xinference 1.0.0__py3-none-any.whl → 1.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +22 -2
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +91 -6
- xinference/client/restful/restful_client.py +39 -0
- xinference/core/model.py +41 -13
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/__init__.py +12 -0
- xinference/model/audio/core.py +26 -4
- xinference/model/audio/f5tts.py +195 -0
- xinference/model/audio/fish_speech.py +71 -35
- xinference/model/audio/model_spec.json +88 -0
- xinference/model/audio/model_spec_modelscope.json +9 -0
- xinference/model/audio/whisper_mlx.py +208 -0
- xinference/model/embedding/core.py +322 -6
- xinference/model/embedding/model_spec.json +8 -1
- xinference/model/embedding/model_spec_modelscope.json +9 -1
- xinference/model/llm/__init__.py +4 -2
- xinference/model/llm/llm_family.json +479 -53
- xinference/model/llm/llm_family_modelscope.json +423 -17
- xinference/model/llm/mlx/core.py +230 -50
- xinference/model/llm/sglang/core.py +2 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/core.py +1 -0
- xinference/model/llm/transformers/glm_edge_v.py +230 -0
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +23 -1
- xinference/model/llm/vllm/core.py +89 -2
- xinference/thirdparty/f5_tts/__init__.py +0 -0
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/types.py +2 -1
- xinference/web/ui/build/asset-manifest.json +3 -3
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/js/{main.2f269bb3.js → main.4eb4ee80.js} +3 -3
- xinference/web/ui/build/static/js/main.4eb4ee80.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/8c5eeb02f772d02cbe8b89c05428d0dd41a97866f75f7dc1c2164a67f5a1cf98.json +1 -0
- {xinference-1.0.0.dist-info → xinference-1.1.0.dist-info}/METADATA +39 -18
- {xinference-1.0.0.dist-info → xinference-1.1.0.dist-info}/RECORD +92 -39
- {xinference-1.0.0.dist-info → xinference-1.1.0.dist-info}/WHEEL +1 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.4eb4ee80.js.LICENSE.txt} +0 -0
- {xinference-1.0.0.dist-info → xinference-1.1.0.dist-info}/LICENSE +0 -0
- {xinference-1.0.0.dist-info → xinference-1.1.0.dist-info}/entry_points.txt +0 -0
- {xinference-1.0.0.dist-info → xinference-1.1.0.dist-info}/top_level.txt +0 -0
xinference/model/llm/mlx/core.py
CHANGED
|
@@ -168,6 +168,9 @@ class MLXModel(LLM):
|
|
|
168
168
|
return False
|
|
169
169
|
if "generate" not in llm_family.model_ability:
|
|
170
170
|
return False
|
|
171
|
+
if "chat" in llm_family.model_ability or "vision" in llm_family.model_ability:
|
|
172
|
+
# do not process chat or vision
|
|
173
|
+
return False
|
|
171
174
|
return True
|
|
172
175
|
|
|
173
176
|
def _get_prompt_cache(self, prompt, lora_name: Optional[str] = None):
|
|
@@ -191,18 +194,35 @@ class MLXModel(LLM):
|
|
|
191
194
|
self._prompt_cache.tokens.extend(prompt)
|
|
192
195
|
return prompt
|
|
193
196
|
|
|
194
|
-
def
|
|
195
|
-
|
|
196
|
-
|
|
197
|
+
def _generate_stream_inner(self, **kwargs):
|
|
198
|
+
from mlx_lm.utils import make_sampler, stream_generate
|
|
199
|
+
|
|
200
|
+
sampler = make_sampler(
|
|
201
|
+
temp=kwargs.pop("temperature"), top_p=kwargs.pop("top_p")
|
|
202
|
+
)
|
|
203
|
+
prompt_token_ids = kwargs.pop("prompt_token_ids")
|
|
204
|
+
yield from stream_generate(
|
|
205
|
+
self._model, self._tokenizer, prompt_token_ids, sampler=sampler, **kwargs
|
|
206
|
+
)
|
|
207
|
+
|
|
208
|
+
def _prepare_inputs(
|
|
209
|
+
self, prompt: Union[str, Dict[str, Any]], kwargs
|
|
210
|
+
) -> Tuple[Any, int]:
|
|
211
|
+
prompt_token_ids = self._tokenizer.encode(prompt)
|
|
212
|
+
prompt_token_ids = self._get_prompt_cache(
|
|
213
|
+
prompt_token_ids, kwargs.get("lora_name")
|
|
214
|
+
)
|
|
215
|
+
return prompt_token_ids, len(prompt_token_ids)
|
|
197
216
|
|
|
198
|
-
|
|
217
|
+
def _generate_stream(
|
|
218
|
+
self, prompt: Union[str, Dict[str, Any]], kwargs: MLXGenerateConfig
|
|
219
|
+
):
|
|
199
220
|
model_uid = self.model_uid
|
|
200
221
|
tokenizer = self._tokenizer
|
|
201
222
|
max_tokens = kwargs["max_tokens"]
|
|
202
223
|
chunk_id = str(uuid.uuid4())
|
|
203
224
|
stop_token_ids = kwargs.get("stop_token_ids", [])
|
|
204
225
|
stream = kwargs.get("stream", False)
|
|
205
|
-
lora_name = kwargs.get("lora_name")
|
|
206
226
|
stream_options = kwargs.pop("stream_options", None)
|
|
207
227
|
include_usage = (
|
|
208
228
|
stream_options["include_usage"]
|
|
@@ -210,40 +230,28 @@ class MLXModel(LLM):
|
|
|
210
230
|
else False
|
|
211
231
|
)
|
|
212
232
|
|
|
213
|
-
prompt_token_ids =
|
|
214
|
-
prompt_token_ids = self._get_prompt_cache(prompt_token_ids, lora_name)
|
|
215
|
-
prompt_tokens = mx.array(prompt_token_ids)
|
|
216
|
-
input_echo_len = len(prompt_tokens)
|
|
233
|
+
prompt_token_ids, input_echo_len = self._prepare_inputs(prompt, kwargs)
|
|
217
234
|
|
|
218
235
|
i = 0
|
|
219
236
|
start = time.time()
|
|
220
237
|
output = ""
|
|
221
238
|
tokens = []
|
|
222
|
-
for
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
239
|
+
for chunk_resp, i in zip(
|
|
240
|
+
self._generate_stream_inner(
|
|
241
|
+
prompt_token_ids=prompt_token_ids,
|
|
242
|
+
max_tokens=max_tokens,
|
|
243
|
+
temperature=kwargs["temperature"],
|
|
244
|
+
top_p=kwargs["top_p"],
|
|
227
245
|
repetition_penalty=kwargs["repetition_penalty"],
|
|
228
246
|
repetition_context_size=kwargs["repetition_context_size"],
|
|
229
|
-
|
|
230
|
-
logit_bias=kwargs["logit_bias"],
|
|
231
|
-
prompt_cache=self._prompt_cache.cache, # type: ignore
|
|
247
|
+
prompt_cache=self._prompt_cache.cache if self._prompt_cache else None, # type: ignore
|
|
232
248
|
),
|
|
233
249
|
range(max_tokens),
|
|
234
250
|
):
|
|
251
|
+
token = chunk_resp.token
|
|
235
252
|
tokens.append(token)
|
|
236
|
-
if token == tokenizer.eos_token_id or token in stop_token_ids: # type: ignore
|
|
237
|
-
break
|
|
238
|
-
|
|
239
|
-
# Yield the last segment if streaming
|
|
240
|
-
out = tokenizer.decode(
|
|
241
|
-
token,
|
|
242
|
-
skip_special_tokens=True,
|
|
243
|
-
spaces_between_special_tokens=False,
|
|
244
|
-
clean_up_tokenization_spaces=True,
|
|
245
|
-
)
|
|
246
253
|
|
|
254
|
+
out = chunk_resp.text
|
|
247
255
|
if stream:
|
|
248
256
|
# this special character is mainly for qwen
|
|
249
257
|
out = out.strip("�")
|
|
@@ -267,11 +275,15 @@ class MLXModel(LLM):
|
|
|
267
275
|
total_tokens=(input_echo_len + i),
|
|
268
276
|
), completion_usage
|
|
269
277
|
|
|
278
|
+
if token == tokenizer.eos_token_id or token in stop_token_ids: # type: ignore
|
|
279
|
+
break
|
|
280
|
+
|
|
270
281
|
logger.info(
|
|
271
282
|
f"Average generation speed: {i / (time.time() - start):.2f} tokens/s."
|
|
272
283
|
)
|
|
273
284
|
|
|
274
|
-
self._prompt_cache
|
|
285
|
+
if self._prompt_cache:
|
|
286
|
+
self._prompt_cache.tokens.extend(tokens) # type: ignore
|
|
275
287
|
|
|
276
288
|
if i == max_tokens - 1:
|
|
277
289
|
finish_reason = "length"
|
|
@@ -315,10 +327,12 @@ class MLXModel(LLM):
|
|
|
315
327
|
yield completion_chunk, completion_usage
|
|
316
328
|
|
|
317
329
|
def generate(
|
|
318
|
-
self,
|
|
330
|
+
self,
|
|
331
|
+
prompt: Union[str, Dict[str, Any]],
|
|
332
|
+
generate_config: Optional[MLXGenerateConfig] = None,
|
|
319
333
|
) -> Union[Completion, Iterator[CompletionChunk]]:
|
|
320
334
|
def generator_wrapper(
|
|
321
|
-
prompt: str, generate_config: MLXGenerateConfig
|
|
335
|
+
prompt: Union[str, Dict[str, Any]], generate_config: MLXGenerateConfig
|
|
322
336
|
) -> Iterator[CompletionChunk]:
|
|
323
337
|
for completion_chunk, completion_usage in self._generate_stream(
|
|
324
338
|
prompt,
|
|
@@ -357,26 +371,6 @@ class MLXModel(LLM):
|
|
|
357
371
|
|
|
358
372
|
|
|
359
373
|
class MLXChatModel(MLXModel, ChatModelMixin):
|
|
360
|
-
def __init__(
|
|
361
|
-
self,
|
|
362
|
-
model_uid: str,
|
|
363
|
-
model_family: "LLMFamilyV1",
|
|
364
|
-
model_spec: "LLMSpecV1",
|
|
365
|
-
quantization: str,
|
|
366
|
-
model_path: str,
|
|
367
|
-
model_config: Optional[MLXModelConfig] = None,
|
|
368
|
-
peft_model: Optional[List[LoRA]] = None,
|
|
369
|
-
):
|
|
370
|
-
super().__init__(
|
|
371
|
-
model_uid,
|
|
372
|
-
model_family,
|
|
373
|
-
model_spec,
|
|
374
|
-
quantization,
|
|
375
|
-
model_path,
|
|
376
|
-
model_config,
|
|
377
|
-
peft_model,
|
|
378
|
-
)
|
|
379
|
-
|
|
380
374
|
def _sanitize_generate_config(
|
|
381
375
|
self,
|
|
382
376
|
generate_config: Optional[MLXGenerateConfig],
|
|
@@ -403,6 +397,9 @@ class MLXChatModel(MLXModel, ChatModelMixin):
|
|
|
403
397
|
return False
|
|
404
398
|
if "chat" not in llm_family.model_ability:
|
|
405
399
|
return False
|
|
400
|
+
if "vision" in llm_family.model_ability:
|
|
401
|
+
# do not process vision
|
|
402
|
+
return False
|
|
406
403
|
return True
|
|
407
404
|
|
|
408
405
|
def chat(
|
|
@@ -433,3 +430,186 @@ class MLXChatModel(MLXModel, ChatModelMixin):
|
|
|
433
430
|
if tools:
|
|
434
431
|
return self._tool_calls_completion(self.model_family, self.model_uid, c)
|
|
435
432
|
return self._to_chat_completion(c)
|
|
433
|
+
|
|
434
|
+
|
|
435
|
+
class MLXVisionModel(MLXModel, ChatModelMixin):
|
|
436
|
+
@classmethod
|
|
437
|
+
def match(
|
|
438
|
+
cls, llm_family: "LLMFamilyV1", llm_spec: "LLMSpecV1", quantization: str
|
|
439
|
+
) -> bool:
|
|
440
|
+
if llm_spec.model_format not in ["mlx"]:
|
|
441
|
+
return False
|
|
442
|
+
if sys.platform != "darwin" or platform.processor() != "arm":
|
|
443
|
+
# only work for Mac M chips
|
|
444
|
+
return False
|
|
445
|
+
if "vision" not in llm_family.model_ability:
|
|
446
|
+
return False
|
|
447
|
+
return True
|
|
448
|
+
|
|
449
|
+
def _load_model(self, **kwargs):
|
|
450
|
+
try:
|
|
451
|
+
from mlx_vlm import load
|
|
452
|
+
except ImportError:
|
|
453
|
+
error_message = "Failed to import module 'mlx_vlm'"
|
|
454
|
+
installation_guide = [
|
|
455
|
+
"Please make sure 'mlx_vlm' is installed. ",
|
|
456
|
+
"You can install it by `pip install mlx_vlm`\n",
|
|
457
|
+
]
|
|
458
|
+
|
|
459
|
+
raise ImportError(f"{error_message}\n\n{''.join(installation_guide)}")
|
|
460
|
+
|
|
461
|
+
return load(self.model_path)
|
|
462
|
+
|
|
463
|
+
def load(self):
|
|
464
|
+
kwargs = {}
|
|
465
|
+
kwargs["revision"] = self._model_config.get(
|
|
466
|
+
"revision", self.model_spec.model_revision
|
|
467
|
+
)
|
|
468
|
+
kwargs["trust_remote_code"] = self._model_config.get("trust_remote_code")
|
|
469
|
+
kwargs["cache_limit_gb"] = self._model_config.pop("cache_limit_gb", None)
|
|
470
|
+
|
|
471
|
+
self._model, self._processor = self._load_model(**kwargs)
|
|
472
|
+
self._tokenizer = self._processor.tokenizer
|
|
473
|
+
|
|
474
|
+
def _generate_stream_inner(self, **kwargs):
|
|
475
|
+
import mlx.core as mx
|
|
476
|
+
from mlx_lm.utils import GenerationResponse
|
|
477
|
+
from mlx_vlm.utils import generate_step
|
|
478
|
+
|
|
479
|
+
max_tokens = kwargs.pop("max_tokens")
|
|
480
|
+
inputs = kwargs["prompt_token_ids"]
|
|
481
|
+
input_ids, pixel_values, mask = inputs[:3]
|
|
482
|
+
|
|
483
|
+
kwargs = {
|
|
484
|
+
k: v
|
|
485
|
+
for k, v in zip(
|
|
486
|
+
[
|
|
487
|
+
"image_grid_thw",
|
|
488
|
+
"image_sizes",
|
|
489
|
+
"aspect_ratio_ids",
|
|
490
|
+
"aspect_ratio_mask",
|
|
491
|
+
"cross_attention_mask",
|
|
492
|
+
],
|
|
493
|
+
inputs[3:],
|
|
494
|
+
)
|
|
495
|
+
}
|
|
496
|
+
|
|
497
|
+
tokenizer = self._processor.tokenizer
|
|
498
|
+
detokenizer = self._processor.detokenizer
|
|
499
|
+
|
|
500
|
+
detokenizer.reset()
|
|
501
|
+
tic = time.perf_counter()
|
|
502
|
+
for (token, logprobs), n in zip(
|
|
503
|
+
generate_step(input_ids, self._model, pixel_values, mask, **kwargs),
|
|
504
|
+
range(max_tokens),
|
|
505
|
+
):
|
|
506
|
+
if n == 0:
|
|
507
|
+
prompt_time = time.perf_counter() - tic
|
|
508
|
+
prompt_tps = len(input_ids) / prompt_time
|
|
509
|
+
tic = time.perf_counter()
|
|
510
|
+
if token == tokenizer.eos_token_id:
|
|
511
|
+
break
|
|
512
|
+
detokenizer.add_token(token)
|
|
513
|
+
|
|
514
|
+
# Yield the last segment if streaming
|
|
515
|
+
yield GenerationResponse(
|
|
516
|
+
text=detokenizer.last_segment,
|
|
517
|
+
token=token,
|
|
518
|
+
logprobs=logprobs,
|
|
519
|
+
prompt_tokens=len(input_ids),
|
|
520
|
+
prompt_tps=prompt_tps,
|
|
521
|
+
generation_tokens=n + 1,
|
|
522
|
+
generation_tps=(n + 1) / (time.perf_counter() - tic),
|
|
523
|
+
peak_memory=mx.metal.get_peak_memory() / 1e9,
|
|
524
|
+
)
|
|
525
|
+
|
|
526
|
+
detokenizer.finalize()
|
|
527
|
+
yield GenerationResponse(
|
|
528
|
+
text=detokenizer.last_segment,
|
|
529
|
+
token=token,
|
|
530
|
+
logprobs=logprobs,
|
|
531
|
+
prompt_tokens=len(input_ids),
|
|
532
|
+
prompt_tps=prompt_tps,
|
|
533
|
+
generation_tokens=n + 1,
|
|
534
|
+
generation_tps=(n + 1) / (time.perf_counter() - tic),
|
|
535
|
+
peak_memory=mx.metal.get_peak_memory() / 1e9,
|
|
536
|
+
)
|
|
537
|
+
|
|
538
|
+
def _prepare_inputs(
|
|
539
|
+
self, prompt: Union[str, Dict[str, Any]], kwargs
|
|
540
|
+
) -> Tuple[Any, int]:
|
|
541
|
+
from mlx_vlm import prepare_inputs
|
|
542
|
+
|
|
543
|
+
prompt_str = prompt.get("prompt") # type: ignore
|
|
544
|
+
images = prompt.get("multi_modal_data", {}).get("image") # type: ignore
|
|
545
|
+
if images and not isinstance(images, list):
|
|
546
|
+
images = [images]
|
|
547
|
+
if hasattr(self._model.config, "image_token_index"):
|
|
548
|
+
image_token_index = self._model.config.image_token_index
|
|
549
|
+
else:
|
|
550
|
+
image_token_index = None
|
|
551
|
+
|
|
552
|
+
inputs = prepare_inputs(
|
|
553
|
+
None,
|
|
554
|
+
self._processor,
|
|
555
|
+
images,
|
|
556
|
+
prompt_str,
|
|
557
|
+
image_token_index,
|
|
558
|
+
kwargs.get("resize_shape"),
|
|
559
|
+
)
|
|
560
|
+
input_ids = inputs[0]
|
|
561
|
+
return inputs, len(input_ids)
|
|
562
|
+
|
|
563
|
+
def chat(
|
|
564
|
+
self,
|
|
565
|
+
messages: List[Dict],
|
|
566
|
+
generate_config: Optional[MLXGenerateConfig] = None,
|
|
567
|
+
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
|
|
568
|
+
messages = self._transform_messages(messages) # type: ignore
|
|
569
|
+
tools = generate_config.pop("tools", []) if generate_config else None
|
|
570
|
+
|
|
571
|
+
model_family = self.model_family.model_family or self.model_family.model_name
|
|
572
|
+
|
|
573
|
+
if "internvl2" not in model_family.lower():
|
|
574
|
+
from qwen_vl_utils import process_vision_info
|
|
575
|
+
|
|
576
|
+
full_context_kwargs = {}
|
|
577
|
+
if tools and model_family in QWEN_TOOL_CALL_FAMILY:
|
|
578
|
+
full_context_kwargs["tools"] = tools
|
|
579
|
+
assert self.model_family.chat_template is not None
|
|
580
|
+
prompt = self.get_full_context(
|
|
581
|
+
messages, self.model_family.chat_template, **full_context_kwargs
|
|
582
|
+
)
|
|
583
|
+
images, video_inputs = process_vision_info(messages)
|
|
584
|
+
if video_inputs:
|
|
585
|
+
raise ValueError("Not support video input now.")
|
|
586
|
+
else:
|
|
587
|
+
prompt, images = self.get_specific_prompt(model_family, messages) # type: ignore
|
|
588
|
+
|
|
589
|
+
if not images:
|
|
590
|
+
inputs = {
|
|
591
|
+
"prompt": prompt,
|
|
592
|
+
}
|
|
593
|
+
elif len(images) == 1:
|
|
594
|
+
inputs = {
|
|
595
|
+
"prompt": prompt,
|
|
596
|
+
"multi_modal_data": {"image": images[-1]}, # type: ignore
|
|
597
|
+
}
|
|
598
|
+
else:
|
|
599
|
+
inputs = {
|
|
600
|
+
"prompt": prompt,
|
|
601
|
+
"multi_modal_data": {"image": images}, # type: ignore
|
|
602
|
+
}
|
|
603
|
+
generate_config = self._sanitize_generate_config(generate_config)
|
|
604
|
+
|
|
605
|
+
stream = generate_config.get("stream", False)
|
|
606
|
+
if stream:
|
|
607
|
+
it = self.generate(inputs, generate_config)
|
|
608
|
+
assert isinstance(it, Iterator)
|
|
609
|
+
return self._to_chat_completion_chunks(it)
|
|
610
|
+
else:
|
|
611
|
+
c = self.generate(inputs, generate_config)
|
|
612
|
+
assert not isinstance(c, Iterator)
|
|
613
|
+
if tools:
|
|
614
|
+
return self._tool_calls_completion(self.model_family, self.model_uid, c)
|
|
615
|
+
return self._to_chat_completion(c)
|
|
@@ -75,6 +75,7 @@ SGLANG_SUPPORTED_CHAT_MODELS = [
|
|
|
75
75
|
"llama-2-chat",
|
|
76
76
|
"llama-3-instruct",
|
|
77
77
|
"llama-3.1-instruct",
|
|
78
|
+
"llama-3.3-instruct",
|
|
78
79
|
"qwen-chat",
|
|
79
80
|
"qwen1.5-chat",
|
|
80
81
|
"qwen2-instruct",
|
|
@@ -89,6 +90,7 @@ SGLANG_SUPPORTED_CHAT_MODELS = [
|
|
|
89
90
|
"deepseek-v2-chat-0628",
|
|
90
91
|
"qwen2.5-instruct",
|
|
91
92
|
"qwen2.5-coder-instruct",
|
|
93
|
+
"QwQ-32B-Preview",
|
|
92
94
|
]
|
|
93
95
|
|
|
94
96
|
|
|
@@ -61,7 +61,7 @@ class ChatglmPytorchChatModel(PytorchChatModel):
|
|
|
61
61
|
|
|
62
62
|
def _load_model(self, **kwargs):
|
|
63
63
|
try:
|
|
64
|
-
from transformers import
|
|
64
|
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
65
65
|
except ImportError:
|
|
66
66
|
error_message = "Failed to import module 'transformers'"
|
|
67
67
|
installation_guide = [
|
|
@@ -77,7 +77,7 @@ class ChatglmPytorchChatModel(PytorchChatModel):
|
|
|
77
77
|
encode_special_tokens=True,
|
|
78
78
|
revision=kwargs["revision"],
|
|
79
79
|
)
|
|
80
|
-
model =
|
|
80
|
+
model = AutoModelForCausalLM.from_pretrained(
|
|
81
81
|
self.model_path,
|
|
82
82
|
**kwargs,
|
|
83
83
|
)
|
|
@@ -232,9 +232,11 @@ class ChatglmPytorchChatModel(PytorchChatModel):
|
|
|
232
232
|
content = {
|
|
233
233
|
"name": function_name,
|
|
234
234
|
"arguments": json.dumps(
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
235
|
+
(
|
|
236
|
+
arguments_json
|
|
237
|
+
if isinstance(arguments_json, dict)
|
|
238
|
+
else arguments
|
|
239
|
+
),
|
|
238
240
|
ensure_ascii=False,
|
|
239
241
|
),
|
|
240
242
|
}
|
|
@@ -331,6 +333,8 @@ class ChatglmPytorchChatModel(PytorchChatModel):
|
|
|
331
333
|
max_new_tokens = generate_config.get("max_tokens")
|
|
332
334
|
if max_new_tokens is not None:
|
|
333
335
|
kwargs["max_new_tokens"] = int(max_new_tokens)
|
|
336
|
+
else:
|
|
337
|
+
kwargs["max_new_tokens"] = 1024
|
|
334
338
|
do_sample = generate_config.get("do_sample")
|
|
335
339
|
if do_sample is not None:
|
|
336
340
|
kwargs["do_sample"] = bool(do_sample)
|
|
@@ -0,0 +1,230 @@
|
|
|
1
|
+
# Copyright 2022-2023 XProbe Inc.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
import logging
|
|
15
|
+
import uuid
|
|
16
|
+
from concurrent.futures import ThreadPoolExecutor
|
|
17
|
+
from threading import Thread
|
|
18
|
+
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
|
|
19
|
+
|
|
20
|
+
import torch
|
|
21
|
+
|
|
22
|
+
from ....types import ChatCompletion, ChatCompletionChunk, CompletionChunk
|
|
23
|
+
from ...utils import select_device
|
|
24
|
+
from ..llm_family import LLMFamilyV1, LLMSpecV1
|
|
25
|
+
from ..utils import (
|
|
26
|
+
_decode_image_without_rgb,
|
|
27
|
+
generate_chat_completion,
|
|
28
|
+
generate_completion_chunk,
|
|
29
|
+
)
|
|
30
|
+
from .core import PytorchChatModel, PytorchGenerateConfig
|
|
31
|
+
from .utils import cache_clean
|
|
32
|
+
|
|
33
|
+
logger = logging.getLogger(__name__)
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class GlmEdgeVModel(PytorchChatModel):
|
|
37
|
+
def __init__(self, *args, **kwargs):
|
|
38
|
+
super().__init__(*args, **kwargs)
|
|
39
|
+
self._device = None
|
|
40
|
+
self._tokenizer = None
|
|
41
|
+
self._model = None
|
|
42
|
+
self._processor = None
|
|
43
|
+
|
|
44
|
+
@classmethod
|
|
45
|
+
def match(
|
|
46
|
+
cls, model_family: "LLMFamilyV1", model_spec: "LLMSpecV1", quantization: str
|
|
47
|
+
) -> bool:
|
|
48
|
+
family = model_family.model_family or model_family.model_name
|
|
49
|
+
if "glm-edge-v" in family.lower():
|
|
50
|
+
return True
|
|
51
|
+
return False
|
|
52
|
+
|
|
53
|
+
def load(self):
|
|
54
|
+
from transformers import AutoImageProcessor, AutoModelForCausalLM, AutoTokenizer
|
|
55
|
+
|
|
56
|
+
device = self._pytorch_model_config.get("device", "auto")
|
|
57
|
+
self._device = select_device(device)
|
|
58
|
+
|
|
59
|
+
kwargs = {"device_map": self._device}
|
|
60
|
+
quantization = self.quantization
|
|
61
|
+
|
|
62
|
+
# referenced from PytorchModel.load
|
|
63
|
+
if quantization != "none":
|
|
64
|
+
if self._device == "cuda" and self._is_linux():
|
|
65
|
+
kwargs["device_map"] = "auto"
|
|
66
|
+
if quantization == "4-bit":
|
|
67
|
+
kwargs["load_in_4bit"] = True
|
|
68
|
+
elif quantization == "8-bit":
|
|
69
|
+
kwargs["load_in_8bit"] = True
|
|
70
|
+
else:
|
|
71
|
+
raise ValueError(
|
|
72
|
+
f"Quantization {quantization} is not supported in temporary"
|
|
73
|
+
)
|
|
74
|
+
else:
|
|
75
|
+
if quantization != "8-bit":
|
|
76
|
+
raise ValueError(
|
|
77
|
+
f"Only 8-bit quantization is supported if it is not linux system or cuda device"
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
processor = AutoImageProcessor.from_pretrained(
|
|
81
|
+
self.model_path, trust_remote_code=True
|
|
82
|
+
)
|
|
83
|
+
self._processor = processor
|
|
84
|
+
|
|
85
|
+
model = AutoModelForCausalLM.from_pretrained(
|
|
86
|
+
self.model_path,
|
|
87
|
+
trust_remote_code=True,
|
|
88
|
+
torch_dtype=torch.bfloat16,
|
|
89
|
+
device_map="auto",
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
self._model = model
|
|
93
|
+
|
|
94
|
+
tokenizer = AutoTokenizer.from_pretrained(
|
|
95
|
+
self.model_path, trust_remote_code=True
|
|
96
|
+
)
|
|
97
|
+
self._tokenizer = tokenizer
|
|
98
|
+
|
|
99
|
+
@staticmethod
|
|
100
|
+
def _get_processed_msgs(
|
|
101
|
+
messages: List[Dict],
|
|
102
|
+
) -> Tuple[List[Dict[str, Any]], List[Any]]:
|
|
103
|
+
res = []
|
|
104
|
+
img = []
|
|
105
|
+
for message in messages:
|
|
106
|
+
role = message["role"]
|
|
107
|
+
content = message["content"]
|
|
108
|
+
if isinstance(content, str):
|
|
109
|
+
res.append({"role": role, "content": content})
|
|
110
|
+
else:
|
|
111
|
+
texts = []
|
|
112
|
+
image_urls = []
|
|
113
|
+
for c in content:
|
|
114
|
+
c_type = c.get("type")
|
|
115
|
+
if c_type == "text":
|
|
116
|
+
texts.append(c["text"])
|
|
117
|
+
else:
|
|
118
|
+
assert (
|
|
119
|
+
c_type == "image_url"
|
|
120
|
+
), "Please follow the image input of the OpenAI API."
|
|
121
|
+
image_urls.append(c["image_url"]["url"])
|
|
122
|
+
if len(image_urls) > 1:
|
|
123
|
+
raise RuntimeError("Only one image per message is supported")
|
|
124
|
+
image_futures = []
|
|
125
|
+
with ThreadPoolExecutor() as executor:
|
|
126
|
+
for image_url in image_urls:
|
|
127
|
+
fut = executor.submit(_decode_image_without_rgb, image_url)
|
|
128
|
+
image_futures.append(fut)
|
|
129
|
+
images = [fut.result() for fut in image_futures]
|
|
130
|
+
assert len(images) <= 1
|
|
131
|
+
text = " ".join(texts)
|
|
132
|
+
img.extend(images)
|
|
133
|
+
if images:
|
|
134
|
+
res.append(
|
|
135
|
+
{
|
|
136
|
+
"role": role,
|
|
137
|
+
"content": [
|
|
138
|
+
{"type": "image"},
|
|
139
|
+
{"type": "text", "text": text},
|
|
140
|
+
],
|
|
141
|
+
}
|
|
142
|
+
)
|
|
143
|
+
else:
|
|
144
|
+
res.append({"role": role, "content": text})
|
|
145
|
+
return res, img
|
|
146
|
+
|
|
147
|
+
@cache_clean
|
|
148
|
+
def chat(
|
|
149
|
+
self,
|
|
150
|
+
messages: List[Dict],
|
|
151
|
+
generate_config: Optional[PytorchGenerateConfig] = None,
|
|
152
|
+
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
|
|
153
|
+
from transformers import TextIteratorStreamer
|
|
154
|
+
|
|
155
|
+
if not generate_config:
|
|
156
|
+
generate_config = {}
|
|
157
|
+
|
|
158
|
+
stream = generate_config.get("stream", False)
|
|
159
|
+
msgs, imgs = self._get_processed_msgs(messages)
|
|
160
|
+
|
|
161
|
+
inputs = self._tokenizer.apply_chat_template(
|
|
162
|
+
msgs,
|
|
163
|
+
add_generation_prompt=True,
|
|
164
|
+
tokenize=True,
|
|
165
|
+
return_tensors="pt",
|
|
166
|
+
return_dict=True,
|
|
167
|
+
) # chat mode
|
|
168
|
+
inputs = inputs.to(self._model.device)
|
|
169
|
+
|
|
170
|
+
generate_kwargs = {
|
|
171
|
+
**inputs,
|
|
172
|
+
}
|
|
173
|
+
if len(imgs) > 0:
|
|
174
|
+
generate_kwargs["pixel_values"] = torch.tensor(
|
|
175
|
+
self._processor(imgs[-1]).pixel_values
|
|
176
|
+
).to(self._model.device)
|
|
177
|
+
stop_str = "<|endoftext|>"
|
|
178
|
+
|
|
179
|
+
if stream:
|
|
180
|
+
streamer = TextIteratorStreamer(
|
|
181
|
+
tokenizer=self._tokenizer,
|
|
182
|
+
timeout=60,
|
|
183
|
+
skip_prompt=True,
|
|
184
|
+
skip_special_tokens=True,
|
|
185
|
+
)
|
|
186
|
+
generate_kwargs = {
|
|
187
|
+
**generate_kwargs,
|
|
188
|
+
"streamer": streamer,
|
|
189
|
+
}
|
|
190
|
+
t = Thread(target=self._model.generate, kwargs=generate_kwargs)
|
|
191
|
+
t.start()
|
|
192
|
+
|
|
193
|
+
it = self.chat_stream(streamer, stop_str)
|
|
194
|
+
return self._to_chat_completion_chunks(it)
|
|
195
|
+
else:
|
|
196
|
+
with torch.no_grad():
|
|
197
|
+
outputs = self._model.generate(**generate_kwargs)
|
|
198
|
+
outputs = outputs[0][len(inputs["input_ids"][0]) :]
|
|
199
|
+
response = self._tokenizer.decode(outputs)
|
|
200
|
+
if response.endswith(stop_str):
|
|
201
|
+
response = response[: -len(stop_str)]
|
|
202
|
+
return generate_chat_completion(self.model_uid, response)
|
|
203
|
+
|
|
204
|
+
def chat_stream(self, streamer, stop_str) -> Iterator[CompletionChunk]:
|
|
205
|
+
completion_id = str(uuid.uuid1())
|
|
206
|
+
for new_text in streamer:
|
|
207
|
+
if not new_text.endswith(stop_str):
|
|
208
|
+
yield generate_completion_chunk(
|
|
209
|
+
chunk_text=new_text,
|
|
210
|
+
finish_reason=None,
|
|
211
|
+
chunk_id=completion_id,
|
|
212
|
+
model_uid=self.model_uid,
|
|
213
|
+
prompt_tokens=-1,
|
|
214
|
+
completion_tokens=-1,
|
|
215
|
+
total_tokens=-1,
|
|
216
|
+
has_choice=True,
|
|
217
|
+
has_content=True,
|
|
218
|
+
)
|
|
219
|
+
|
|
220
|
+
yield generate_completion_chunk(
|
|
221
|
+
chunk_text=None,
|
|
222
|
+
finish_reason="stop",
|
|
223
|
+
chunk_id=completion_id,
|
|
224
|
+
model_uid=self.model_uid,
|
|
225
|
+
prompt_tokens=-1,
|
|
226
|
+
completion_tokens=-1,
|
|
227
|
+
total_tokens=-1,
|
|
228
|
+
has_choice=True,
|
|
229
|
+
has_content=False,
|
|
230
|
+
)
|