xinference 1.2.0__py3-none-any.whl → 1.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +4 -7
- xinference/client/handlers.py +3 -0
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +2 -0
- xinference/core/scheduler.py +4 -7
- xinference/core/supervisor.py +114 -23
- xinference/core/worker.py +70 -4
- xinference/deploy/local.py +2 -1
- xinference/model/audio/core.py +11 -0
- xinference/model/audio/cosyvoice.py +16 -5
- xinference/model/audio/kokoro.py +139 -0
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +80 -0
- xinference/model/audio/model_spec_modelscope.json +18 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/llm/llama_cpp/core.py +21 -14
- xinference/model/llm/llm_family.json +527 -1
- xinference/model/llm/llm_family.py +4 -1
- xinference/model/llm/llm_family_modelscope.json +495 -3
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +24 -6
- xinference/model/llm/transformers/core.py +9 -1
- xinference/model/llm/transformers/qwen2_audio.py +3 -1
- xinference/model/llm/transformers/qwen2_vl.py +20 -3
- xinference/model/llm/transformers/utils.py +22 -11
- xinference/model/llm/utils.py +115 -1
- xinference/model/llm/vllm/core.py +14 -4
- xinference/model/llm/vllm/xavier/block.py +3 -4
- xinference/model/llm/vllm/xavier/block_tracker.py +71 -58
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/executor.py +18 -16
- xinference/model/llm/vllm/xavier/scheduler.py +79 -63
- xinference/model/llm/vllm/xavier/test/test_xavier.py +60 -35
- xinference/model/llm/vllm/xavier/transfer.py +53 -32
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/melo/__init__.py +0 -0
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/__init__.py +0 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/__init__.py +0 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/__init__.py +0 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +2 -0
- xinference/web/ui/build/asset-manifest.json +3 -3
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/js/{main.1eb206d1.js → main.b0936c54.js} +3 -3
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- {xinference-1.2.0.dist-info → xinference-1.2.2.dist-info}/METADATA +37 -27
- {xinference-1.2.0.dist-info → xinference-1.2.2.dist-info}/RECORD +122 -45
- xinference/web/ui/build/static/js/main.1eb206d1.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/2213d49de260e1f67c888081b18f120f5225462b829ae57c9e05a05cec83689d.json +0 -1
- /xinference/web/ui/build/static/js/{main.1eb206d1.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-1.2.0.dist-info → xinference-1.2.2.dist-info}/LICENSE +0 -0
- {xinference-1.2.0.dist-info → xinference-1.2.2.dist-info}/WHEEL +0 -0
- {xinference-1.2.0.dist-info → xinference-1.2.2.dist-info}/entry_points.txt +0 -0
- {xinference-1.2.0.dist-info → xinference-1.2.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,635 @@
|
|
|
1
|
+
# flake8: noqa: E402
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
import torch
|
|
5
|
+
from torch.nn import functional as F
|
|
6
|
+
from torch.utils.data import DataLoader
|
|
7
|
+
from torch.utils.tensorboard import SummaryWriter
|
|
8
|
+
import torch.distributed as dist
|
|
9
|
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
10
|
+
from torch.cuda.amp import autocast, GradScaler
|
|
11
|
+
from tqdm import tqdm
|
|
12
|
+
import logging
|
|
13
|
+
|
|
14
|
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
|
15
|
+
import commons
|
|
16
|
+
import utils
|
|
17
|
+
from data_utils import (
|
|
18
|
+
TextAudioSpeakerLoader,
|
|
19
|
+
TextAudioSpeakerCollate,
|
|
20
|
+
DistributedBucketSampler,
|
|
21
|
+
)
|
|
22
|
+
from models import (
|
|
23
|
+
SynthesizerTrn,
|
|
24
|
+
MultiPeriodDiscriminator,
|
|
25
|
+
DurationDiscriminator,
|
|
26
|
+
)
|
|
27
|
+
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
|
28
|
+
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
|
29
|
+
from text.symbols import symbols
|
|
30
|
+
from melo.download_utils import load_pretrain_model
|
|
31
|
+
|
|
32
|
+
torch.backends.cuda.matmul.allow_tf32 = True
|
|
33
|
+
torch.backends.cudnn.allow_tf32 = (
|
|
34
|
+
True # If encontered training problem,please try to disable TF32.
|
|
35
|
+
)
|
|
36
|
+
torch.set_float32_matmul_precision("medium")
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
torch.backends.cudnn.benchmark = True
|
|
40
|
+
torch.backends.cuda.sdp_kernel("flash")
|
|
41
|
+
torch.backends.cuda.enable_flash_sdp(True)
|
|
42
|
+
# torch.backends.cuda.enable_mem_efficient_sdp(
|
|
43
|
+
# True
|
|
44
|
+
# ) # Not available if torch version is lower than 2.0
|
|
45
|
+
torch.backends.cuda.enable_math_sdp(True)
|
|
46
|
+
global_step = 0
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def run():
|
|
50
|
+
hps = utils.get_hparams()
|
|
51
|
+
local_rank = int(os.environ["LOCAL_RANK"])
|
|
52
|
+
dist.init_process_group(
|
|
53
|
+
backend="gloo",
|
|
54
|
+
init_method="env://", # Due to some training problem,we proposed to use gloo instead of nccl.
|
|
55
|
+
rank=local_rank,
|
|
56
|
+
) # Use torchrun instead of mp.spawn
|
|
57
|
+
rank = dist.get_rank()
|
|
58
|
+
n_gpus = dist.get_world_size()
|
|
59
|
+
|
|
60
|
+
torch.manual_seed(hps.train.seed)
|
|
61
|
+
torch.cuda.set_device(rank)
|
|
62
|
+
global global_step
|
|
63
|
+
if rank == 0:
|
|
64
|
+
logger = utils.get_logger(hps.model_dir)
|
|
65
|
+
logger.info(hps)
|
|
66
|
+
utils.check_git_hash(hps.model_dir)
|
|
67
|
+
writer = SummaryWriter(log_dir=hps.model_dir)
|
|
68
|
+
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
|
69
|
+
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
|
|
70
|
+
train_sampler = DistributedBucketSampler(
|
|
71
|
+
train_dataset,
|
|
72
|
+
hps.train.batch_size,
|
|
73
|
+
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
|
|
74
|
+
num_replicas=n_gpus,
|
|
75
|
+
rank=rank,
|
|
76
|
+
shuffle=True,
|
|
77
|
+
)
|
|
78
|
+
collate_fn = TextAudioSpeakerCollate()
|
|
79
|
+
train_loader = DataLoader(
|
|
80
|
+
train_dataset,
|
|
81
|
+
num_workers=16,
|
|
82
|
+
shuffle=False,
|
|
83
|
+
pin_memory=True,
|
|
84
|
+
collate_fn=collate_fn,
|
|
85
|
+
batch_sampler=train_sampler,
|
|
86
|
+
persistent_workers=True,
|
|
87
|
+
prefetch_factor=4,
|
|
88
|
+
) # DataLoader config could be adjusted.
|
|
89
|
+
if rank == 0:
|
|
90
|
+
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
|
|
91
|
+
eval_loader = DataLoader(
|
|
92
|
+
eval_dataset,
|
|
93
|
+
num_workers=0,
|
|
94
|
+
shuffle=False,
|
|
95
|
+
batch_size=1,
|
|
96
|
+
pin_memory=True,
|
|
97
|
+
drop_last=False,
|
|
98
|
+
collate_fn=collate_fn,
|
|
99
|
+
)
|
|
100
|
+
if (
|
|
101
|
+
"use_noise_scaled_mas" in hps.model.keys()
|
|
102
|
+
and hps.model.use_noise_scaled_mas is True
|
|
103
|
+
):
|
|
104
|
+
print("Using noise scaled MAS for VITS2")
|
|
105
|
+
mas_noise_scale_initial = 0.01
|
|
106
|
+
noise_scale_delta = 2e-6
|
|
107
|
+
else:
|
|
108
|
+
print("Using normal MAS for VITS1")
|
|
109
|
+
mas_noise_scale_initial = 0.0
|
|
110
|
+
noise_scale_delta = 0.0
|
|
111
|
+
if (
|
|
112
|
+
"use_duration_discriminator" in hps.model.keys()
|
|
113
|
+
and hps.model.use_duration_discriminator is True
|
|
114
|
+
):
|
|
115
|
+
print("Using duration discriminator for VITS2")
|
|
116
|
+
net_dur_disc = DurationDiscriminator(
|
|
117
|
+
hps.model.hidden_channels,
|
|
118
|
+
hps.model.hidden_channels,
|
|
119
|
+
3,
|
|
120
|
+
0.1,
|
|
121
|
+
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
|
|
122
|
+
).cuda(rank)
|
|
123
|
+
if (
|
|
124
|
+
"use_spk_conditioned_encoder" in hps.model.keys()
|
|
125
|
+
and hps.model.use_spk_conditioned_encoder is True
|
|
126
|
+
):
|
|
127
|
+
if hps.data.n_speakers == 0:
|
|
128
|
+
raise ValueError(
|
|
129
|
+
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
|
|
130
|
+
)
|
|
131
|
+
else:
|
|
132
|
+
print("Using normal encoder for VITS1")
|
|
133
|
+
|
|
134
|
+
net_g = SynthesizerTrn(
|
|
135
|
+
len(symbols),
|
|
136
|
+
hps.data.filter_length // 2 + 1,
|
|
137
|
+
hps.train.segment_size // hps.data.hop_length,
|
|
138
|
+
n_speakers=hps.data.n_speakers,
|
|
139
|
+
mas_noise_scale_initial=mas_noise_scale_initial,
|
|
140
|
+
noise_scale_delta=noise_scale_delta,
|
|
141
|
+
**hps.model,
|
|
142
|
+
).cuda(rank)
|
|
143
|
+
|
|
144
|
+
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
|
145
|
+
optim_g = torch.optim.AdamW(
|
|
146
|
+
filter(lambda p: p.requires_grad, net_g.parameters()),
|
|
147
|
+
hps.train.learning_rate,
|
|
148
|
+
betas=hps.train.betas,
|
|
149
|
+
eps=hps.train.eps,
|
|
150
|
+
)
|
|
151
|
+
optim_d = torch.optim.AdamW(
|
|
152
|
+
net_d.parameters(),
|
|
153
|
+
hps.train.learning_rate,
|
|
154
|
+
betas=hps.train.betas,
|
|
155
|
+
eps=hps.train.eps,
|
|
156
|
+
)
|
|
157
|
+
if net_dur_disc is not None:
|
|
158
|
+
optim_dur_disc = torch.optim.AdamW(
|
|
159
|
+
net_dur_disc.parameters(),
|
|
160
|
+
hps.train.learning_rate,
|
|
161
|
+
betas=hps.train.betas,
|
|
162
|
+
eps=hps.train.eps,
|
|
163
|
+
)
|
|
164
|
+
else:
|
|
165
|
+
optim_dur_disc = None
|
|
166
|
+
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
|
167
|
+
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
|
168
|
+
|
|
169
|
+
pretrain_G, pretrain_D, pretrain_dur = load_pretrain_model()
|
|
170
|
+
hps.pretrain_G = hps.pretrain_G or pretrain_G
|
|
171
|
+
hps.pretrain_D = hps.pretrain_D or pretrain_D
|
|
172
|
+
hps.pretrain_dur = hps.pretrain_dur or pretrain_dur
|
|
173
|
+
|
|
174
|
+
if hps.pretrain_G:
|
|
175
|
+
utils.load_checkpoint(
|
|
176
|
+
hps.pretrain_G,
|
|
177
|
+
net_g,
|
|
178
|
+
None,
|
|
179
|
+
skip_optimizer=True
|
|
180
|
+
)
|
|
181
|
+
if hps.pretrain_D:
|
|
182
|
+
utils.load_checkpoint(
|
|
183
|
+
hps.pretrain_D,
|
|
184
|
+
net_d,
|
|
185
|
+
None,
|
|
186
|
+
skip_optimizer=True
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
if net_dur_disc is not None:
|
|
191
|
+
net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True)
|
|
192
|
+
if hps.pretrain_dur:
|
|
193
|
+
utils.load_checkpoint(
|
|
194
|
+
hps.pretrain_dur,
|
|
195
|
+
net_dur_disc,
|
|
196
|
+
None,
|
|
197
|
+
skip_optimizer=True
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
try:
|
|
201
|
+
if net_dur_disc is not None:
|
|
202
|
+
_, _, dur_resume_lr, epoch_str = utils.load_checkpoint(
|
|
203
|
+
utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
|
|
204
|
+
net_dur_disc,
|
|
205
|
+
optim_dur_disc,
|
|
206
|
+
skip_optimizer=hps.train.skip_optimizer
|
|
207
|
+
if "skip_optimizer" in hps.train
|
|
208
|
+
else True,
|
|
209
|
+
)
|
|
210
|
+
_, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint(
|
|
211
|
+
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"),
|
|
212
|
+
net_g,
|
|
213
|
+
optim_g,
|
|
214
|
+
skip_optimizer=hps.train.skip_optimizer
|
|
215
|
+
if "skip_optimizer" in hps.train
|
|
216
|
+
else True,
|
|
217
|
+
)
|
|
218
|
+
_, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint(
|
|
219
|
+
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"),
|
|
220
|
+
net_d,
|
|
221
|
+
optim_d,
|
|
222
|
+
skip_optimizer=hps.train.skip_optimizer
|
|
223
|
+
if "skip_optimizer" in hps.train
|
|
224
|
+
else True,
|
|
225
|
+
)
|
|
226
|
+
if not optim_g.param_groups[0].get("initial_lr"):
|
|
227
|
+
optim_g.param_groups[0]["initial_lr"] = g_resume_lr
|
|
228
|
+
if not optim_d.param_groups[0].get("initial_lr"):
|
|
229
|
+
optim_d.param_groups[0]["initial_lr"] = d_resume_lr
|
|
230
|
+
if not optim_dur_disc.param_groups[0].get("initial_lr"):
|
|
231
|
+
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
|
|
232
|
+
|
|
233
|
+
epoch_str = max(epoch_str, 1)
|
|
234
|
+
global_step = (epoch_str - 1) * len(train_loader)
|
|
235
|
+
except Exception as e:
|
|
236
|
+
print(e)
|
|
237
|
+
epoch_str = 1
|
|
238
|
+
global_step = 0
|
|
239
|
+
|
|
240
|
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
|
241
|
+
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
|
242
|
+
)
|
|
243
|
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
|
244
|
+
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
|
245
|
+
)
|
|
246
|
+
if net_dur_disc is not None:
|
|
247
|
+
scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
|
|
248
|
+
optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
|
249
|
+
)
|
|
250
|
+
else:
|
|
251
|
+
scheduler_dur_disc = None
|
|
252
|
+
scaler = GradScaler(enabled=hps.train.fp16_run)
|
|
253
|
+
|
|
254
|
+
for epoch in range(epoch_str, hps.train.epochs + 1):
|
|
255
|
+
try:
|
|
256
|
+
if rank == 0:
|
|
257
|
+
train_and_evaluate(
|
|
258
|
+
rank,
|
|
259
|
+
epoch,
|
|
260
|
+
hps,
|
|
261
|
+
[net_g, net_d, net_dur_disc],
|
|
262
|
+
[optim_g, optim_d, optim_dur_disc],
|
|
263
|
+
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
|
264
|
+
scaler,
|
|
265
|
+
[train_loader, eval_loader],
|
|
266
|
+
logger,
|
|
267
|
+
[writer, writer_eval],
|
|
268
|
+
)
|
|
269
|
+
else:
|
|
270
|
+
train_and_evaluate(
|
|
271
|
+
rank,
|
|
272
|
+
epoch,
|
|
273
|
+
hps,
|
|
274
|
+
[net_g, net_d, net_dur_disc],
|
|
275
|
+
[optim_g, optim_d, optim_dur_disc],
|
|
276
|
+
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
|
277
|
+
scaler,
|
|
278
|
+
[train_loader, None],
|
|
279
|
+
None,
|
|
280
|
+
None,
|
|
281
|
+
)
|
|
282
|
+
except Exception as e:
|
|
283
|
+
print(e)
|
|
284
|
+
torch.cuda.empty_cache()
|
|
285
|
+
scheduler_g.step()
|
|
286
|
+
scheduler_d.step()
|
|
287
|
+
if net_dur_disc is not None:
|
|
288
|
+
scheduler_dur_disc.step()
|
|
289
|
+
|
|
290
|
+
|
|
291
|
+
def train_and_evaluate(
|
|
292
|
+
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
|
293
|
+
):
|
|
294
|
+
net_g, net_d, net_dur_disc = nets
|
|
295
|
+
optim_g, optim_d, optim_dur_disc = optims
|
|
296
|
+
scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
|
|
297
|
+
train_loader, eval_loader = loaders
|
|
298
|
+
if writers is not None:
|
|
299
|
+
writer, writer_eval = writers
|
|
300
|
+
|
|
301
|
+
train_loader.batch_sampler.set_epoch(epoch)
|
|
302
|
+
global global_step
|
|
303
|
+
|
|
304
|
+
net_g.train()
|
|
305
|
+
net_d.train()
|
|
306
|
+
if net_dur_disc is not None:
|
|
307
|
+
net_dur_disc.train()
|
|
308
|
+
for batch_idx, (
|
|
309
|
+
x,
|
|
310
|
+
x_lengths,
|
|
311
|
+
spec,
|
|
312
|
+
spec_lengths,
|
|
313
|
+
y,
|
|
314
|
+
y_lengths,
|
|
315
|
+
speakers,
|
|
316
|
+
tone,
|
|
317
|
+
language,
|
|
318
|
+
bert,
|
|
319
|
+
ja_bert,
|
|
320
|
+
) in enumerate(tqdm(train_loader)):
|
|
321
|
+
if net_g.module.use_noise_scaled_mas:
|
|
322
|
+
current_mas_noise_scale = (
|
|
323
|
+
net_g.module.mas_noise_scale_initial
|
|
324
|
+
- net_g.module.noise_scale_delta * global_step
|
|
325
|
+
)
|
|
326
|
+
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
|
|
327
|
+
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
|
|
328
|
+
rank, non_blocking=True
|
|
329
|
+
)
|
|
330
|
+
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
|
331
|
+
rank, non_blocking=True
|
|
332
|
+
)
|
|
333
|
+
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
|
|
334
|
+
rank, non_blocking=True
|
|
335
|
+
)
|
|
336
|
+
speakers = speakers.cuda(rank, non_blocking=True)
|
|
337
|
+
tone = tone.cuda(rank, non_blocking=True)
|
|
338
|
+
language = language.cuda(rank, non_blocking=True)
|
|
339
|
+
bert = bert.cuda(rank, non_blocking=True)
|
|
340
|
+
ja_bert = ja_bert.cuda(rank, non_blocking=True)
|
|
341
|
+
|
|
342
|
+
with autocast(enabled=hps.train.fp16_run):
|
|
343
|
+
(
|
|
344
|
+
y_hat,
|
|
345
|
+
l_length,
|
|
346
|
+
attn,
|
|
347
|
+
ids_slice,
|
|
348
|
+
x_mask,
|
|
349
|
+
z_mask,
|
|
350
|
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
|
351
|
+
(hidden_x, logw, logw_),
|
|
352
|
+
) = net_g(
|
|
353
|
+
x,
|
|
354
|
+
x_lengths,
|
|
355
|
+
spec,
|
|
356
|
+
spec_lengths,
|
|
357
|
+
speakers,
|
|
358
|
+
tone,
|
|
359
|
+
language,
|
|
360
|
+
bert,
|
|
361
|
+
ja_bert,
|
|
362
|
+
)
|
|
363
|
+
mel = spec_to_mel_torch(
|
|
364
|
+
spec,
|
|
365
|
+
hps.data.filter_length,
|
|
366
|
+
hps.data.n_mel_channels,
|
|
367
|
+
hps.data.sampling_rate,
|
|
368
|
+
hps.data.mel_fmin,
|
|
369
|
+
hps.data.mel_fmax,
|
|
370
|
+
)
|
|
371
|
+
y_mel = commons.slice_segments(
|
|
372
|
+
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
|
373
|
+
)
|
|
374
|
+
y_hat_mel = mel_spectrogram_torch(
|
|
375
|
+
y_hat.squeeze(1),
|
|
376
|
+
hps.data.filter_length,
|
|
377
|
+
hps.data.n_mel_channels,
|
|
378
|
+
hps.data.sampling_rate,
|
|
379
|
+
hps.data.hop_length,
|
|
380
|
+
hps.data.win_length,
|
|
381
|
+
hps.data.mel_fmin,
|
|
382
|
+
hps.data.mel_fmax,
|
|
383
|
+
)
|
|
384
|
+
|
|
385
|
+
y = commons.slice_segments(
|
|
386
|
+
y, ids_slice * hps.data.hop_length, hps.train.segment_size
|
|
387
|
+
) # slice
|
|
388
|
+
|
|
389
|
+
# Discriminator
|
|
390
|
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
|
391
|
+
with autocast(enabled=False):
|
|
392
|
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
|
393
|
+
y_d_hat_r, y_d_hat_g
|
|
394
|
+
)
|
|
395
|
+
loss_disc_all = loss_disc
|
|
396
|
+
if net_dur_disc is not None:
|
|
397
|
+
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
|
|
398
|
+
hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach()
|
|
399
|
+
)
|
|
400
|
+
with autocast(enabled=False):
|
|
401
|
+
# TODO: I think need to mean using the mask, but for now, just mean all
|
|
402
|
+
(
|
|
403
|
+
loss_dur_disc,
|
|
404
|
+
losses_dur_disc_r,
|
|
405
|
+
losses_dur_disc_g,
|
|
406
|
+
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
|
|
407
|
+
loss_dur_disc_all = loss_dur_disc
|
|
408
|
+
optim_dur_disc.zero_grad()
|
|
409
|
+
scaler.scale(loss_dur_disc_all).backward()
|
|
410
|
+
scaler.unscale_(optim_dur_disc)
|
|
411
|
+
commons.clip_grad_value_(net_dur_disc.parameters(), None)
|
|
412
|
+
scaler.step(optim_dur_disc)
|
|
413
|
+
|
|
414
|
+
optim_d.zero_grad()
|
|
415
|
+
scaler.scale(loss_disc_all).backward()
|
|
416
|
+
scaler.unscale_(optim_d)
|
|
417
|
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
|
418
|
+
scaler.step(optim_d)
|
|
419
|
+
|
|
420
|
+
with autocast(enabled=hps.train.fp16_run):
|
|
421
|
+
# Generator
|
|
422
|
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
|
423
|
+
if net_dur_disc is not None:
|
|
424
|
+
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_)
|
|
425
|
+
with autocast(enabled=False):
|
|
426
|
+
loss_dur = torch.sum(l_length.float())
|
|
427
|
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
|
428
|
+
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
|
429
|
+
|
|
430
|
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
|
431
|
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
|
432
|
+
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
|
433
|
+
if net_dur_disc is not None:
|
|
434
|
+
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
|
|
435
|
+
loss_gen_all += loss_dur_gen
|
|
436
|
+
optim_g.zero_grad()
|
|
437
|
+
scaler.scale(loss_gen_all).backward()
|
|
438
|
+
scaler.unscale_(optim_g)
|
|
439
|
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
|
440
|
+
scaler.step(optim_g)
|
|
441
|
+
scaler.update()
|
|
442
|
+
|
|
443
|
+
if rank == 0:
|
|
444
|
+
if global_step % hps.train.log_interval == 0:
|
|
445
|
+
lr = optim_g.param_groups[0]["lr"]
|
|
446
|
+
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
|
447
|
+
logger.info(
|
|
448
|
+
"Train Epoch: {} [{:.0f}%]".format(
|
|
449
|
+
epoch, 100.0 * batch_idx / len(train_loader)
|
|
450
|
+
)
|
|
451
|
+
)
|
|
452
|
+
logger.info([x.item() for x in losses] + [global_step, lr])
|
|
453
|
+
|
|
454
|
+
scalar_dict = {
|
|
455
|
+
"loss/g/total": loss_gen_all,
|
|
456
|
+
"loss/d/total": loss_disc_all,
|
|
457
|
+
"learning_rate": lr,
|
|
458
|
+
"grad_norm_d": grad_norm_d,
|
|
459
|
+
"grad_norm_g": grad_norm_g,
|
|
460
|
+
}
|
|
461
|
+
scalar_dict.update(
|
|
462
|
+
{
|
|
463
|
+
"loss/g/fm": loss_fm,
|
|
464
|
+
"loss/g/mel": loss_mel,
|
|
465
|
+
"loss/g/dur": loss_dur,
|
|
466
|
+
"loss/g/kl": loss_kl,
|
|
467
|
+
}
|
|
468
|
+
)
|
|
469
|
+
scalar_dict.update(
|
|
470
|
+
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
|
471
|
+
)
|
|
472
|
+
scalar_dict.update(
|
|
473
|
+
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
|
|
474
|
+
)
|
|
475
|
+
scalar_dict.update(
|
|
476
|
+
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
|
|
477
|
+
)
|
|
478
|
+
|
|
479
|
+
image_dict = {
|
|
480
|
+
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
|
481
|
+
y_mel[0].data.cpu().numpy()
|
|
482
|
+
),
|
|
483
|
+
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
|
484
|
+
y_hat_mel[0].data.cpu().numpy()
|
|
485
|
+
),
|
|
486
|
+
"all/mel": utils.plot_spectrogram_to_numpy(
|
|
487
|
+
mel[0].data.cpu().numpy()
|
|
488
|
+
),
|
|
489
|
+
"all/attn": utils.plot_alignment_to_numpy(
|
|
490
|
+
attn[0, 0].data.cpu().numpy()
|
|
491
|
+
),
|
|
492
|
+
}
|
|
493
|
+
utils.summarize(
|
|
494
|
+
writer=writer,
|
|
495
|
+
global_step=global_step,
|
|
496
|
+
images=image_dict,
|
|
497
|
+
scalars=scalar_dict,
|
|
498
|
+
)
|
|
499
|
+
|
|
500
|
+
if global_step % hps.train.eval_interval == 0:
|
|
501
|
+
evaluate(hps, net_g, eval_loader, writer_eval)
|
|
502
|
+
utils.save_checkpoint(
|
|
503
|
+
net_g,
|
|
504
|
+
optim_g,
|
|
505
|
+
hps.train.learning_rate,
|
|
506
|
+
epoch,
|
|
507
|
+
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
|
508
|
+
)
|
|
509
|
+
utils.save_checkpoint(
|
|
510
|
+
net_d,
|
|
511
|
+
optim_d,
|
|
512
|
+
hps.train.learning_rate,
|
|
513
|
+
epoch,
|
|
514
|
+
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
|
515
|
+
)
|
|
516
|
+
if net_dur_disc is not None:
|
|
517
|
+
utils.save_checkpoint(
|
|
518
|
+
net_dur_disc,
|
|
519
|
+
optim_dur_disc,
|
|
520
|
+
hps.train.learning_rate,
|
|
521
|
+
epoch,
|
|
522
|
+
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
|
|
523
|
+
)
|
|
524
|
+
keep_ckpts = getattr(hps.train, "keep_ckpts", 5)
|
|
525
|
+
if keep_ckpts > 0:
|
|
526
|
+
utils.clean_checkpoints(
|
|
527
|
+
path_to_models=hps.model_dir,
|
|
528
|
+
n_ckpts_to_keep=keep_ckpts,
|
|
529
|
+
sort_by_time=True,
|
|
530
|
+
)
|
|
531
|
+
|
|
532
|
+
global_step += 1
|
|
533
|
+
|
|
534
|
+
if rank == 0:
|
|
535
|
+
logger.info("====> Epoch: {}".format(epoch))
|
|
536
|
+
torch.cuda.empty_cache()
|
|
537
|
+
|
|
538
|
+
|
|
539
|
+
def evaluate(hps, generator, eval_loader, writer_eval):
|
|
540
|
+
generator.eval()
|
|
541
|
+
image_dict = {}
|
|
542
|
+
audio_dict = {}
|
|
543
|
+
print("Evaluating ...")
|
|
544
|
+
with torch.no_grad():
|
|
545
|
+
for batch_idx, (
|
|
546
|
+
x,
|
|
547
|
+
x_lengths,
|
|
548
|
+
spec,
|
|
549
|
+
spec_lengths,
|
|
550
|
+
y,
|
|
551
|
+
y_lengths,
|
|
552
|
+
speakers,
|
|
553
|
+
tone,
|
|
554
|
+
language,
|
|
555
|
+
bert,
|
|
556
|
+
ja_bert,
|
|
557
|
+
) in enumerate(eval_loader):
|
|
558
|
+
x, x_lengths = x.cuda(), x_lengths.cuda()
|
|
559
|
+
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
|
|
560
|
+
y, y_lengths = y.cuda(), y_lengths.cuda()
|
|
561
|
+
speakers = speakers.cuda()
|
|
562
|
+
bert = bert.cuda()
|
|
563
|
+
ja_bert = ja_bert.cuda()
|
|
564
|
+
tone = tone.cuda()
|
|
565
|
+
language = language.cuda()
|
|
566
|
+
for use_sdp in [True, False]:
|
|
567
|
+
y_hat, attn, mask, *_ = generator.module.infer(
|
|
568
|
+
x,
|
|
569
|
+
x_lengths,
|
|
570
|
+
speakers,
|
|
571
|
+
tone,
|
|
572
|
+
language,
|
|
573
|
+
bert,
|
|
574
|
+
ja_bert,
|
|
575
|
+
y=spec,
|
|
576
|
+
max_len=1000,
|
|
577
|
+
sdp_ratio=0.0 if not use_sdp else 1.0,
|
|
578
|
+
)
|
|
579
|
+
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
|
580
|
+
|
|
581
|
+
mel = spec_to_mel_torch(
|
|
582
|
+
spec,
|
|
583
|
+
hps.data.filter_length,
|
|
584
|
+
hps.data.n_mel_channels,
|
|
585
|
+
hps.data.sampling_rate,
|
|
586
|
+
hps.data.mel_fmin,
|
|
587
|
+
hps.data.mel_fmax,
|
|
588
|
+
)
|
|
589
|
+
y_hat_mel = mel_spectrogram_torch(
|
|
590
|
+
y_hat.squeeze(1).float(),
|
|
591
|
+
hps.data.filter_length,
|
|
592
|
+
hps.data.n_mel_channels,
|
|
593
|
+
hps.data.sampling_rate,
|
|
594
|
+
hps.data.hop_length,
|
|
595
|
+
hps.data.win_length,
|
|
596
|
+
hps.data.mel_fmin,
|
|
597
|
+
hps.data.mel_fmax,
|
|
598
|
+
)
|
|
599
|
+
image_dict.update(
|
|
600
|
+
{
|
|
601
|
+
f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
|
602
|
+
y_hat_mel[0].cpu().numpy()
|
|
603
|
+
)
|
|
604
|
+
}
|
|
605
|
+
)
|
|
606
|
+
audio_dict.update(
|
|
607
|
+
{
|
|
608
|
+
f"gen/audio_{batch_idx}_{use_sdp}": y_hat[
|
|
609
|
+
0, :, : y_hat_lengths[0]
|
|
610
|
+
]
|
|
611
|
+
}
|
|
612
|
+
)
|
|
613
|
+
image_dict.update(
|
|
614
|
+
{
|
|
615
|
+
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
|
616
|
+
mel[0].cpu().numpy()
|
|
617
|
+
)
|
|
618
|
+
}
|
|
619
|
+
)
|
|
620
|
+
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]})
|
|
621
|
+
|
|
622
|
+
utils.summarize(
|
|
623
|
+
writer=writer_eval,
|
|
624
|
+
global_step=global_step,
|
|
625
|
+
images=image_dict,
|
|
626
|
+
audios=audio_dict,
|
|
627
|
+
audio_sampling_rate=hps.data.sampling_rate,
|
|
628
|
+
)
|
|
629
|
+
generator.train()
|
|
630
|
+
print('Evauate done')
|
|
631
|
+
torch.cuda.empty_cache()
|
|
632
|
+
|
|
633
|
+
|
|
634
|
+
if __name__ == "__main__":
|
|
635
|
+
run()
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
CONFIG=$1
|
|
2
|
+
GPUS=$2
|
|
3
|
+
MODEL_NAME=$(basename "$(dirname $CONFIG)")
|
|
4
|
+
|
|
5
|
+
PORT=10902
|
|
6
|
+
|
|
7
|
+
while : # auto-resume: the code sometimes crash due to bug of gloo on some gpus
|
|
8
|
+
do
|
|
9
|
+
torchrun --nproc_per_node=$GPUS \
|
|
10
|
+
--master_port=$PORT \
|
|
11
|
+
train.py --c $CONFIG --model $MODEL_NAME
|
|
12
|
+
|
|
13
|
+
for PID in $(ps -aux | grep $CONFIG | grep python | awk '{print $2}')
|
|
14
|
+
do
|
|
15
|
+
echo $PID
|
|
16
|
+
kill -9 $PID
|
|
17
|
+
done
|
|
18
|
+
sleep 30
|
|
19
|
+
done
|