xinference 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (132) hide show
  1. xinference/_compat.py +1 -0
  2. xinference/_version.py +3 -3
  3. xinference/api/restful_api.py +54 -1
  4. xinference/client/restful/restful_client.py +82 -2
  5. xinference/constants.py +3 -0
  6. xinference/core/chat_interface.py +297 -83
  7. xinference/core/model.py +24 -3
  8. xinference/core/progress_tracker.py +16 -8
  9. xinference/core/supervisor.py +51 -1
  10. xinference/core/worker.py +315 -47
  11. xinference/deploy/cmdline.py +33 -1
  12. xinference/model/audio/core.py +11 -1
  13. xinference/model/audio/megatts.py +105 -0
  14. xinference/model/audio/model_spec.json +24 -1
  15. xinference/model/audio/model_spec_modelscope.json +26 -1
  16. xinference/model/core.py +14 -0
  17. xinference/model/embedding/core.py +6 -1
  18. xinference/model/flexible/core.py +6 -1
  19. xinference/model/image/core.py +6 -1
  20. xinference/model/image/model_spec.json +17 -1
  21. xinference/model/image/model_spec_modelscope.json +17 -1
  22. xinference/model/llm/__init__.py +4 -6
  23. xinference/model/llm/core.py +5 -0
  24. xinference/model/llm/llama_cpp/core.py +46 -17
  25. xinference/model/llm/llm_family.json +530 -85
  26. xinference/model/llm/llm_family.py +24 -1
  27. xinference/model/llm/llm_family_modelscope.json +572 -1
  28. xinference/model/llm/mlx/core.py +16 -2
  29. xinference/model/llm/reasoning_parser.py +3 -3
  30. xinference/model/llm/sglang/core.py +111 -13
  31. xinference/model/llm/transformers/__init__.py +14 -0
  32. xinference/model/llm/transformers/core.py +31 -6
  33. xinference/model/llm/transformers/deepseek_vl.py +1 -1
  34. xinference/model/llm/transformers/deepseek_vl2.py +287 -0
  35. xinference/model/llm/transformers/gemma3.py +17 -2
  36. xinference/model/llm/transformers/intern_vl.py +28 -18
  37. xinference/model/llm/transformers/minicpmv26.py +21 -2
  38. xinference/model/llm/transformers/qwen-omni.py +308 -0
  39. xinference/model/llm/transformers/qwen2_audio.py +1 -1
  40. xinference/model/llm/transformers/qwen2_vl.py +20 -4
  41. xinference/model/llm/utils.py +37 -15
  42. xinference/model/llm/vllm/core.py +184 -8
  43. xinference/model/llm/vllm/distributed_executor.py +320 -0
  44. xinference/model/rerank/core.py +22 -12
  45. xinference/model/utils.py +118 -1
  46. xinference/model/video/core.py +6 -1
  47. xinference/thirdparty/deepseek_vl2/__init__.py +31 -0
  48. xinference/thirdparty/deepseek_vl2/models/__init__.py +26 -0
  49. xinference/thirdparty/deepseek_vl2/models/configuration_deepseek.py +210 -0
  50. xinference/thirdparty/deepseek_vl2/models/conversation.py +310 -0
  51. xinference/thirdparty/deepseek_vl2/models/modeling_deepseek.py +1975 -0
  52. xinference/thirdparty/deepseek_vl2/models/modeling_deepseek_vl_v2.py +697 -0
  53. xinference/thirdparty/deepseek_vl2/models/processing_deepseek_vl_v2.py +675 -0
  54. xinference/thirdparty/deepseek_vl2/models/siglip_vit.py +661 -0
  55. xinference/thirdparty/deepseek_vl2/serve/__init__.py +0 -0
  56. xinference/thirdparty/deepseek_vl2/serve/app_modules/__init__.py +0 -0
  57. xinference/thirdparty/deepseek_vl2/serve/app_modules/gradio_utils.py +83 -0
  58. xinference/thirdparty/deepseek_vl2/serve/app_modules/overwrites.py +81 -0
  59. xinference/thirdparty/deepseek_vl2/serve/app_modules/presets.py +115 -0
  60. xinference/thirdparty/deepseek_vl2/serve/app_modules/utils.py +333 -0
  61. xinference/thirdparty/deepseek_vl2/serve/assets/Kelpy-Codos.js +100 -0
  62. xinference/thirdparty/deepseek_vl2/serve/assets/avatar.png +0 -0
  63. xinference/thirdparty/deepseek_vl2/serve/assets/custom.css +355 -0
  64. xinference/thirdparty/deepseek_vl2/serve/assets/custom.js +22 -0
  65. xinference/thirdparty/deepseek_vl2/serve/assets/favicon.ico +0 -0
  66. xinference/thirdparty/deepseek_vl2/serve/assets/simsun.ttc +0 -0
  67. xinference/thirdparty/deepseek_vl2/serve/inference.py +197 -0
  68. xinference/thirdparty/deepseek_vl2/utils/__init__.py +18 -0
  69. xinference/thirdparty/deepseek_vl2/utils/io.py +80 -0
  70. xinference/thirdparty/megatts3/__init__.py +0 -0
  71. xinference/thirdparty/megatts3/tts/frontend_function.py +175 -0
  72. xinference/thirdparty/megatts3/tts/gradio_api.py +93 -0
  73. xinference/thirdparty/megatts3/tts/infer_cli.py +277 -0
  74. xinference/thirdparty/megatts3/tts/modules/aligner/whisper_small.py +318 -0
  75. xinference/thirdparty/megatts3/tts/modules/ar_dur/ar_dur_predictor.py +362 -0
  76. xinference/thirdparty/megatts3/tts/modules/ar_dur/commons/layers.py +64 -0
  77. xinference/thirdparty/megatts3/tts/modules/ar_dur/commons/nar_tts_modules.py +73 -0
  78. xinference/thirdparty/megatts3/tts/modules/ar_dur/commons/rel_transformer.py +403 -0
  79. xinference/thirdparty/megatts3/tts/modules/ar_dur/commons/rot_transformer.py +649 -0
  80. xinference/thirdparty/megatts3/tts/modules/ar_dur/commons/seq_utils.py +342 -0
  81. xinference/thirdparty/megatts3/tts/modules/ar_dur/commons/transformer.py +767 -0
  82. xinference/thirdparty/megatts3/tts/modules/llm_dit/cfm.py +309 -0
  83. xinference/thirdparty/megatts3/tts/modules/llm_dit/dit.py +180 -0
  84. xinference/thirdparty/megatts3/tts/modules/llm_dit/time_embedding.py +44 -0
  85. xinference/thirdparty/megatts3/tts/modules/llm_dit/transformer.py +230 -0
  86. xinference/thirdparty/megatts3/tts/modules/wavvae/decoder/diag_gaussian.py +67 -0
  87. xinference/thirdparty/megatts3/tts/modules/wavvae/decoder/hifigan_modules.py +283 -0
  88. xinference/thirdparty/megatts3/tts/modules/wavvae/decoder/seanet_encoder.py +38 -0
  89. xinference/thirdparty/megatts3/tts/modules/wavvae/decoder/wavvae_v3.py +60 -0
  90. xinference/thirdparty/megatts3/tts/modules/wavvae/encoder/common_modules/conv.py +154 -0
  91. xinference/thirdparty/megatts3/tts/modules/wavvae/encoder/common_modules/lstm.py +51 -0
  92. xinference/thirdparty/megatts3/tts/modules/wavvae/encoder/common_modules/seanet.py +126 -0
  93. xinference/thirdparty/megatts3/tts/utils/audio_utils/align.py +36 -0
  94. xinference/thirdparty/megatts3/tts/utils/audio_utils/io.py +95 -0
  95. xinference/thirdparty/megatts3/tts/utils/audio_utils/plot.py +90 -0
  96. xinference/thirdparty/megatts3/tts/utils/commons/ckpt_utils.py +171 -0
  97. xinference/thirdparty/megatts3/tts/utils/commons/hparams.py +215 -0
  98. xinference/thirdparty/megatts3/tts/utils/text_utils/dict.json +1 -0
  99. xinference/thirdparty/megatts3/tts/utils/text_utils/ph_tone_convert.py +94 -0
  100. xinference/thirdparty/megatts3/tts/utils/text_utils/split_text.py +90 -0
  101. xinference/thirdparty/megatts3/tts/utils/text_utils/text_encoder.py +280 -0
  102. xinference/types.py +10 -0
  103. xinference/utils.py +54 -0
  104. xinference/web/ui/build/asset-manifest.json +6 -6
  105. xinference/web/ui/build/index.html +1 -1
  106. xinference/web/ui/build/static/css/main.0f6523be.css +2 -0
  107. xinference/web/ui/build/static/css/main.0f6523be.css.map +1 -0
  108. xinference/web/ui/build/static/js/main.58bd483c.js +3 -0
  109. xinference/web/ui/build/static/js/main.58bd483c.js.map +1 -0
  110. xinference/web/ui/node_modules/.cache/babel-loader/3bff8cbe9141f937f4d98879a9771b0f48e0e4e0dbee8e647adbfe23859e7048.json +1 -0
  111. xinference/web/ui/node_modules/.cache/babel-loader/4500b1a622a031011f0a291701e306b87e08cbc749c50e285103536b85b6a914.json +1 -0
  112. xinference/web/ui/node_modules/.cache/babel-loader/51709f5d3e53bcf19e613662ef9b91fb9174942c5518987a248348dd4e1e0e02.json +1 -0
  113. xinference/web/ui/node_modules/.cache/babel-loader/69081049f0c7447544b7cfd73dd13d8846c02fe5febe4d81587e95c89a412d5b.json +1 -0
  114. xinference/web/ui/node_modules/.cache/babel-loader/b8551e9775a01b28ae674125c688febe763732ea969ae344512e64ea01bf632e.json +1 -0
  115. xinference/web/ui/node_modules/.cache/babel-loader/bf2b211b0d1b6465eff512d64c869d748f803c5651a7c24e48de6ea3484a7bfe.json +1 -0
  116. xinference/web/ui/src/locales/en.json +2 -1
  117. xinference/web/ui/src/locales/zh.json +2 -1
  118. {xinference-1.4.0.dist-info → xinference-1.5.0.dist-info}/METADATA +128 -115
  119. {xinference-1.4.0.dist-info → xinference-1.5.0.dist-info}/RECORD +124 -63
  120. {xinference-1.4.0.dist-info → xinference-1.5.0.dist-info}/WHEEL +1 -1
  121. xinference/web/ui/build/static/css/main.b494ae7e.css +0 -2
  122. xinference/web/ui/build/static/css/main.b494ae7e.css.map +0 -1
  123. xinference/web/ui/build/static/js/main.3cea968e.js +0 -3
  124. xinference/web/ui/build/static/js/main.3cea968e.js.map +0 -1
  125. xinference/web/ui/node_modules/.cache/babel-loader/27bcada3ee8f89d21184b359f022fc965f350ffaca52c9814c29f1fc37121173.json +0 -1
  126. xinference/web/ui/node_modules/.cache/babel-loader/7f59e45e3f268ab8a4788b6fb024cf8dab088736dff22f5a3a39c122a83ab930.json +0 -1
  127. xinference/web/ui/node_modules/.cache/babel-loader/dcd60488509450bfff37bfff56de2c096d51de17dd00ec60d4db49c8b483ada1.json +0 -1
  128. xinference/web/ui/node_modules/.cache/babel-loader/e547bbb18abb4a474b675a8d5782d25617566bea0af8caa9b836ce5649e2250a.json +0 -1
  129. /xinference/web/ui/build/static/js/{main.3cea968e.js.LICENSE.txt → main.58bd483c.js.LICENSE.txt} +0 -0
  130. {xinference-1.4.0.dist-info → xinference-1.5.0.dist-info}/entry_points.txt +0 -0
  131. {xinference-1.4.0.dist-info → xinference-1.5.0.dist-info/licenses}/LICENSE +0 -0
  132. {xinference-1.4.0.dist-info → xinference-1.5.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,675 @@
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from dataclasses import dataclass
21
+ from typing import Dict, Tuple, List, Literal, Optional
22
+ import math
23
+
24
+ import torch
25
+ from torch.nn.utils.rnn import pad_sequence
26
+ import torchvision.transforms as T
27
+ from transformers import LlamaTokenizerFast
28
+ from transformers.processing_utils import ProcessorMixin
29
+ from PIL import Image, ImageOps
30
+
31
+ from .conversation import get_conv_template
32
+
33
+
34
+ def select_best_resolution(image_size, candidate_resolutions):
35
+ # used for cropping
36
+ original_width, original_height = image_size
37
+ best_fit = None
38
+ max_effective_resolution = 0
39
+ min_wasted_resolution = float("inf")
40
+
41
+ for width, height in candidate_resolutions:
42
+ scale = min(width / original_width, height / original_height)
43
+ downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
44
+ effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
45
+ wasted_resolution = (width * height) - effective_resolution
46
+
47
+ if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
48
+ max_effective_resolution = effective_resolution
49
+ min_wasted_resolution = wasted_resolution
50
+ best_fit = (width, height)
51
+
52
+ return best_fit
53
+
54
+
55
+ class DictOutput(object):
56
+ def keys(self):
57
+ return self.__dict__.keys()
58
+
59
+ def __getitem__(self, item):
60
+ return self.__dict__[item]
61
+
62
+ def __setitem__(self, key, value):
63
+ self.__dict__[key] = value
64
+
65
+
66
+ # 对于inference sample也可以维护input_ids,反正最后不会用到
67
+ @dataclass
68
+ class VLChatProcessorOutput(DictOutput):
69
+ sft_format: str
70
+ input_ids: torch.LongTensor
71
+ target_ids: torch.LongTensor
72
+ images: torch.Tensor
73
+ images_seq_mask: torch.BoolTensor
74
+ images_spatial_crop: torch.LongTensor
75
+ num_image_tokens: List[int]
76
+
77
+ def __len__(self):
78
+ return len(self.input_ids)
79
+
80
+
81
+ @dataclass
82
+ class BatchCollateOutput(DictOutput):
83
+ sft_format: List[str]
84
+ input_ids: torch.LongTensor
85
+ labels: torch.LongTensor
86
+ images: torch.Tensor
87
+ attention_mask: torch.Tensor
88
+ images_seq_mask: torch.BoolTensor
89
+ images_spatial_crop: torch.LongTensor
90
+ seq_lens: List[int]
91
+
92
+ def to(self, device, dtype=torch.bfloat16):
93
+ self.input_ids = self.input_ids.to(device)
94
+ self.labels = self.labels.to(device)
95
+ self.attention_mask = self.attention_mask.to(device)
96
+ self.images_seq_mask = self.images_seq_mask.to(device)
97
+ self.images_spatial_crop = self.images_spatial_crop.to(device)
98
+ self.images = self.images.to(device=device, dtype=dtype)
99
+ return self
100
+
101
+
102
+ class ImageTransform(object):
103
+ def __init__(
104
+ self,
105
+ mean: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
106
+ std: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
107
+ normalize: bool = True
108
+ ):
109
+ self.mean = mean
110
+ self.std = std
111
+ self.normalize = normalize
112
+
113
+ transform_pipelines = [
114
+ T.ToTensor()
115
+ ]
116
+
117
+ if normalize:
118
+ transform_pipelines.append(T.Normalize(mean, std))
119
+
120
+ self.transform = T.Compose(transform_pipelines)
121
+
122
+ def __call__(self, pil_img: Image.Image):
123
+ x = self.transform(pil_img)
124
+ return x
125
+
126
+
127
+
128
+ class DeepseekVLV2Processor(ProcessorMixin):
129
+ tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
130
+ attributes = ["tokenizer"]
131
+
132
+ def __init__(
133
+ self,
134
+ tokenizer: LlamaTokenizerFast,
135
+ candidate_resolutions: Tuple[Tuple[int, int]],
136
+ patch_size: int,
137
+ downsample_ratio: int,
138
+ image_mean: Tuple[float, float, float] = (0.5, 0.5, 0.5),
139
+ image_std: Tuple[float, float, float] = (0.5, 0.5, 0.5),
140
+ normalize: bool = True,
141
+ image_token: str = "<image>",
142
+ pad_token: str = "<|▁pad▁|>",
143
+ add_special_token: bool = False,
144
+ sft_format: str = "deepseek",
145
+ mask_prompt: bool = True,
146
+ ignore_id: int = -100,
147
+ **kwargs,
148
+ ):
149
+
150
+ self.candidate_resolutions = candidate_resolutions
151
+ self.image_size = candidate_resolutions[0][0]
152
+ self.patch_size = patch_size
153
+ self.image_mean = image_mean
154
+ self.image_std = image_std
155
+ self.normalize = normalize
156
+ self.downsample_ratio = downsample_ratio
157
+
158
+ self.image_transform = ImageTransform(mean=image_mean, std=image_std, normalize=normalize)
159
+ self.tokenizer = tokenizer
160
+ self.tokenizer.padding_side = 'left' # must set this,padding side with make a difference in batch inference
161
+
162
+ # add the pad_token as special token to use 'tokenizer.pad_token' and 'tokenizer.pad_token_id'
163
+ if tokenizer.pad_token is None:
164
+ self.tokenizer.add_special_tokens({'pad_token': pad_token})
165
+ print(f"Add pad token = ['{pad_token}'] to the tokenizer\n"
166
+ f"{pad_token}:{tokenizer.encode(pad_token, add_special_tokens=False)[0]}")
167
+
168
+ # add image token
169
+ image_token_id = self.tokenizer.vocab.get(image_token)
170
+ if image_token_id is None:
171
+ special_tokens = [image_token]
172
+ special_tokens_dict = {"additional_special_tokens": special_tokens}
173
+ self.tokenizer.add_special_tokens(special_tokens_dict)
174
+ self.image_token_id = self.tokenizer.vocab.get(image_token)
175
+ print(f"Add image token = ['{image_token}'] to the tokenizer\n"
176
+ f"{image_token}:{tokenizer.encode(image_token, add_special_tokens=False)[0]}")
177
+
178
+ # add five special tokens for grounding-related tasks
179
+ # <|ref|>, <|/ref|>, <|det|>, <|/det|>, <|grounding|>
180
+ special_tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>']
181
+ special_tokens_dict = {"additional_special_tokens": special_tokens}
182
+ self.tokenizer.add_special_tokens(special_tokens_dict)
183
+ print(f"Add grounding-related tokens = {special_tokens} to the tokenizer with input_ids\n"
184
+ f"<|ref|>:{tokenizer.encode('<|ref|>', add_special_tokens=False)[0]}\n"
185
+ f"<|/ref|>:{tokenizer.encode('<|/ref|>', add_special_tokens=False)[0]}\n"
186
+ f"<|det|>:{tokenizer.encode('<|det|>', add_special_tokens=False)[0]}\n"
187
+ f"<|/det|>:{tokenizer.encode('<|/det|>', add_special_tokens=False)[0]}\n"
188
+ f"<|grounding|>:{tokenizer.encode('<|grounding|>', add_special_tokens=False)[0]}")
189
+
190
+ # add special tokens for SFT data
191
+ special_tokens = ["<|User|>", "<|Assistant|>"]
192
+ special_tokens_dict = {"additional_special_tokens": special_tokens}
193
+ self.tokenizer.add_special_tokens(special_tokens_dict)
194
+ print(f"Add chat tokens = {special_tokens} to the tokenizer with input_ids\n"
195
+ f"<|User|>:{tokenizer.encode('<|User|>', add_special_tokens=False)[0]}\n"
196
+ f"<|Assistant|>:{tokenizer.encode('<|Assistant|>', add_special_tokens=False)[0]}\n")
197
+
198
+ self.image_token = image_token
199
+ self.pad_token = pad_token
200
+ self.add_special_token = add_special_token
201
+ self.sft_format = sft_format
202
+ self.mask_prompt = mask_prompt
203
+ self.ignore_id = ignore_id
204
+
205
+ super().__init__(
206
+ tokenizer,
207
+ **kwargs,
208
+ )
209
+
210
+ def new_chat_template(self):
211
+ conv = get_conv_template(self.sft_format)
212
+ return conv
213
+
214
+ def format_messages(
215
+ self,
216
+ conversations: List[Dict[str, str]],
217
+ sft_format: str = "deepseek",
218
+ system_prompt: str = "",
219
+ ):
220
+ """
221
+ Applies the SFT template to conversation.
222
+
223
+ Args:
224
+ conversations (List[Dict]): A List of messages.
225
+ sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
226
+ system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".
227
+
228
+ Returns:
229
+ sft_prompt (str): The formatted text.
230
+ """
231
+
232
+ conv = get_conv_template(sft_format)
233
+ conv.set_system_message(system_prompt)
234
+ for message in conversations:
235
+ conv.append_message(message["role"], message["content"].strip())
236
+ sft_prompt = conv.get_prompt().strip()
237
+
238
+ return sft_prompt
239
+
240
+ def format_messages_v2(self, messages, pil_images, systems=None):
241
+ """play the role of format_messages_v2 and get_images_info in the last version"""
242
+ tokenized_data = []
243
+ masked_tokenized_data = [] # labels
244
+ images_list = []
245
+ images_seq_mask = []
246
+ images_spatial_crop = []
247
+ num_image_tokens = []
248
+
249
+ image_index = 0
250
+
251
+ conv = get_conv_template(self.sft_format)
252
+ conv_system_message = conv.system_message
253
+
254
+ for idx, message in enumerate(messages):
255
+ if idx == 0:
256
+ tokenized_data += [self.bos_id]
257
+ masked_tokenized_data += [self.bos_id]
258
+ images_seq_mask += [False]
259
+ conv.system_message = conv_system_message
260
+ else:
261
+ conv.system_message = ''
262
+
263
+ if message['role'] == conv.roles[0] or message['role'] == "user":
264
+ conv.reset_message()
265
+ conv.append_message(conv.roles[0], str(message['content']).strip())
266
+ conv.append_message(conv.roles[1], '')
267
+ formatted_question = conv.get_prompt()
268
+ tokenized_str, images, seq_mask, spatial_crop, n_image_tokens = self.tokenize_with_images(
269
+ formatted_question,
270
+ pil_images[image_index: image_index + formatted_question.count(self.image_token)],
271
+ bos=False,
272
+ eos=False,
273
+ cropping=len(pil_images) <= 2
274
+ )
275
+ image_index += formatted_question.count(self.image_token)
276
+
277
+ tokenized_data += tokenized_str
278
+ if self.mask_prompt:
279
+ masked_tokenized_data += [self.ignore_id] * len(tokenized_str)
280
+ else:
281
+ masked_tokenized_data += tokenized_str
282
+ images_list += images
283
+ images_seq_mask += seq_mask
284
+ images_spatial_crop += spatial_crop
285
+ num_image_tokens += n_image_tokens
286
+
287
+ elif message['role'] == conv.roles[1] or message['role'] == "assistant":
288
+ formatted_answer = message['content'].strip()
289
+ assert formatted_answer.count(
290
+ self.image_token) == 0, f"there should be no {self.image_token} in the assistant's reply, but got {messages}"
291
+ tokenized_str, images, seq_mask, spatial_crop, n_image_tokens = self.tokenize_with_images(
292
+ formatted_answer,
293
+ [],
294
+ bos=False,
295
+ eos=True,
296
+ cropping=len(pil_images) <= 2)
297
+
298
+ tokenized_data += tokenized_str
299
+ masked_tokenized_data += tokenized_str
300
+ images_seq_mask += seq_mask
301
+
302
+ elif message['role'] == 'system' or message['role'] == 'deepseekapi-sys':
303
+ # 如果message里面有system,那就只允许出现在message的第一句,同时conv原本的system就会失效
304
+ assert idx == 0, 'system information should only exist in the begining of the conversation'
305
+ formatted_system = message['content'].strip()
306
+ tokenized_str = self.encode(formatted_system, bos=False, eos=False)
307
+ tokenized_data += tokenized_str
308
+ if self.mask_prompt:
309
+ masked_tokenized_data += [self.ignore_id] * len(tokenized_str)
310
+ else:
311
+ masked_tokenized_data += tokenized_str
312
+ seq_mask = [False] * len(tokenized_str)
313
+ images_seq_mask += seq_mask
314
+
315
+ else:
316
+ assert False, f"Unknown role: {message['role']}"
317
+
318
+ assert len(tokenized_data) == len(
319
+ images_seq_mask), f"format_messages_v2: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
320
+ assert len(images_spatial_crop) == len(num_image_tokens), f"image number should be compatible"
321
+
322
+ return tokenized_data, masked_tokenized_data, images_list, images_seq_mask, images_spatial_crop, num_image_tokens
323
+
324
+ def format_prompts(
325
+ self,
326
+ prompts: str,
327
+ sft_format: str = "deepseek",
328
+ system_prompt: str = "",
329
+ ):
330
+ """
331
+ Applies the SFT template to prompts.
332
+
333
+ Args:
334
+ prompts (str): the non-sft formatted prompt;
335
+ sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
336
+ system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".
337
+
338
+ Returns:
339
+ sft_prompt (str): The formatted text.
340
+ """
341
+
342
+ conv = get_conv_template(sft_format)
343
+ conv.set_system_message(system_prompt)
344
+ conv.append_message(conv.roles[0], prompts.strip())
345
+ conv.append_message(conv.roles[1], "")
346
+
347
+ sft_prompt = conv.get_prompt().strip()
348
+
349
+ return sft_prompt
350
+
351
+ @property
352
+ def bos_id(self):
353
+ return self.tokenizer.bos_token_id
354
+
355
+ @property
356
+ def eos_id(self):
357
+ return self.tokenizer.eos_token_id
358
+
359
+ @property
360
+ def pad_id(self):
361
+ return self.tokenizer.pad_token_id
362
+
363
+ def encode(self, text: str, bos: bool = True, eos: bool = False):
364
+ t = self.tokenizer.encode(text, add_special_tokens=False)
365
+
366
+ if bos:
367
+ t = [self.bos_id] + t
368
+ if eos:
369
+ t = t + [self.eos_id]
370
+
371
+ return t
372
+
373
+ def decode(self, t: List[int], **kwargs) -> str:
374
+ return self.tokenizer.decode(t, **kwargs)
375
+
376
+ def process_one(
377
+ self,
378
+ prompt: str = None,
379
+ conversations: List[Dict[str, str]] = None,
380
+ images: List[Image.Image] = None,
381
+ apply_sft_format: bool = False,
382
+ inference_mode: bool = True,
383
+ system_prompt: str = "",
384
+ **kwargs,
385
+ ):
386
+ """
387
+
388
+ Args:
389
+ prompt (str): the formatted prompt;
390
+ conversations (List[Dict]): conversations with a list of messages;
391
+ images (List[ImageType]): the list of images;
392
+ apply_sft_format (bool): if prompt is not None, then apply the SFT format to prompt;
393
+ if conversations is not None, then it will always apply the SFT format to conversations;
394
+ inference_mode (bool): if True, then remove the last eos token;
395
+ system_prompt (str): the system prompt;
396
+ **kwargs:
397
+
398
+ Returns:
399
+ outputs (BaseProcessorOutput): the output of the processor,
400
+ - input_ids (torch.LongTensor): [N + image tokens]
401
+ - target_ids (torch.LongTensor): [N + image tokens]
402
+ - images (torch.FloatTensor): [n_images, 3, H, W]
403
+ - image_id (int): the id of the image token
404
+ - num_image_tokens (List[int]): the number of image tokens
405
+ """
406
+
407
+ assert (
408
+ prompt is None or conversations is None
409
+ ), "prompt and conversations cannot be used at the same time."
410
+
411
+ if prompt is None:
412
+ # apply sft format
413
+ sft_format = self.format_messages(
414
+ conversations=conversations,
415
+ sft_format=self.sft_format,
416
+ system_prompt=system_prompt,
417
+ )
418
+ tokenized_str, masked_tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens = self.format_messages_v2(
419
+ conversations, images)
420
+ else:
421
+ if apply_sft_format:
422
+ sft_format = self.format_prompts(
423
+ prompts=prompt,
424
+ sft_format=self.sft_format,
425
+ system_prompt=system_prompt
426
+ )
427
+ else:
428
+ sft_format = prompt
429
+ tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens = self.tokenize_with_images(
430
+ sft_format, images, bos=True, eos=True, cropping=len(images) <= 2)
431
+ masked_tokenized_str = []
432
+ for token_index in tokenized_str:
433
+ if token_index != self.image_token_id:
434
+ masked_tokenized_str.append(token_index)
435
+ else:
436
+ masked_tokenized_str.append(self.ignore_id)
437
+
438
+ assert len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str), \
439
+ (f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, "
440
+ f"imags_seq_mask's length {len(images_seq_mask)}, are not equal")
441
+
442
+ input_ids = torch.LongTensor(tokenized_str)
443
+ target_ids = torch.LongTensor(masked_tokenized_str)
444
+ images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
445
+
446
+ # set input_ids < 0 | input_ids == self.image_token_id as ignore_id
447
+ target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = self.ignore_id
448
+ input_ids[input_ids < 0] = self.pad_id
449
+
450
+ if inference_mode:
451
+ # 去掉结尾的eos token
452
+ assert input_ids[-1] == self.eos_id
453
+ input_ids = input_ids[:-1]
454
+ target_ids = target_ids[:-1]
455
+ images_seq_mask = images_seq_mask[:-1]
456
+
457
+ if len(images_list) == 0:
458
+ images = torch.zeros((1, 3, self.image_size, self.image_size))
459
+ images_spatial_crop = torch.zeros((1, 2), dtype=torch.long)
460
+ else:
461
+ images = torch.stack(images_list, dim=0)
462
+ images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
463
+
464
+ prepare = VLChatProcessorOutput(
465
+ sft_format=sft_format,
466
+ input_ids=input_ids,
467
+ target_ids=target_ids,
468
+ images=images,
469
+ images_seq_mask=images_seq_mask,
470
+ images_spatial_crop=images_spatial_crop,
471
+ num_image_tokens=num_image_tokens
472
+ )
473
+
474
+ return prepare
475
+
476
+ def __call__(
477
+ self,
478
+ *,
479
+ prompt: str = None,
480
+ conversations: List[Dict[str, str]] = None,
481
+ images: List[Image.Image] = None,
482
+ apply_sft_format: bool = False,
483
+ force_batchify: bool = True,
484
+ inference_mode: bool = True,
485
+ system_prompt: str = "",
486
+ **kwargs,
487
+ ):
488
+ """
489
+
490
+ Args:
491
+ prompt (str): the formatted prompt;
492
+ conversations (List[Dict]): conversations with a list of messages;
493
+ images (List[ImageType]): the list of images;
494
+ apply_sft_format (bool): if prompt is not None, then apply the SFT format to prompt;
495
+ if conversations is not None, then it will always apply the SFT format to conversations;
496
+ force_batchify (bool): force batchify the inputs;
497
+ inference_mode (bool): if True, then remove the last eos token;
498
+ system_prompt (str): the system prompt;
499
+ **kwargs:
500
+
501
+ Returns:
502
+ outputs (BaseProcessorOutput): the output of the processor,
503
+ - input_ids (torch.LongTensor): [N + image tokens]
504
+ - images (torch.FloatTensor): [n_images, 3, H, W]
505
+ - image_id (int): the id of the image token
506
+ - num_image_tokens (List[int]): the number of image tokens
507
+ """
508
+
509
+ prepare = self.process_one(
510
+ prompt=prompt,
511
+ conversations=conversations,
512
+ images=images,
513
+ apply_sft_format=apply_sft_format,
514
+ inference_mode=inference_mode,
515
+ system_prompt=system_prompt
516
+ )
517
+
518
+ if force_batchify:
519
+ prepare = self.batchify([prepare])
520
+
521
+ return prepare
522
+
523
+ def tokenize_with_images(
524
+ self,
525
+ conversation: str,
526
+ images: List[Image.Image],
527
+ bos: bool = True,
528
+ eos: bool = True,
529
+ cropping: bool = True,
530
+ ):
531
+ """Tokenize text with <image> tags."""
532
+ assert conversation.count(self.image_token) == len(images)
533
+ text_splits = conversation.split(self.image_token)
534
+ images_list, images_seq_mask, images_spatial_crop = [], [], []
535
+ num_image_tokens = []
536
+ tokenized_str = []
537
+ for text_sep, image in zip(text_splits, images):
538
+ """encode text_sep"""
539
+ tokenized_sep = self.encode(text_sep, bos=False, eos=False)
540
+ tokenized_str += tokenized_sep
541
+ images_seq_mask += [False] * len(tokenized_sep)
542
+
543
+ """select best resolution for anyres"""
544
+ if cropping:
545
+ best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions)
546
+ else:
547
+ best_width, best_height = self.image_size, self.image_size
548
+ # print(image.size, (best_width, best_height)) # check the select_best_resolutions func
549
+
550
+ """process the global view"""
551
+ global_view = ImageOps.pad(image, (self.image_size, self.image_size),
552
+ color=tuple(int(x * 255) for x in self.image_transform.mean))
553
+ images_list.append(self.image_transform(global_view))
554
+
555
+ """process the local views"""
556
+ local_view = ImageOps.pad(image, (best_width, best_height),
557
+ color=tuple(int(x * 255) for x in self.image_transform.mean))
558
+ for i in range(0, best_height, self.image_size):
559
+ for j in range(0, best_width, self.image_size):
560
+ images_list.append(
561
+ self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size))))
562
+
563
+ """record height / width crop num"""
564
+ num_width_tiles, num_height_tiles = best_width // self.image_size, best_height // self.image_size
565
+ images_spatial_crop.append([num_width_tiles, num_height_tiles])
566
+
567
+ """add image tokens"""
568
+ h = w = math.ceil((self.image_size // self.patch_size) / self.downsample_ratio)
569
+ # global views tokens h * (w + 1), 1 is for line seperator
570
+ tokenized_image = [self.image_token_id] * h * (w + 1)
571
+ # add a seperator between global and local views
572
+ tokenized_image += [self.image_token_id]
573
+ # local views tokens, (num_height_tiles * h) * (num_width_tiles * w + 1)
574
+ tokenized_image += [self.image_token_id] * (num_height_tiles * h) * (num_width_tiles * w + 1)
575
+
576
+ tokenized_str += tokenized_image
577
+ images_seq_mask += [True] * len(tokenized_image)
578
+ num_image_tokens.append(len(tokenized_image))
579
+ # print(width_crop_num, height_crop_num, len(tokenized_image)) # test the correctness of the number of image-related tokens
580
+
581
+ """process the last text split"""
582
+ tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
583
+ tokenized_str += tokenized_sep
584
+ images_seq_mask += [False] * len(tokenized_sep)
585
+
586
+ """add the bos and eos tokens"""
587
+ if bos:
588
+ tokenized_str = [self.bos_id] + tokenized_str
589
+ images_seq_mask = [False] + images_seq_mask
590
+ if eos:
591
+ tokenized_str = tokenized_str + [self.eos_id]
592
+ images_seq_mask = images_seq_mask + [False]
593
+
594
+ assert len(tokenized_str) == len(
595
+ images_seq_mask), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
596
+
597
+ return tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens
598
+
599
+ def batchify(
600
+ self,
601
+ sample_list: List[VLChatProcessorOutput],
602
+ padding: Literal["left", "right"] = "left"
603
+ ) -> BatchCollateOutput:
604
+ """
605
+ Preprocesses the inputs for multimodal inference.
606
+
607
+ Args:
608
+ sample_list (List[VLChatProcessorOutput]): A list of VLChatProcessorOutput.
609
+ padding (str): The padding method. Defaults to "left".
610
+
611
+ Returns:
612
+ BatchCollateOutput: A dictionary of the inputs to use for multimodal inference.
613
+ """
614
+
615
+ batched_sft_format = [sample.sft_format for sample in sample_list]
616
+ batched_input_ids = [sample.input_ids for sample in sample_list]
617
+ batched_labels = [sample.target_ids for sample in sample_list]
618
+ batched_images_seq_mask = [sample["images_seq_mask"] for sample in sample_list]
619
+ seq_lens = [len(sample) for sample in sample_list]
620
+
621
+ """padding input_ids and images_seq_mask"""
622
+ if padding == "left":
623
+ # the tokenizer is default to pad at left
624
+ ## TODO, You're using a LlamaTokenizerFast tokenizer.
625
+ # Please note that with a fast tokenizer, using the `__call__` method is faster than
626
+ # using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
627
+ padded_input_ids = self.tokenizer.pad({"input_ids": batched_input_ids})
628
+ batched_input_ids, batched_attention_mask = padded_input_ids["input_ids"], padded_input_ids[
629
+ "attention_mask"].bool()
630
+ batched_labels = self.tokenizer.pad({"input_ids": batched_labels})["input_ids"]
631
+ batched_labels[batched_labels == self.pad_id] = self.ignore_id # labels正常不会出现pad_id,无需额外保护
632
+ batched_images_seq_mask = self.tokenizer.pad({"input_ids": batched_images_seq_mask})["input_ids"]
633
+ batched_images_seq_mask[batched_images_seq_mask == self.pad_id] = False
634
+ else:
635
+ batched_input_ids = pad_sequence(batched_input_ids, batch_first=True, padding_value=self.pad_id)
636
+ batched_labels = pad_sequence(batched_labels, batch_first=True, padding_value=self.ignore_id)
637
+ batched_images_seq_mask = pad_sequence(batched_images_seq_mask, batch_first=True, padding_value=0)
638
+ batched_attention_mask = batched_input_ids != self.pad_id
639
+
640
+ """padding images to max_patch_num"""
641
+ max_n_patches = max(sample["images"].shape[0] for sample in sample_list)
642
+ batched_images = []
643
+ for sample in sample_list:
644
+ images = sample["images"]
645
+ n_pads = max_n_patches - images.shape[0]
646
+ if n_pads > 0:
647
+ pad_images = torch.zeros((n_pads, *images.shape[1:]), dtype=images.dtype)
648
+ images = torch.cat([images, pad_images], dim=0)
649
+ batched_images.append(images)
650
+ batched_images = torch.stack(batched_images, dim=0)
651
+
652
+ """padding images_spatial_crop to max_n_images"""
653
+ max_n_images = max(sample["images_spatial_crop"].shape[0] for sample in sample_list)
654
+ batched_images_spatial_crop = []
655
+ for sample in sample_list:
656
+ images_spatial_crop = sample["images_spatial_crop"]
657
+ n_pads = max_n_images - sample["images_spatial_crop"].shape[0]
658
+ if n_pads > 0:
659
+ pad_images_spatial_crop = torch.full((n_pads, 2), 0, dtype=images_spatial_crop.dtype)
660
+ images_spatial_crop = torch.cat([images_spatial_crop, pad_images_spatial_crop], dim=0)
661
+ batched_images_spatial_crop.append(images_spatial_crop)
662
+ batched_images_spatial_crop = torch.stack(batched_images_spatial_crop, dim=0)
663
+
664
+ batched_samples = BatchCollateOutput(
665
+ input_ids=batched_input_ids,
666
+ attention_mask=batched_attention_mask,
667
+ labels=batched_labels,
668
+ images=batched_images,
669
+ images_seq_mask=batched_images_seq_mask,
670
+ images_spatial_crop=batched_images_spatial_crop,
671
+ sft_format=batched_sft_format,
672
+ seq_lens=seq_lens
673
+ )
674
+
675
+ return batched_samples