
|
|
57
|
+
ax2 = ax.twinx()
|
|
58
|
+
# ax.set_xticks()
|
|
59
|
+
|
|
60
|
+
if not isinstance(f0s, dict):
|
|
61
|
+
f0s = {'f0': f0s}
|
|
62
|
+
for i, (k, f0) in enumerate(f0s.items()):
|
|
63
|
+
if f0 is not None:
|
|
64
|
+
if isinstance(f0, torch.Tensor):
|
|
65
|
+
f0 = f0.cpu().numpy()
|
|
66
|
+
ax2.plot(
|
|
67
|
+
np.arange(len(f0)) + 0.5, f0, label=k, c=LINE_COLORS[i], linewidth=1, alpha=0.5)
|
|
68
|
+
ax2.set_ylim(0, 1000)
|
|
69
|
+
ax2.legend()
|
|
70
|
+
return fig
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def align_to_figure(align, dur_info):
|
|
74
|
+
if isinstance(align, torch.Tensor):
|
|
75
|
+
align = align.cpu().numpy()
|
|
76
|
+
H = align.shape[1]
|
|
77
|
+
fig = plt.figure(figsize=(12, 6))
|
|
78
|
+
plt.pcolor(align.T, vmin=0, vmax=1)
|
|
79
|
+
if dur_info is not None:
|
|
80
|
+
assert isinstance(dur_info, dict)
|
|
81
|
+
txt = dur_info['txt']
|
|
82
|
+
dur_gt = dur_info['dur_gt']
|
|
83
|
+
if isinstance(dur_gt, torch.Tensor):
|
|
84
|
+
dur_gt = dur_gt.cpu().numpy()
|
|
85
|
+
dur_gt = np.cumsum(dur_gt).astype(int) // 2
|
|
86
|
+
for i in range(len(dur_gt)):
|
|
87
|
+
plt.text(dur_gt[i], i, txt[i], color='red')
|
|
88
|
+
plt.vlines(dur_gt[i], 0, H, colors='b') # blue is gt
|
|
89
|
+
# plt.xlim(0, dur_gt[-1])
|
|
90
|
+
return fig
|