xinference 1.0.1__py3-none-any.whl → 1.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +2 -0
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +28 -6
- xinference/core/utils.py +10 -6
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/core.py +10 -0
- xinference/model/audio/cosyvoice.py +25 -3
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +36 -111
- xinference/model/audio/model_spec.json +27 -3
- xinference/model/audio/model_spec_modelscope.json +18 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/embedding/core.py +203 -142
- xinference/model/embedding/model_spec.json +7 -0
- xinference/model/embedding/model_spec_modelscope.json +8 -0
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +127 -4
- xinference/model/image/model_spec_modelscope.json +130 -4
- xinference/model/image/stable_diffusion/core.py +45 -13
- xinference/model/llm/__init__.py +2 -2
- xinference/model/llm/llm_family.json +219 -53
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +167 -20
- xinference/model/llm/mlx/core.py +287 -51
- xinference/model/llm/sglang/core.py +1 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/core.py +1 -0
- xinference/model/llm/transformers/qwen2_vl.py +2 -0
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +5 -1
- xinference/model/llm/vllm/core.py +16 -2
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +94 -83
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +63 -20
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +1 -26
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1 -1
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +7 -13
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +2 -2
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +117 -89
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +11 -28
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/web/ui/build/asset-manifest.json +3 -3
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/js/{main.2f269bb3.js → main.4eb4ee80.js} +3 -3
- xinference/web/ui/build/static/js/main.4eb4ee80.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/8c5eeb02f772d02cbe8b89c05428d0dd41a97866f75f7dc1c2164a67f5a1cf98.json +1 -0
- {xinference-1.0.1.dist-info → xinference-1.1.1.dist-info}/METADATA +41 -17
- {xinference-1.0.1.dist-info → xinference-1.1.1.dist-info}/RECORD +160 -88
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/cosyvoice/flow/__init__.py +0 -0
- xinference/thirdparty/cosyvoice/hifigan/__init__.py +0 -0
- xinference/thirdparty/cosyvoice/llm/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +0 -943
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -95
- xinference/thirdparty/fish_speech/tools/webui.py +0 -548
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.4eb4ee80.js.LICENSE.txt} +0 -0
- {xinference-1.0.1.dist-info → xinference-1.1.1.dist-info}/LICENSE +0 -0
- {xinference-1.0.1.dist-info → xinference-1.1.1.dist-info}/WHEEL +0 -0
- {xinference-1.0.1.dist-info → xinference-1.1.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.0.1.dist-info → xinference-1.1.1.dist-info}/top_level.txt +0 -0
|
@@ -15,6 +15,7 @@ import torch
|
|
|
15
15
|
import numpy as np
|
|
16
16
|
import threading
|
|
17
17
|
import time
|
|
18
|
+
from torch.nn import functional as F
|
|
18
19
|
from contextlib import nullcontext
|
|
19
20
|
import uuid
|
|
20
21
|
from cosyvoice.utils.common import fade_in_out
|
|
@@ -25,100 +26,134 @@ class CosyVoiceModel:
|
|
|
25
26
|
def __init__(self,
|
|
26
27
|
llm: torch.nn.Module,
|
|
27
28
|
flow: torch.nn.Module,
|
|
28
|
-
hift: torch.nn.Module
|
|
29
|
+
hift: torch.nn.Module,
|
|
30
|
+
fp16: bool):
|
|
29
31
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
30
32
|
self.llm = llm
|
|
31
33
|
self.flow = flow
|
|
32
34
|
self.hift = hift
|
|
33
|
-
self.
|
|
34
|
-
self.
|
|
35
|
+
self.fp16 = fp16
|
|
36
|
+
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
|
37
|
+
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
|
35
38
|
self.token_overlap_len = 20
|
|
39
|
+
# here we fix set flow.decoder.estimator.static_chunk_size = 0 for compatibability
|
|
40
|
+
self.flow.decoder.estimator.static_chunk_size = 0
|
|
36
41
|
# mel fade in out
|
|
37
|
-
self.mel_overlap_len =
|
|
42
|
+
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
|
38
43
|
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
|
39
44
|
# hift cache
|
|
40
45
|
self.mel_cache_len = 20
|
|
41
46
|
self.source_cache_len = int(self.mel_cache_len * 256)
|
|
47
|
+
# speech fade in out
|
|
48
|
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
|
42
49
|
# rtf and decoding related
|
|
43
50
|
self.stream_scale_factor = 1
|
|
44
51
|
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
|
45
52
|
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
46
|
-
self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
47
53
|
self.lock = threading.Lock()
|
|
48
54
|
# dict used to store session related variable
|
|
49
55
|
self.tts_speech_token_dict = {}
|
|
50
56
|
self.llm_end_dict = {}
|
|
51
57
|
self.mel_overlap_dict = {}
|
|
58
|
+
self.flow_cache_dict = {}
|
|
52
59
|
self.hift_cache_dict = {}
|
|
53
60
|
|
|
54
61
|
def load(self, llm_model, flow_model, hift_model):
|
|
55
|
-
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
|
62
|
+
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
|
56
63
|
self.llm.to(self.device).eval()
|
|
57
|
-
self.
|
|
58
|
-
|
|
64
|
+
if self.fp16 is True:
|
|
65
|
+
self.llm.half()
|
|
66
|
+
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
|
|
59
67
|
self.flow.to(self.device).eval()
|
|
60
|
-
|
|
68
|
+
# in case hift_model is a hifigan model
|
|
69
|
+
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
|
|
70
|
+
self.hift.load_state_dict(hift_state_dict, strict=True)
|
|
61
71
|
self.hift.to(self.device).eval()
|
|
62
72
|
|
|
63
|
-
def load_jit(self, llm_text_encoder_model, llm_llm_model):
|
|
64
|
-
|
|
73
|
+
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
|
|
74
|
+
assert self.fp16 is True, "we only provide fp16 jit model, set fp16=True if you want to use jit model"
|
|
75
|
+
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
|
|
65
76
|
self.llm.text_encoder = llm_text_encoder
|
|
66
|
-
llm_llm = torch.jit.load(llm_llm_model)
|
|
77
|
+
llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
|
|
67
78
|
self.llm.llm = llm_llm
|
|
79
|
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
|
80
|
+
self.flow.encoder = flow_encoder
|
|
81
|
+
|
|
82
|
+
def load_onnx(self, flow_decoder_estimator_model):
|
|
83
|
+
import onnxruntime
|
|
84
|
+
option = onnxruntime.SessionOptions()
|
|
85
|
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
86
|
+
option.intra_op_num_threads = 1
|
|
87
|
+
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
|
88
|
+
del self.flow.decoder.estimator
|
|
89
|
+
self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
|
|
68
90
|
|
|
69
91
|
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
|
92
|
+
if self.fp16 is True:
|
|
93
|
+
llm_embedding = llm_embedding.half()
|
|
70
94
|
with self.llm_context:
|
|
71
95
|
for i in self.llm.inference(text=text.to(self.device),
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
sampling=25,
|
|
79
|
-
max_token_text_ratio=30,
|
|
80
|
-
min_token_text_ratio=3):
|
|
96
|
+
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
|
97
|
+
prompt_text=prompt_text.to(self.device),
|
|
98
|
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
|
99
|
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
|
100
|
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
101
|
+
embedding=llm_embedding.to(self.device)):
|
|
81
102
|
self.tts_speech_token_dict[uuid].append(i)
|
|
82
103
|
self.llm_end_dict[uuid] = True
|
|
83
104
|
|
|
84
|
-
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False):
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
105
|
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
|
106
|
+
tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
|
|
107
|
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
|
108
|
+
prompt_token=prompt_token.to(self.device),
|
|
109
|
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
110
|
+
prompt_feat=prompt_feat.to(self.device),
|
|
111
|
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
|
112
|
+
embedding=embedding.to(self.device),
|
|
113
|
+
flow_cache=self.flow_cache_dict[uuid])
|
|
114
|
+
self.flow_cache_dict[uuid] = flow_cache
|
|
115
|
+
|
|
116
|
+
# mel overlap fade in out
|
|
117
|
+
if self.mel_overlap_dict[uuid].shape[2] != 0:
|
|
118
|
+
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
|
119
|
+
# append hift cache
|
|
120
|
+
if self.hift_cache_dict[uuid] is not None:
|
|
121
|
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
|
122
|
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
|
123
|
+
else:
|
|
124
|
+
hift_cache_source = torch.zeros(1, 1, 0)
|
|
125
|
+
# keep overlap mel and hift cache
|
|
126
|
+
if finalize is False:
|
|
127
|
+
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
|
128
|
+
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
|
129
|
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
|
130
|
+
if self.hift_cache_dict[uuid] is not None:
|
|
131
|
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
|
132
|
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
|
133
|
+
'source': tts_source[:, :, -self.source_cache_len:],
|
|
134
|
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
|
135
|
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
|
136
|
+
else:
|
|
137
|
+
if speed != 1.0:
|
|
138
|
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
|
139
|
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
|
140
|
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
|
97
141
|
if self.hift_cache_dict[uuid] is not None:
|
|
98
|
-
|
|
99
|
-
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
|
100
|
-
else:
|
|
101
|
-
hift_cache_source = torch.zeros(1, 1, 0)
|
|
102
|
-
# keep overlap mel and hift cache
|
|
103
|
-
if finalize is False:
|
|
104
|
-
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
|
105
|
-
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
|
106
|
-
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
|
107
|
-
self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]}
|
|
108
|
-
tts_speech = tts_speech[:, :-self.source_cache_len]
|
|
109
|
-
else:
|
|
110
|
-
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
|
142
|
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
|
111
143
|
return tts_speech
|
|
112
144
|
|
|
113
|
-
def
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
145
|
+
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
|
146
|
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
|
147
|
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
|
148
|
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
|
149
|
+
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
|
118
150
|
# this_uuid is used to track variables related to this inference thread
|
|
119
151
|
this_uuid = str(uuid.uuid1())
|
|
120
152
|
with self.lock:
|
|
121
|
-
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid]
|
|
153
|
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
|
154
|
+
self.hift_cache_dict[this_uuid] = None
|
|
155
|
+
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
|
156
|
+
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
|
122
157
|
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
|
123
158
|
p.start()
|
|
124
159
|
if stream is True:
|
|
@@ -126,15 +161,15 @@ class CosyVoiceModel:
|
|
|
126
161
|
while True:
|
|
127
162
|
time.sleep(0.1)
|
|
128
163
|
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
|
129
|
-
this_tts_speech_token = torch.
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
yield
|
|
164
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
|
165
|
+
.unsqueeze(dim=0)
|
|
166
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
167
|
+
prompt_token=flow_prompt_speech_token,
|
|
168
|
+
prompt_feat=prompt_speech_feat,
|
|
169
|
+
embedding=flow_embedding,
|
|
170
|
+
uuid=this_uuid,
|
|
171
|
+
finalize=False)
|
|
172
|
+
yield {'tts_speech': this_tts_speech.cpu()}
|
|
138
173
|
with self.lock:
|
|
139
174
|
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
|
140
175
|
# increase token_hop_len for better speech quality
|
|
@@ -143,31 +178,246 @@ class CosyVoiceModel:
|
|
|
143
178
|
break
|
|
144
179
|
p.join()
|
|
145
180
|
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
|
146
|
-
this_tts_speech_token = torch.
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
finalize=True)
|
|
181
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
|
182
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
183
|
+
prompt_token=flow_prompt_speech_token,
|
|
184
|
+
prompt_feat=prompt_speech_feat,
|
|
185
|
+
embedding=flow_embedding,
|
|
186
|
+
uuid=this_uuid,
|
|
187
|
+
finalize=True)
|
|
154
188
|
yield {'tts_speech': this_tts_speech.cpu()}
|
|
155
189
|
else:
|
|
156
190
|
# deal with all tokens
|
|
157
191
|
p.join()
|
|
158
|
-
this_tts_speech_token = torch.
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
192
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
|
193
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
194
|
+
prompt_token=flow_prompt_speech_token,
|
|
195
|
+
prompt_feat=prompt_speech_feat,
|
|
196
|
+
embedding=flow_embedding,
|
|
197
|
+
uuid=this_uuid,
|
|
198
|
+
finalize=True,
|
|
199
|
+
speed=speed)
|
|
166
200
|
yield {'tts_speech': this_tts_speech.cpu()}
|
|
167
201
|
with self.lock:
|
|
168
202
|
self.tts_speech_token_dict.pop(this_uuid)
|
|
169
203
|
self.llm_end_dict.pop(this_uuid)
|
|
170
204
|
self.mel_overlap_dict.pop(this_uuid)
|
|
171
205
|
self.hift_cache_dict.pop(this_uuid)
|
|
172
|
-
|
|
173
|
-
|
|
206
|
+
self.flow_cache_dict.pop(this_uuid)
|
|
207
|
+
|
|
208
|
+
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
|
|
209
|
+
# this_uuid is used to track variables related to this inference thread
|
|
210
|
+
this_uuid = str(uuid.uuid1())
|
|
211
|
+
with self.lock:
|
|
212
|
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
|
|
213
|
+
self.hift_cache_dict[this_uuid] = None
|
|
214
|
+
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
|
215
|
+
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
|
216
|
+
if stream is True:
|
|
217
|
+
token_hop_len = self.token_min_hop_len
|
|
218
|
+
while True:
|
|
219
|
+
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
|
220
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
|
221
|
+
.unsqueeze(dim=0)
|
|
222
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
223
|
+
prompt_token=flow_prompt_speech_token,
|
|
224
|
+
prompt_feat=prompt_speech_feat,
|
|
225
|
+
embedding=flow_embedding,
|
|
226
|
+
uuid=this_uuid,
|
|
227
|
+
finalize=False)
|
|
228
|
+
yield {'tts_speech': this_tts_speech.cpu()}
|
|
229
|
+
with self.lock:
|
|
230
|
+
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
|
231
|
+
# increase token_hop_len for better speech quality
|
|
232
|
+
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
|
233
|
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
|
234
|
+
break
|
|
235
|
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
|
236
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
|
237
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
238
|
+
prompt_token=flow_prompt_speech_token,
|
|
239
|
+
prompt_feat=prompt_speech_feat,
|
|
240
|
+
embedding=flow_embedding,
|
|
241
|
+
uuid=this_uuid,
|
|
242
|
+
finalize=True)
|
|
243
|
+
yield {'tts_speech': this_tts_speech.cpu()}
|
|
244
|
+
else:
|
|
245
|
+
# deal with all tokens
|
|
246
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
|
247
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
248
|
+
prompt_token=flow_prompt_speech_token,
|
|
249
|
+
prompt_feat=prompt_speech_feat,
|
|
250
|
+
embedding=flow_embedding,
|
|
251
|
+
uuid=this_uuid,
|
|
252
|
+
finalize=True,
|
|
253
|
+
speed=speed)
|
|
254
|
+
yield {'tts_speech': this_tts_speech.cpu()}
|
|
255
|
+
with self.lock:
|
|
256
|
+
self.tts_speech_token_dict.pop(this_uuid)
|
|
257
|
+
self.llm_end_dict.pop(this_uuid)
|
|
258
|
+
self.mel_overlap_dict.pop(this_uuid)
|
|
259
|
+
self.hift_cache_dict.pop(this_uuid)
|
|
260
|
+
|
|
261
|
+
|
|
262
|
+
class CosyVoice2Model:
|
|
263
|
+
|
|
264
|
+
def __init__(self,
|
|
265
|
+
llm: torch.nn.Module,
|
|
266
|
+
flow: torch.nn.Module,
|
|
267
|
+
hift: torch.nn.Module):
|
|
268
|
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
269
|
+
self.llm = llm
|
|
270
|
+
self.flow = flow
|
|
271
|
+
self.hift = hift
|
|
272
|
+
self.token_hop_len = 2 * self.flow.input_frame_rate
|
|
273
|
+
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
|
|
274
|
+
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
|
|
275
|
+
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
|
|
276
|
+
# hift cache
|
|
277
|
+
self.mel_cache_len = 8
|
|
278
|
+
self.source_cache_len = int(self.mel_cache_len * 480)
|
|
279
|
+
# speech fade in out
|
|
280
|
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
|
281
|
+
# rtf and decoding related
|
|
282
|
+
self.stream_scale_factor = 1
|
|
283
|
+
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
284
|
+
self.lock = threading.Lock()
|
|
285
|
+
# dict used to store session related variable
|
|
286
|
+
self.tts_speech_token_dict = {}
|
|
287
|
+
self.llm_end_dict = {}
|
|
288
|
+
self.hift_cache_dict = {}
|
|
289
|
+
|
|
290
|
+
def load(self, llm_model, flow_model, hift_model):
|
|
291
|
+
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
|
292
|
+
self.llm.to(self.device).eval()
|
|
293
|
+
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
|
|
294
|
+
self.flow.to(self.device).eval()
|
|
295
|
+
self.flow.decoder.fp16 = False
|
|
296
|
+
# in case hift_model is a hifigan model
|
|
297
|
+
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
|
|
298
|
+
self.hift.load_state_dict(hift_state_dict, strict=True)
|
|
299
|
+
self.hift.to(self.device).eval()
|
|
300
|
+
|
|
301
|
+
def load_jit(self, flow_encoder_model):
|
|
302
|
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
|
303
|
+
self.flow.encoder = flow_encoder
|
|
304
|
+
|
|
305
|
+
def load_onnx(self, flow_decoder_estimator_model):
|
|
306
|
+
import onnxruntime
|
|
307
|
+
option = onnxruntime.SessionOptions()
|
|
308
|
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
309
|
+
option.intra_op_num_threads = 1
|
|
310
|
+
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
|
311
|
+
del self.flow.decoder.estimator
|
|
312
|
+
self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
|
|
313
|
+
|
|
314
|
+
def load_trt(self, flow_decoder_estimator_model):
|
|
315
|
+
del self.flow.decoder.estimator
|
|
316
|
+
import tensorrt as trt
|
|
317
|
+
with open(flow_decoder_estimator_model, 'rb') as f:
|
|
318
|
+
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
|
319
|
+
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
|
|
320
|
+
self.flow.decoder.fp16 = True
|
|
321
|
+
|
|
322
|
+
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
|
323
|
+
with self.llm_context:
|
|
324
|
+
for i in self.llm.inference(text=text.to(self.device),
|
|
325
|
+
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
|
326
|
+
prompt_text=prompt_text.to(self.device),
|
|
327
|
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
|
328
|
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
|
329
|
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
330
|
+
embedding=llm_embedding.to(self.device)):
|
|
331
|
+
self.tts_speech_token_dict[uuid].append(i)
|
|
332
|
+
self.llm_end_dict[uuid] = True
|
|
333
|
+
|
|
334
|
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
|
|
335
|
+
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
|
336
|
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
|
337
|
+
prompt_token=prompt_token.to(self.device),
|
|
338
|
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
339
|
+
prompt_feat=prompt_feat.to(self.device),
|
|
340
|
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
|
341
|
+
embedding=embedding.to(self.device),
|
|
342
|
+
finalize=finalize)
|
|
343
|
+
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
|
344
|
+
# append hift cache
|
|
345
|
+
if self.hift_cache_dict[uuid] is not None:
|
|
346
|
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
|
347
|
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
|
348
|
+
else:
|
|
349
|
+
hift_cache_source = torch.zeros(1, 1, 0)
|
|
350
|
+
# keep overlap mel and hift cache
|
|
351
|
+
if finalize is False:
|
|
352
|
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
|
353
|
+
if self.hift_cache_dict[uuid] is not None:
|
|
354
|
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
|
355
|
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
|
356
|
+
'source': tts_source[:, :, -self.source_cache_len:],
|
|
357
|
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
|
358
|
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
|
359
|
+
else:
|
|
360
|
+
if speed != 1.0:
|
|
361
|
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
|
362
|
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
|
363
|
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
|
364
|
+
if self.hift_cache_dict[uuid] is not None:
|
|
365
|
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
|
366
|
+
return tts_speech
|
|
367
|
+
|
|
368
|
+
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
|
369
|
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
|
370
|
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
|
371
|
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
|
372
|
+
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
|
373
|
+
# this_uuid is used to track variables related to this inference thread
|
|
374
|
+
this_uuid = str(uuid.uuid1())
|
|
375
|
+
with self.lock:
|
|
376
|
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
|
377
|
+
self.hift_cache_dict[this_uuid] = None
|
|
378
|
+
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
|
379
|
+
p.start()
|
|
380
|
+
if stream is True:
|
|
381
|
+
token_offset = 0
|
|
382
|
+
while True:
|
|
383
|
+
time.sleep(0.1)
|
|
384
|
+
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
|
|
385
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
|
386
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
387
|
+
prompt_token=flow_prompt_speech_token,
|
|
388
|
+
prompt_feat=prompt_speech_feat,
|
|
389
|
+
embedding=flow_embedding,
|
|
390
|
+
uuid=this_uuid,
|
|
391
|
+
token_offset=token_offset,
|
|
392
|
+
finalize=False)
|
|
393
|
+
token_offset += self.token_hop_len
|
|
394
|
+
yield {'tts_speech': this_tts_speech.cpu()}
|
|
395
|
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
|
|
396
|
+
break
|
|
397
|
+
p.join()
|
|
398
|
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
|
399
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
|
400
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
401
|
+
prompt_token=flow_prompt_speech_token,
|
|
402
|
+
prompt_feat=prompt_speech_feat,
|
|
403
|
+
embedding=flow_embedding,
|
|
404
|
+
uuid=this_uuid,
|
|
405
|
+
token_offset=token_offset,
|
|
406
|
+
finalize=True)
|
|
407
|
+
yield {'tts_speech': this_tts_speech.cpu()}
|
|
408
|
+
else:
|
|
409
|
+
# deal with all tokens
|
|
410
|
+
p.join()
|
|
411
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
|
412
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
413
|
+
prompt_token=flow_prompt_speech_token,
|
|
414
|
+
prompt_feat=prompt_speech_feat,
|
|
415
|
+
embedding=flow_embedding,
|
|
416
|
+
uuid=this_uuid,
|
|
417
|
+
token_offset=0,
|
|
418
|
+
finalize=True,
|
|
419
|
+
speed=speed)
|
|
420
|
+
yield {'tts_speech': this_tts_speech.cpu()}
|
|
421
|
+
with self.lock:
|
|
422
|
+
self.tts_speech_token_dict.pop(this_uuid)
|
|
423
|
+
self.llm_end_dict.pop(this_uuid)
|
|
@@ -126,6 +126,7 @@ class DataList(IterableDataset):
|
|
|
126
126
|
def Dataset(data_list_file,
|
|
127
127
|
data_pipeline,
|
|
128
128
|
mode='train',
|
|
129
|
+
gan=False,
|
|
129
130
|
shuffle=True,
|
|
130
131
|
partition=True,
|
|
131
132
|
tts_file='',
|
|
@@ -148,13 +149,16 @@ def Dataset(data_list_file,
|
|
|
148
149
|
tts_data = json.load(f)
|
|
149
150
|
utt2lists = read_json_lists(prompt_utt2data)
|
|
150
151
|
# filter unnecessary file in inference mode
|
|
151
|
-
lists = list(
|
|
152
|
+
lists = list({utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists})
|
|
152
153
|
dataset = DataList(lists,
|
|
153
154
|
shuffle=shuffle,
|
|
154
155
|
partition=partition)
|
|
155
156
|
if mode == 'inference':
|
|
156
|
-
# map partial arg
|
|
157
|
+
# map partial arg to parquet_opener func in inference mode
|
|
157
158
|
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
|
|
159
|
+
if gan is True:
|
|
160
|
+
# map partial arg to padding func in gan mode
|
|
161
|
+
data_pipeline[-1] = partial(data_pipeline[-1], gan=gan)
|
|
158
162
|
for func in data_pipeline:
|
|
159
163
|
dataset = Processor(dataset, func, mode=mode)
|
|
160
164
|
return dataset
|