xinference 1.3.1.post1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (75) hide show
  1. xinference/_compat.py +1 -0
  2. xinference/_version.py +3 -3
  3. xinference/api/restful_api.py +4 -0
  4. xinference/core/chat_interface.py +1 -1
  5. xinference/core/model.py +23 -3
  6. xinference/core/supervisor.py +6 -0
  7. xinference/core/worker.py +54 -11
  8. xinference/model/llm/__init__.py +7 -2
  9. xinference/model/llm/core.py +1 -0
  10. xinference/model/llm/llama_cpp/core.py +50 -15
  11. xinference/model/llm/llm_family.json +388 -13
  12. xinference/model/llm/llm_family_modelscope.json +373 -14
  13. xinference/model/llm/mlx/core.py +15 -11
  14. xinference/model/llm/reasoning_parser.py +17 -9
  15. xinference/model/llm/sglang/core.py +112 -12
  16. xinference/model/llm/transformers/core.py +4 -2
  17. xinference/model/llm/transformers/deepseek_vl.py +1 -1
  18. xinference/model/llm/transformers/deepseek_vl2.py +287 -0
  19. xinference/model/llm/transformers/gemma3.py +185 -0
  20. xinference/model/llm/transformers/intern_vl.py +0 -2
  21. xinference/model/llm/utils.py +62 -42
  22. xinference/model/llm/vllm/core.py +157 -11
  23. xinference/model/llm/vllm/distributed_executor.py +314 -0
  24. xinference/model/rerank/core.py +16 -11
  25. xinference/thirdparty/deepseek_vl2/__init__.py +31 -0
  26. xinference/thirdparty/deepseek_vl2/models/__init__.py +26 -0
  27. xinference/thirdparty/deepseek_vl2/models/configuration_deepseek.py +210 -0
  28. xinference/thirdparty/deepseek_vl2/models/conversation.py +310 -0
  29. xinference/thirdparty/deepseek_vl2/models/modeling_deepseek.py +1975 -0
  30. xinference/thirdparty/deepseek_vl2/models/modeling_deepseek_vl_v2.py +697 -0
  31. xinference/thirdparty/deepseek_vl2/models/processing_deepseek_vl_v2.py +675 -0
  32. xinference/thirdparty/deepseek_vl2/models/siglip_vit.py +661 -0
  33. xinference/thirdparty/deepseek_vl2/serve/__init__.py +0 -0
  34. xinference/thirdparty/deepseek_vl2/serve/app_modules/__init__.py +0 -0
  35. xinference/thirdparty/deepseek_vl2/serve/app_modules/gradio_utils.py +83 -0
  36. xinference/thirdparty/deepseek_vl2/serve/app_modules/overwrites.py +81 -0
  37. xinference/thirdparty/deepseek_vl2/serve/app_modules/presets.py +115 -0
  38. xinference/thirdparty/deepseek_vl2/serve/app_modules/utils.py +333 -0
  39. xinference/thirdparty/deepseek_vl2/serve/assets/Kelpy-Codos.js +100 -0
  40. xinference/thirdparty/deepseek_vl2/serve/assets/avatar.png +0 -0
  41. xinference/thirdparty/deepseek_vl2/serve/assets/custom.css +355 -0
  42. xinference/thirdparty/deepseek_vl2/serve/assets/custom.js +22 -0
  43. xinference/thirdparty/deepseek_vl2/serve/assets/favicon.ico +0 -0
  44. xinference/thirdparty/deepseek_vl2/serve/assets/simsun.ttc +0 -0
  45. xinference/thirdparty/deepseek_vl2/serve/inference.py +197 -0
  46. xinference/thirdparty/deepseek_vl2/utils/__init__.py +18 -0
  47. xinference/thirdparty/deepseek_vl2/utils/io.py +80 -0
  48. xinference/types.py +2 -2
  49. xinference/web/ui/build/asset-manifest.json +6 -6
  50. xinference/web/ui/build/index.html +1 -1
  51. xinference/web/ui/build/static/css/main.b494ae7e.css +2 -0
  52. xinference/web/ui/build/static/css/main.b494ae7e.css.map +1 -0
  53. xinference/web/ui/build/static/js/main.5ca4eea1.js +3 -0
  54. xinference/web/ui/build/static/js/main.5ca4eea1.js.map +1 -0
  55. xinference/web/ui/node_modules/.cache/babel-loader/0f0967acaec5df1d45b80010949c258d64297ebbb0f44b8bb3afcbd45c6f0ec4.json +1 -0
  56. xinference/web/ui/node_modules/.cache/babel-loader/68249645124f37d01eef83b1d897e751f895bea919b6fb466f907c1f87cebc84.json +1 -0
  57. xinference/web/ui/node_modules/.cache/babel-loader/cc97b49285d7717c63374766c789141a4329a04582ab32756d7e0e614d4c5c7f.json +1 -0
  58. xinference/web/ui/node_modules/.cache/babel-loader/f199e8173f6409a5802ed44acb95f218388131136504b2e9132129e150c92f9a.json +1 -0
  59. xinference/web/ui/src/locales/en.json +2 -2
  60. xinference/web/ui/src/locales/zh.json +1 -1
  61. {xinference-1.3.1.post1.dist-info → xinference-1.4.1.dist-info}/METADATA +4 -4
  62. {xinference-1.3.1.post1.dist-info → xinference-1.4.1.dist-info}/RECORD +67 -41
  63. xinference/web/ui/build/static/css/main.f8177338.css +0 -2
  64. xinference/web/ui/build/static/css/main.f8177338.css.map +0 -1
  65. xinference/web/ui/build/static/js/main.55b70cb7.js +0 -3
  66. xinference/web/ui/build/static/js/main.55b70cb7.js.map +0 -1
  67. xinference/web/ui/node_modules/.cache/babel-loader/2deac8d5636974533e3714f34e94fc754f9153a07c6ee11e72846cb8eae47e4b.json +0 -1
  68. xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +0 -1
  69. xinference/web/ui/node_modules/.cache/babel-loader/e23d476fcbf6fd69c8986bf82133d257d28aa8fc9a5cab231d81c1c75c58cd99.json +0 -1
  70. xinference/web/ui/node_modules/.cache/babel-loader/e7a8c37fda8725cab69c7ef8c627060bd7fc806adc67e00fe628ba148cb86d7f.json +0 -1
  71. /xinference/web/ui/build/static/js/{main.55b70cb7.js.LICENSE.txt → main.5ca4eea1.js.LICENSE.txt} +0 -0
  72. {xinference-1.3.1.post1.dist-info → xinference-1.4.1.dist-info}/LICENSE +0 -0
  73. {xinference-1.3.1.post1.dist-info → xinference-1.4.1.dist-info}/WHEEL +0 -0
  74. {xinference-1.3.1.post1.dist-info → xinference-1.4.1.dist-info}/entry_points.txt +0 -0
  75. {xinference-1.3.1.post1.dist-info → xinference-1.4.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,314 @@
1
+ # Copyright 2022-2025 XProbe Inc.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import asyncio
16
+ import logging
17
+ import os
18
+ from functools import partial
19
+ from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
20
+
21
+ import xoscar as xo
22
+ from vllm.executor.executor_base import DistributedExecutorBase
23
+ from vllm.utils import _run_task_with_lock, get_distributed_init_method
24
+ from vllm.worker.worker_base import WorkerWrapperBase
25
+ from xoscar.utils import get_next_port
26
+
27
+ if TYPE_CHECKING:
28
+ from vllm.config import VllmConfig
29
+ from vllm.model_executor.layers.sampler import SamplerOutput
30
+ from vllm.sequence import ExecuteModelRequest
31
+
32
+ logger = logging.getLogger(__name__)
33
+
34
+
35
+ class WorkerActor(xo.StatelessActor):
36
+ def __init__(self, vllm_config: "VllmConfig", rpc_rank: int = 0, **kwargs):
37
+ super().__init__(**kwargs)
38
+ self._worker = WorkerWrapperBase(vllm_config, rpc_rank=rpc_rank)
39
+
40
+ async def __post_create__(self):
41
+ try:
42
+ # Change process title for model
43
+ import setproctitle
44
+
45
+ setproctitle.setproctitle(f"Xinf vLLM worker: {self._worker.rpc_rank}")
46
+ except ImportError:
47
+ pass
48
+
49
+ def __getattr__(self, item):
50
+ return getattr(self._worker, item)
51
+
52
+ @classmethod
53
+ def gen_uid(cls, rank):
54
+ return f"VllmWorker_{rank}"
55
+
56
+ def execute_method(self, method: Union[str, Callable], *args, **kwargs):
57
+ logger.debug(
58
+ "Calling method %s in vllm worker %s, args: %s, kwargs: %s",
59
+ method,
60
+ self.uid,
61
+ args,
62
+ kwargs,
63
+ )
64
+ if isinstance(method, str):
65
+ return getattr(self._worker, method)(*args, **kwargs)
66
+ else:
67
+ return method(self._worker, *args, **kwargs)
68
+
69
+
70
+ class WorkerWrapper:
71
+ def __init__(
72
+ self,
73
+ loop: asyncio.AbstractEventLoop,
74
+ worker_actor_ref: xo.ActorRefType[WorkerActor],
75
+ ):
76
+ self._loop = loop
77
+ self._worker_actor_ref = worker_actor_ref
78
+
79
+ def execute_method(self, method: Union[str, Callable], *args, **kwargs):
80
+ coro = self._worker_actor_ref.execute_method(method, *args, **kwargs)
81
+ return asyncio.run_coroutine_threadsafe(coro, self._loop)
82
+
83
+ async def execute_method_async(self, method: Union[str, Callable], *args, **kwargs):
84
+ return await self._worker_actor_ref.execute_method(method, *args, **kwargs)
85
+
86
+ def kill(self):
87
+ coro = xo.kill_actor(self._worker_actor_ref)
88
+ return asyncio.run_coroutine_threadsafe(coro, self._loop)
89
+
90
+
91
+ class XinferenceDistributedExecutor(DistributedExecutorBase):
92
+ """Xoscar based distributed executor"""
93
+
94
+ use_ray: bool = False
95
+ _loop: asyncio.AbstractEventLoop
96
+ _pool_addresses: List[str]
97
+ _n_worker: int
98
+
99
+ def __init__(
100
+ self,
101
+ vllm_config: "VllmConfig",
102
+ pool_addresses: List[str],
103
+ n_worker: int,
104
+ loop: asyncio.AbstractEventLoop,
105
+ *args,
106
+ **kwargs,
107
+ ):
108
+ self._pool_addresses = pool_addresses
109
+ self._loop = loop
110
+ self._n_worker = n_worker
111
+ super().__init__(vllm_config, *args, **kwargs)
112
+
113
+ def _init_executor(self) -> None:
114
+ # Create the parallel GPU workers.
115
+ world_size = self.parallel_config.world_size
116
+ tensor_parallel_size = self.parallel_config.tensor_parallel_size
117
+
118
+ self.driver_worker: Optional[WorkerActor] = None
119
+ # The remaining workers are Xoscar actors
120
+ self.workers: List[WorkerWrapper] = []
121
+
122
+ assert (
123
+ self._pool_addresses and len(self._pool_addresses) == world_size
124
+ ), f"Pool addresses(#{len(self._pool_addresses or [])} must be equal to worldsize(#{world_size})"
125
+
126
+ futures = []
127
+ for rank in range(world_size):
128
+ coro = xo.create_actor(
129
+ WorkerActor,
130
+ self.vllm_config,
131
+ rpc_rank=rank,
132
+ address=self._pool_addresses[rank],
133
+ uid=WorkerActor.gen_uid(rank),
134
+ )
135
+ futures.append(asyncio.run_coroutine_threadsafe(coro, self._loop))
136
+ refs = [fut.result() for fut in futures]
137
+ self.workers = [WorkerWrapper(self._loop, ref) for ref in refs[1:]]
138
+ self.driver_worker = WorkerActor(self.vllm_config, rpc_rank=0)
139
+
140
+ def driver_execute_method(*args, **kwargs):
141
+ func = partial(self.driver_worker.execute_method, *args, **kwargs)
142
+ return self._loop.run_in_executor(None, func)
143
+
144
+ self.driver_exec_method = driver_execute_method
145
+
146
+ # Set environment variables for the driver and workers.
147
+ all_args_to_update_environment_variables: List[Dict[str, str]] = [
148
+ dict() for _ in range(world_size)
149
+ ]
150
+
151
+ for args in all_args_to_update_environment_variables:
152
+ # some carry-over env vars from the driver
153
+ # TODO: refactor platform-specific env vars
154
+ for name in [
155
+ "VLLM_ATTENTION_BACKEND",
156
+ "TPU_CHIPS_PER_HOST_BOUNDS",
157
+ "TPU_HOST_BOUNDS",
158
+ "VLLM_USE_V1",
159
+ "VLLM_TRACE_FUNCTION",
160
+ ]:
161
+ if name in os.environ:
162
+ args[name] = os.environ[name]
163
+
164
+ self._env_vars_for_all_workers = all_args_to_update_environment_variables
165
+
166
+ self._run_workers(
167
+ "update_environment_variables", self._env_vars_for_all_workers
168
+ )
169
+
170
+ all_kwargs = []
171
+ distributed_init_method = get_distributed_init_method(
172
+ self._pool_addresses[0].split(":", 1)[0], get_next_port()
173
+ )
174
+ for rank in range(world_size):
175
+ local_rank = rank % (world_size // self._n_worker)
176
+ kwargs = dict(
177
+ vllm_config=self.vllm_config,
178
+ local_rank=local_rank,
179
+ rank=rank,
180
+ distributed_init_method=distributed_init_method,
181
+ is_driver_worker=not self.parallel_config
182
+ or (rank % tensor_parallel_size == 0),
183
+ )
184
+ all_kwargs.append(kwargs)
185
+ self._run_workers("init_worker", all_kwargs)
186
+ self._run_workers("init_device")
187
+ self._run_workers(
188
+ "load_model",
189
+ max_concurrent_workers=self.parallel_config.max_parallel_loading_workers,
190
+ )
191
+
192
+ # This is the list of workers that are rank 0 of each TP group EXCEPT
193
+ # global rank 0. These are the workers that will broadcast to the
194
+ # rest of the workers.
195
+ self.tp_driver_workers: List[WorkerWrapper] = []
196
+ # This is the list of workers that are not drivers and not the first
197
+ # worker in a TP group. These are the workers that will be
198
+ # broadcasted to.
199
+ self.non_driver_workers: List[WorkerWrapper] = []
200
+
201
+ # Enforce rank order for correct rank to return final output.
202
+ for index, worker in enumerate(self.workers):
203
+ # The driver worker is rank 0 and not in self.workers.
204
+ rank = index + 1
205
+ if rank % self.parallel_config.tensor_parallel_size == 0:
206
+ self.tp_driver_workers.append(worker)
207
+ else:
208
+ self.non_driver_workers.append(worker)
209
+
210
+ self.pp_locks: Optional[List[asyncio.Lock]] = None
211
+
212
+ def _run_workers(
213
+ self,
214
+ method: Union[str, Callable],
215
+ *args,
216
+ async_run_tensor_parallel_workers_only: bool = False,
217
+ max_concurrent_workers: Optional[int] = None,
218
+ **kwargs,
219
+ ) -> Any:
220
+ if max_concurrent_workers:
221
+ raise NotImplementedError("max_concurrent_workers is not supported yet.")
222
+
223
+ workers = self.workers
224
+ if async_run_tensor_parallel_workers_only:
225
+ workers = self.non_driver_workers
226
+ worker_outputs = [
227
+ worker.execute_method(method, *args, **kwargs) for worker in workers
228
+ ]
229
+
230
+ if async_run_tensor_parallel_workers_only:
231
+ return worker_outputs
232
+
233
+ driver_worker_outputs = [
234
+ self.driver_worker.execute_method(method, *args, **kwargs) # type: ignore
235
+ ]
236
+ return driver_worker_outputs + [output.result() for output in worker_outputs]
237
+
238
+ def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
239
+ """Wait for futures returned from _run_workers() with
240
+ async_run_remote_workers_only to complete."""
241
+ for result in parallel_worker_tasks:
242
+ result.get()
243
+
244
+ def check_health(self) -> None:
245
+ # Assume that the workers are healthy.
246
+ # TODO: check the health by checking if the workers all alive
247
+ return
248
+
249
+ def shutdown(self) -> None:
250
+ try:
251
+ futs = [worker.kill() for worker in self.workers]
252
+ _ = [fut.result() for fut in futs]
253
+ except (RuntimeError, ConnectionError):
254
+ # event loop closed already, ignore
255
+ pass
256
+
257
+ def __del__(self):
258
+ return self.shutdown()
259
+
260
+ def _driver_execute_model(
261
+ self, execute_model_req: Optional["ExecuteModelRequest"]
262
+ ) -> Optional[List["SamplerOutput"]]:
263
+ return self.driver_worker.execute_method("execute_model", execute_model_req) # type: ignore
264
+
265
+ async def _driver_execute_model_async(
266
+ self,
267
+ execute_model_req: Optional["ExecuteModelRequest"] = None,
268
+ ) -> List["SamplerOutput"]:
269
+ if not self.tp_driver_workers:
270
+ return await self.driver_exec_method("execute_model", execute_model_req)
271
+
272
+ if self.pp_locks is None:
273
+ # This locks each pipeline parallel stage so multiple virtual
274
+ # engines can't execute on the same stage at the same time
275
+ # We create the locks here to avoid creating them in the constructor
276
+ # which uses a different asyncio loop.
277
+ self.pp_locks = [
278
+ asyncio.Lock()
279
+ for _ in range(self.parallel_config.pipeline_parallel_size)
280
+ ]
281
+
282
+ tasks = [
283
+ asyncio.create_task(
284
+ _run_task_with_lock(
285
+ self.driver_exec_method,
286
+ self.pp_locks[0],
287
+ "execute_model",
288
+ execute_model_req,
289
+ )
290
+ )
291
+ ]
292
+ for pp_rank, driver_worker in enumerate(self.tp_driver_workers, start=1):
293
+ tasks.append(
294
+ asyncio.create_task(
295
+ _run_task_with_lock(
296
+ driver_worker.execute_method_async,
297
+ self.pp_locks[pp_rank],
298
+ "execute_model",
299
+ execute_model_req,
300
+ )
301
+ )
302
+ )
303
+
304
+ results = await asyncio.gather(*tasks)
305
+
306
+ # Only the last PP stage has the final results.
307
+ return results[-1]
308
+
309
+ async def _start_worker_execution_loop(self):
310
+ coros = [
311
+ worker.execute_method_async("start_worker_execution_loop")
312
+ for worker in self.non_driver_workers
313
+ ]
314
+ return await asyncio.gather(*coros)
@@ -106,9 +106,10 @@ def generate_rerank_description(model_spec: RerankModelSpec) -> Dict[str, List[D
106
106
  return res
107
107
 
108
108
 
109
- class _ModelWrapper:
109
+ class _ModelWrapper(nn.Module):
110
110
  def __init__(self, module: nn.Module):
111
- self._module = module
111
+ super().__init__()
112
+ self.model = module
112
113
  self._local_data = threading.local()
113
114
 
114
115
  @property
@@ -116,18 +117,22 @@ class _ModelWrapper:
116
117
  return getattr(self._local_data, "n_tokens", 0)
117
118
 
118
119
  @n_tokens.setter
119
- def n_tokens(self, new_n_tokens):
120
- self._local_data.n_tokens = new_n_tokens
120
+ def n_tokens(self, value):
121
+ self._local_data.n_tokens = value
121
122
 
122
- def __getattr__(self, attr):
123
- return getattr(self._module, attr)
124
-
125
- def __call__(self, **kwargs):
126
- attention_mask = kwargs["attention_mask"]
123
+ def forward(self, **kwargs):
124
+ attention_mask = kwargs.get("attention_mask")
127
125
  # when batching, the attention mask 1 means there is a token
128
126
  # thus we just sum up it to get the total number of tokens
129
- self.n_tokens += attention_mask.sum().item()
130
- return self._module(**kwargs)
127
+ if attention_mask is not None:
128
+ self.n_tokens += attention_mask.sum().item()
129
+ return self.model(**kwargs)
130
+
131
+ def __getattr__(self, attr):
132
+ try:
133
+ return super().__getattr__(attr)
134
+ except AttributeError:
135
+ return getattr(self.model, attr)
131
136
 
132
137
 
133
138
  class RerankModel:
@@ -0,0 +1,31 @@
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+
21
+ # check if python version is above 3.10
22
+ import sys
23
+
24
+ if sys.version_info >= (3, 10):
25
+ print("Python version is above 3.10, patching the collections module.")
26
+ # Monkey patch collections
27
+ import collections
28
+ import collections.abc
29
+
30
+ for type_name in collections.abc.__all__:
31
+ setattr(collections, type_name, getattr(collections.abc, type_name))
@@ -0,0 +1,26 @@
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from .processing_deepseek_vl_v2 import DeepseekVLV2Processor
21
+ from .modeling_deepseek_vl_v2 import DeepseekVLV2ForCausalLM
22
+
23
+ __all__ = [
24
+ "DeepseekVLV2Processor",
25
+ "DeepseekVLV2ForCausalLM",
26
+ ]
@@ -0,0 +1,210 @@
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV2Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V2 with multi-latent attention.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 102400):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV2Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_attention_heads (`int`, *optional*, defaults to 32):
30
+ Number of attention heads for each attention layer in the Transformer decoder.
31
+ n_shared_experts (`int`, *optional*, defaults to None):
32
+ Number of shared experts, None means dense model.
33
+ n_routed_experts (`int`, *optional*, defaults to None):
34
+ Number of routed experts, None means dense model.
35
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
36
+ Scaling factor or routed experts.
37
+ topk_method (`str`, *optional*, defaults to `gready`):
38
+ Topk method used in routed gate.
39
+ n_group (`int`, *optional*, defaults to None):
40
+ Number of groups for routed experts.
41
+ topk_group (`int`, *optional*, defaults to None):
42
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
43
+ num_experts_per_tok (`int`, *optional*, defaults to None):
44
+ Number of selected experts, None means dense model.
45
+ moe_layer_freq (`int`, *optional*, defaults to 1):
46
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
47
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
48
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
49
+ \--k dense layers--/
50
+ norm_topk_prob (`bool`, *optional*, defaults to False):
51
+ Whether to normalize the weights of the routed experts.
52
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
53
+ Method of computing expert weights.
54
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
55
+ Auxiliary loss weight coefficient.
56
+ seq_aux = (`bool`, *optional*, defaults to True):
57
+ Whether to compute the auxiliary loss for each individual sample.
58
+ num_key_value_heads (`int`, *optional*):
59
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
60
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
61
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
62
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
63
+ by meanpooling all the original heads within that group. For more details checkout [this
64
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
65
+ `num_attention_heads`.
66
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
67
+ The non-linear activation function (function or string) in the decoder.
68
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
69
+ The maximum sequence length that this model might ever be used with.
70
+ initializer_range (`float`, *optional*, defaults to 0.02):
71
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
72
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
73
+ The epsilon used by the rms normalization layers.
74
+ use_cache (`bool`, *optional*, defaults to `True`):
75
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
76
+ relevant if `config.is_decoder=True`.
77
+ pad_token_id (`int`, *optional*):
78
+ Padding token id.
79
+ bos_token_id (`int`, *optional*, defaults to 1):
80
+ Beginning of stream token id.
81
+ eos_token_id (`int`, *optional*, defaults to 2):
82
+ End of stream token id.
83
+ pretraining_tp (`int`, *optional*, defaults to 1):
84
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
85
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
86
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
87
+ issue](https://github.com/pytorch/pytorch/issues/76232).
88
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
89
+ Whether to tie weight embeddings
90
+ rope_theta (`float`, *optional*, defaults to 10000.0):
91
+ The base period of the RoPE embeddings.
92
+ rope_scaling (`Dict`, *optional*):
93
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
94
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
95
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
96
+ `max_position_embeddings` to the expected new maximum.
97
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
98
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
99
+ attention_dropout (`float`, *optional*, defaults to 0.0):
100
+ The dropout ratio for the attention probabilities.
101
+ use_mla (`bool`, *optional*, defaults to `True`): Use multi-latent attention or multi-head attention. If True,
102
+ the model will use multi-latent attention, otherwise, it will use multi-head attention.
103
+
104
+ ```python
105
+ >>> from transformers import DeepseekV2Model, DeepseekV2Config
106
+
107
+ >>> # Initializing a Deepseek-V2 style configuration
108
+ >>> configuration = DeepseekV2Config()
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "deepseek_v2"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=102400,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ moe_intermediate_size = 1407,
123
+ num_hidden_layers=30,
124
+ num_attention_heads=32,
125
+ num_key_value_heads=32,
126
+ n_shared_experts = None,
127
+ n_routed_experts = None,
128
+ ep_size = 1,
129
+ routed_scaling_factor = 1.0,
130
+ kv_lora_rank = 512,
131
+ q_lora_rank = 1536,
132
+ qk_rope_head_dim = 64,
133
+ v_head_dim = 128,
134
+ qk_nope_head_dim = 128,
135
+ topk_method = 'gready',
136
+ n_group = None,
137
+ topk_group = None,
138
+ num_experts_per_tok = None,
139
+ moe_layer_freq = 1,
140
+ first_k_dense_replace = 0,
141
+ norm_topk_prob = False,
142
+ scoring_func = 'softmax',
143
+ aux_loss_alpha = 0.001,
144
+ seq_aux = True,
145
+ hidden_act="silu",
146
+ max_position_embeddings=2048,
147
+ initializer_range=0.02,
148
+ rms_norm_eps=1e-6,
149
+ use_cache=True,
150
+ pad_token_id=None,
151
+ bos_token_id=100000,
152
+ eos_token_id=100001,
153
+ pretraining_tp=1,
154
+ tie_word_embeddings=False,
155
+ rope_theta=10000.0,
156
+ rope_scaling=None,
157
+ attention_bias=False,
158
+ attention_dropout=0.0,
159
+ use_mla=True,
160
+ **kwargs,
161
+ ):
162
+ self.vocab_size = vocab_size
163
+ self.max_position_embeddings = max_position_embeddings
164
+ self.hidden_size = hidden_size
165
+ self.intermediate_size = intermediate_size
166
+ self.moe_intermediate_size = moe_intermediate_size
167
+ self.num_hidden_layers = num_hidden_layers
168
+ self.num_attention_heads = num_attention_heads
169
+ self.n_shared_experts = n_shared_experts
170
+ self.n_routed_experts = n_routed_experts
171
+ self.ep_size = ep_size
172
+ self.routed_scaling_factor = routed_scaling_factor
173
+ self.kv_lora_rank = kv_lora_rank
174
+ self.q_lora_rank = q_lora_rank
175
+ self.qk_rope_head_dim = qk_rope_head_dim
176
+ self.v_head_dim = v_head_dim
177
+ self.qk_nope_head_dim = qk_nope_head_dim
178
+ self.topk_method = topk_method
179
+ self.n_group = n_group
180
+ self.topk_group = topk_group
181
+ self.num_experts_per_tok = num_experts_per_tok
182
+ self.moe_layer_freq = moe_layer_freq
183
+ self.first_k_dense_replace = first_k_dense_replace
184
+ self.norm_topk_prob = norm_topk_prob
185
+ self.scoring_func = scoring_func
186
+ self.aux_loss_alpha = aux_loss_alpha
187
+ self.seq_aux = seq_aux
188
+ # for backward compatibility
189
+ if num_key_value_heads is None:
190
+ num_key_value_heads = num_attention_heads
191
+
192
+ self.num_key_value_heads = num_key_value_heads
193
+ self.hidden_act = hidden_act
194
+ self.initializer_range = initializer_range
195
+ self.rms_norm_eps = float(rms_norm_eps)
196
+ self.pretraining_tp = pretraining_tp
197
+ self.use_cache = use_cache
198
+ self.rope_theta = rope_theta
199
+ self.rope_scaling = rope_scaling
200
+ self.attention_bias = attention_bias
201
+ self.attention_dropout = attention_dropout
202
+ self.use_mla = use_mla
203
+
204
+ super().__init__(
205
+ pad_token_id=pad_token_id,
206
+ bos_token_id=bos_token_id,
207
+ eos_token_id=eos_token_id,
208
+ tie_word_embeddings=tie_word_embeddings,
209
+ **kwargs,
210
+ )