xinference 1.0.1__py3-none-any.whl → 1.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +5 -5
- xinference/core/model.py +6 -1
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/core.py +5 -0
- xinference/model/audio/f5tts.py +195 -0
- xinference/model/audio/fish_speech.py +2 -1
- xinference/model/audio/model_spec.json +8 -0
- xinference/model/audio/model_spec_modelscope.json +9 -0
- xinference/model/embedding/core.py +203 -142
- xinference/model/embedding/model_spec.json +7 -0
- xinference/model/embedding/model_spec_modelscope.json +8 -0
- xinference/model/llm/__init__.py +2 -2
- xinference/model/llm/llm_family.json +172 -53
- xinference/model/llm/llm_family_modelscope.json +118 -20
- xinference/model/llm/mlx/core.py +230 -49
- xinference/model/llm/sglang/core.py +1 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +4 -1
- xinference/model/llm/vllm/core.py +5 -0
- xinference/thirdparty/f5_tts/__init__.py +0 -0
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/web/ui/build/asset-manifest.json +3 -3
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/js/{main.2f269bb3.js → main.4eb4ee80.js} +3 -3
- xinference/web/ui/build/static/js/main.4eb4ee80.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/8c5eeb02f772d02cbe8b89c05428d0dd41a97866f75f7dc1c2164a67f5a1cf98.json +1 -0
- {xinference-1.0.1.dist-info → xinference-1.1.0.dist-info}/METADATA +33 -14
- {xinference-1.0.1.dist-info → xinference-1.1.0.dist-info}/RECORD +85 -34
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.4eb4ee80.js.LICENSE.txt} +0 -0
- {xinference-1.0.1.dist-info → xinference-1.1.0.dist-info}/LICENSE +0 -0
- {xinference-1.0.1.dist-info → xinference-1.1.0.dist-info}/WHEEL +0 -0
- {xinference-1.0.1.dist-info → xinference-1.1.0.dist-info}/entry_points.txt +0 -0
- {xinference-1.0.1.dist-info → xinference-1.1.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
import os
|
|
2
|
+
|
|
3
|
+
os.environ["PYTOCH_ENABLE_MPS_FALLBACK"] = "1" # for MPS device compatibility
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
import torch.nn.functional as F
|
|
7
|
+
import torchaudio
|
|
8
|
+
|
|
9
|
+
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder, save_spectrogram
|
|
10
|
+
from f5_tts.model import CFM, DiT, UNetT
|
|
11
|
+
from f5_tts.model.utils import convert_char_to_pinyin, get_tokenizer
|
|
12
|
+
|
|
13
|
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
# --------------------- Dataset Settings -------------------- #
|
|
17
|
+
|
|
18
|
+
target_sample_rate = 24000
|
|
19
|
+
n_mel_channels = 100
|
|
20
|
+
hop_length = 256
|
|
21
|
+
win_length = 1024
|
|
22
|
+
n_fft = 1024
|
|
23
|
+
mel_spec_type = "vocos" # 'vocos' or 'bigvgan'
|
|
24
|
+
target_rms = 0.1
|
|
25
|
+
|
|
26
|
+
tokenizer = "pinyin"
|
|
27
|
+
dataset_name = "Emilia_ZH_EN"
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
# ---------------------- infer setting ---------------------- #
|
|
31
|
+
|
|
32
|
+
seed = None # int | None
|
|
33
|
+
|
|
34
|
+
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
|
|
35
|
+
ckpt_step = 1200000
|
|
36
|
+
|
|
37
|
+
nfe_step = 32 # 16, 32
|
|
38
|
+
cfg_strength = 2.0
|
|
39
|
+
ode_method = "euler" # euler | midpoint
|
|
40
|
+
sway_sampling_coef = -1.0
|
|
41
|
+
speed = 1.0
|
|
42
|
+
|
|
43
|
+
if exp_name == "F5TTS_Base":
|
|
44
|
+
model_cls = DiT
|
|
45
|
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
|
46
|
+
|
|
47
|
+
elif exp_name == "E2TTS_Base":
|
|
48
|
+
model_cls = UNetT
|
|
49
|
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
|
50
|
+
|
|
51
|
+
ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.safetensors"
|
|
52
|
+
output_dir = "tests"
|
|
53
|
+
|
|
54
|
+
# [leverage https://github.com/MahmoudAshraf97/ctc-forced-aligner to get char level alignment]
|
|
55
|
+
# pip install git+https://github.com/MahmoudAshraf97/ctc-forced-aligner.git
|
|
56
|
+
# [write the origin_text into a file, e.g. tests/test_edit.txt]
|
|
57
|
+
# ctc-forced-aligner --audio_path "src/f5_tts/infer/examples/basic/basic_ref_en.wav" --text_path "tests/test_edit.txt" --language "zho" --romanize --split_size "char"
|
|
58
|
+
# [result will be saved at same path of audio file]
|
|
59
|
+
# [--language "zho" for Chinese, "eng" for English]
|
|
60
|
+
# [if local ckpt, set --alignment_model "../checkpoints/mms-300m-1130-forced-aligner"]
|
|
61
|
+
|
|
62
|
+
audio_to_edit = "src/f5_tts/infer/examples/basic/basic_ref_en.wav"
|
|
63
|
+
origin_text = "Some call me nature, others call me mother nature."
|
|
64
|
+
target_text = "Some call me optimist, others call me realist."
|
|
65
|
+
parts_to_edit = [
|
|
66
|
+
[1.42, 2.44],
|
|
67
|
+
[4.04, 4.9],
|
|
68
|
+
] # stard_ends of "nature" & "mother nature", in seconds
|
|
69
|
+
fix_duration = [
|
|
70
|
+
1.2,
|
|
71
|
+
1,
|
|
72
|
+
] # fix duration for "optimist" & "realist", in seconds
|
|
73
|
+
|
|
74
|
+
# audio_to_edit = "src/f5_tts/infer/examples/basic/basic_ref_zh.wav"
|
|
75
|
+
# origin_text = "对,这就是我,万人敬仰的太乙真人。"
|
|
76
|
+
# target_text = "对,那就是你,万人敬仰的太白金星。"
|
|
77
|
+
# parts_to_edit = [[0.84, 1.4], [1.92, 2.4], [4.26, 6.26], ]
|
|
78
|
+
# fix_duration = None # use origin text duration
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
# -------------------------------------------------#
|
|
82
|
+
|
|
83
|
+
use_ema = True
|
|
84
|
+
|
|
85
|
+
if not os.path.exists(output_dir):
|
|
86
|
+
os.makedirs(output_dir)
|
|
87
|
+
|
|
88
|
+
# Vocoder model
|
|
89
|
+
local = False
|
|
90
|
+
if mel_spec_type == "vocos":
|
|
91
|
+
vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
|
92
|
+
elif mel_spec_type == "bigvgan":
|
|
93
|
+
vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
|
|
94
|
+
vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=local, local_path=vocoder_local_path)
|
|
95
|
+
|
|
96
|
+
# Tokenizer
|
|
97
|
+
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
|
98
|
+
|
|
99
|
+
# Model
|
|
100
|
+
model = CFM(
|
|
101
|
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
|
102
|
+
mel_spec_kwargs=dict(
|
|
103
|
+
n_fft=n_fft,
|
|
104
|
+
hop_length=hop_length,
|
|
105
|
+
win_length=win_length,
|
|
106
|
+
n_mel_channels=n_mel_channels,
|
|
107
|
+
target_sample_rate=target_sample_rate,
|
|
108
|
+
mel_spec_type=mel_spec_type,
|
|
109
|
+
),
|
|
110
|
+
odeint_kwargs=dict(
|
|
111
|
+
method=ode_method,
|
|
112
|
+
),
|
|
113
|
+
vocab_char_map=vocab_char_map,
|
|
114
|
+
).to(device)
|
|
115
|
+
|
|
116
|
+
dtype = torch.float32 if mel_spec_type == "bigvgan" else None
|
|
117
|
+
model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
|
|
118
|
+
|
|
119
|
+
# Audio
|
|
120
|
+
audio, sr = torchaudio.load(audio_to_edit)
|
|
121
|
+
if audio.shape[0] > 1:
|
|
122
|
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
|
123
|
+
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
|
124
|
+
if rms < target_rms:
|
|
125
|
+
audio = audio * target_rms / rms
|
|
126
|
+
if sr != target_sample_rate:
|
|
127
|
+
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
|
128
|
+
audio = resampler(audio)
|
|
129
|
+
offset = 0
|
|
130
|
+
audio_ = torch.zeros(1, 0)
|
|
131
|
+
edit_mask = torch.zeros(1, 0, dtype=torch.bool)
|
|
132
|
+
for part in parts_to_edit:
|
|
133
|
+
start, end = part
|
|
134
|
+
part_dur = end - start if fix_duration is None else fix_duration.pop(0)
|
|
135
|
+
part_dur = part_dur * target_sample_rate
|
|
136
|
+
start = start * target_sample_rate
|
|
137
|
+
audio_ = torch.cat((audio_, audio[:, round(offset) : round(start)], torch.zeros(1, round(part_dur))), dim=-1)
|
|
138
|
+
edit_mask = torch.cat(
|
|
139
|
+
(
|
|
140
|
+
edit_mask,
|
|
141
|
+
torch.ones(1, round((start - offset) / hop_length), dtype=torch.bool),
|
|
142
|
+
torch.zeros(1, round(part_dur / hop_length), dtype=torch.bool),
|
|
143
|
+
),
|
|
144
|
+
dim=-1,
|
|
145
|
+
)
|
|
146
|
+
offset = end * target_sample_rate
|
|
147
|
+
# audio = torch.cat((audio_, audio[:, round(offset):]), dim = -1)
|
|
148
|
+
edit_mask = F.pad(edit_mask, (0, audio.shape[-1] // hop_length - edit_mask.shape[-1] + 1), value=True)
|
|
149
|
+
audio = audio.to(device)
|
|
150
|
+
edit_mask = edit_mask.to(device)
|
|
151
|
+
|
|
152
|
+
# Text
|
|
153
|
+
text_list = [target_text]
|
|
154
|
+
if tokenizer == "pinyin":
|
|
155
|
+
final_text_list = convert_char_to_pinyin(text_list)
|
|
156
|
+
else:
|
|
157
|
+
final_text_list = [text_list]
|
|
158
|
+
print(f"text : {text_list}")
|
|
159
|
+
print(f"pinyin: {final_text_list}")
|
|
160
|
+
|
|
161
|
+
# Duration
|
|
162
|
+
ref_audio_len = 0
|
|
163
|
+
duration = audio.shape[-1] // hop_length
|
|
164
|
+
|
|
165
|
+
# Inference
|
|
166
|
+
with torch.inference_mode():
|
|
167
|
+
generated, trajectory = model.sample(
|
|
168
|
+
cond=audio,
|
|
169
|
+
text=final_text_list,
|
|
170
|
+
duration=duration,
|
|
171
|
+
steps=nfe_step,
|
|
172
|
+
cfg_strength=cfg_strength,
|
|
173
|
+
sway_sampling_coef=sway_sampling_coef,
|
|
174
|
+
seed=seed,
|
|
175
|
+
edit_mask=edit_mask,
|
|
176
|
+
)
|
|
177
|
+
print(f"Generated mel: {generated.shape}")
|
|
178
|
+
|
|
179
|
+
# Final result
|
|
180
|
+
generated = generated.to(torch.float32)
|
|
181
|
+
generated = generated[:, ref_audio_len:, :]
|
|
182
|
+
gen_mel_spec = generated.permute(0, 2, 1)
|
|
183
|
+
if mel_spec_type == "vocos":
|
|
184
|
+
generated_wave = vocoder.decode(gen_mel_spec).cpu()
|
|
185
|
+
elif mel_spec_type == "bigvgan":
|
|
186
|
+
generated_wave = vocoder(gen_mel_spec).squeeze(0).cpu()
|
|
187
|
+
|
|
188
|
+
if rms < target_rms:
|
|
189
|
+
generated_wave = generated_wave * rms / target_rms
|
|
190
|
+
|
|
191
|
+
save_spectrogram(gen_mel_spec[0].cpu().numpy(), f"{output_dir}/speech_edit_out.png")
|
|
192
|
+
torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave, target_sample_rate)
|
|
193
|
+
print(f"Generated wav: {generated_wave.shape}")
|