xinference 1.0.0__py3-none-any.whl → 1.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +22 -2
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +86 -1
- xinference/client/restful/restful_client.py +39 -0
- xinference/core/model.py +35 -12
- xinference/model/audio/__init__.py +12 -0
- xinference/model/audio/core.py +21 -4
- xinference/model/audio/fish_speech.py +70 -35
- xinference/model/audio/model_spec.json +80 -0
- xinference/model/audio/whisper_mlx.py +208 -0
- xinference/model/embedding/core.py +259 -4
- xinference/model/embedding/model_spec.json +1 -1
- xinference/model/embedding/model_spec_modelscope.json +1 -1
- xinference/model/llm/__init__.py +2 -0
- xinference/model/llm/llm_family.json +309 -2
- xinference/model/llm/llm_family_modelscope.json +308 -0
- xinference/model/llm/mlx/core.py +0 -1
- xinference/model/llm/sglang/core.py +1 -0
- xinference/model/llm/transformers/core.py +1 -0
- xinference/model/llm/transformers/glm_edge_v.py +230 -0
- xinference/model/llm/utils.py +19 -0
- xinference/model/llm/vllm/core.py +84 -2
- xinference/types.py +2 -1
- {xinference-1.0.0.dist-info → xinference-1.0.1.dist-info}/METADATA +8 -6
- {xinference-1.0.0.dist-info → xinference-1.0.1.dist-info}/RECORD +29 -27
- {xinference-1.0.0.dist-info → xinference-1.0.1.dist-info}/WHEEL +1 -1
- {xinference-1.0.0.dist-info → xinference-1.0.1.dist-info}/LICENSE +0 -0
- {xinference-1.0.0.dist-info → xinference-1.0.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.0.0.dist-info → xinference-1.0.1.dist-info}/top_level.txt +0 -0
xinference/_compat.py
CHANGED
|
@@ -60,6 +60,10 @@ from openai.types.chat.chat_completion_stream_options_param import (
|
|
|
60
60
|
ChatCompletionStreamOptionsParam,
|
|
61
61
|
)
|
|
62
62
|
from openai.types.chat.chat_completion_tool_param import ChatCompletionToolParam
|
|
63
|
+
from openai.types.shared_params.response_format_json_object import (
|
|
64
|
+
ResponseFormatJSONObject,
|
|
65
|
+
)
|
|
66
|
+
from openai.types.shared_params.response_format_text import ResponseFormatText
|
|
63
67
|
|
|
64
68
|
OpenAIChatCompletionStreamOptionsParam = create_model_from_typeddict(
|
|
65
69
|
ChatCompletionStreamOptionsParam
|
|
@@ -70,6 +74,23 @@ OpenAIChatCompletionNamedToolChoiceParam = create_model_from_typeddict(
|
|
|
70
74
|
)
|
|
71
75
|
|
|
72
76
|
|
|
77
|
+
class JSONSchema(BaseModel):
|
|
78
|
+
name: str
|
|
79
|
+
description: Optional[str] = None
|
|
80
|
+
schema_: Optional[Dict[str, object]] = Field(alias="schema", default=None)
|
|
81
|
+
strict: Optional[bool] = None
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
class ResponseFormatJSONSchema(BaseModel):
|
|
85
|
+
json_schema: JSONSchema
|
|
86
|
+
type: Literal["json_schema"]
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
ResponseFormat = Union[
|
|
90
|
+
ResponseFormatText, ResponseFormatJSONObject, ResponseFormatJSONSchema
|
|
91
|
+
]
|
|
92
|
+
|
|
93
|
+
|
|
73
94
|
class CreateChatCompletionOpenAI(BaseModel):
|
|
74
95
|
"""
|
|
75
96
|
Comes from source code: https://github.com/openai/openai-python/blob/main/src/openai/types/chat/completion_create_params.py
|
|
@@ -84,8 +105,7 @@ class CreateChatCompletionOpenAI(BaseModel):
|
|
|
84
105
|
n: Optional[int]
|
|
85
106
|
parallel_tool_calls: Optional[bool]
|
|
86
107
|
presence_penalty: Optional[float]
|
|
87
|
-
|
|
88
|
-
# response_format: ResponseFormat
|
|
108
|
+
response_format: Optional[ResponseFormat]
|
|
89
109
|
seed: Optional[int]
|
|
90
110
|
service_tier: Optional[Literal["auto", "default"]]
|
|
91
111
|
stop: Union[Optional[str], List[str]]
|
xinference/_version.py
CHANGED
|
@@ -8,11 +8,11 @@ import json
|
|
|
8
8
|
|
|
9
9
|
version_json = '''
|
|
10
10
|
{
|
|
11
|
-
"date": "2024-11-
|
|
11
|
+
"date": "2024-11-29T16:57:04+0800",
|
|
12
12
|
"dirty": false,
|
|
13
13
|
"error": null,
|
|
14
|
-
"full-revisionid": "
|
|
15
|
-
"version": "1.0.
|
|
14
|
+
"full-revisionid": "eb8ddd431f5c5fcb2216e25e0d43745f8455d9b9",
|
|
15
|
+
"version": "1.0.1"
|
|
16
16
|
}
|
|
17
17
|
''' # END VERSION_JSON
|
|
18
18
|
|
xinference/api/restful_api.py
CHANGED
|
@@ -489,6 +489,16 @@ class RESTfulAPI(CancelMixin):
|
|
|
489
489
|
else None
|
|
490
490
|
),
|
|
491
491
|
)
|
|
492
|
+
self._router.add_api_route(
|
|
493
|
+
"/v1/convert_ids_to_tokens",
|
|
494
|
+
self.convert_ids_to_tokens,
|
|
495
|
+
methods=["POST"],
|
|
496
|
+
dependencies=(
|
|
497
|
+
[Security(self._auth_service, scopes=["models:read"])]
|
|
498
|
+
if self.is_authenticated()
|
|
499
|
+
else None
|
|
500
|
+
),
|
|
501
|
+
)
|
|
492
502
|
self._router.add_api_route(
|
|
493
503
|
"/v1/rerank",
|
|
494
504
|
self.rerank,
|
|
@@ -1219,6 +1229,9 @@ class RESTfulAPI(CancelMixin):
|
|
|
1219
1229
|
raw_kwargs = {k: v for k, v in raw_body.items() if k not in exclude}
|
|
1220
1230
|
kwargs = body.dict(exclude_unset=True, exclude=exclude)
|
|
1221
1231
|
|
|
1232
|
+
# guided_decoding params
|
|
1233
|
+
kwargs.update(self.extract_guided_params(raw_body=raw_body))
|
|
1234
|
+
|
|
1222
1235
|
# TODO: Decide if this default value override is necessary #1061
|
|
1223
1236
|
if body.max_tokens is None:
|
|
1224
1237
|
kwargs["max_tokens"] = max_tokens_field.default
|
|
@@ -1264,6 +1277,8 @@ class RESTfulAPI(CancelMixin):
|
|
|
1264
1277
|
# https://github.com/openai/openai-python/blob/e0aafc6c1a45334ac889fe3e54957d309c3af93f/src/openai/_streaming.py#L107
|
|
1265
1278
|
yield dict(data=json.dumps({"error": str(ex)}))
|
|
1266
1279
|
return
|
|
1280
|
+
finally:
|
|
1281
|
+
await model.decrease_serve_count()
|
|
1267
1282
|
|
|
1268
1283
|
return EventSourceResponse(stream_results())
|
|
1269
1284
|
else:
|
|
@@ -1312,6 +1327,41 @@ class RESTfulAPI(CancelMixin):
|
|
|
1312
1327
|
await self._report_error_event(model_uid, str(e))
|
|
1313
1328
|
raise HTTPException(status_code=500, detail=str(e))
|
|
1314
1329
|
|
|
1330
|
+
async def convert_ids_to_tokens(self, request: Request) -> Response:
|
|
1331
|
+
payload = await request.json()
|
|
1332
|
+
body = CreateEmbeddingRequest.parse_obj(payload)
|
|
1333
|
+
model_uid = body.model
|
|
1334
|
+
exclude = {
|
|
1335
|
+
"model",
|
|
1336
|
+
"input",
|
|
1337
|
+
"user",
|
|
1338
|
+
}
|
|
1339
|
+
kwargs = {key: value for key, value in payload.items() if key not in exclude}
|
|
1340
|
+
|
|
1341
|
+
try:
|
|
1342
|
+
model = await (await self._get_supervisor_ref()).get_model(model_uid)
|
|
1343
|
+
except ValueError as ve:
|
|
1344
|
+
logger.error(str(ve), exc_info=True)
|
|
1345
|
+
await self._report_error_event(model_uid, str(ve))
|
|
1346
|
+
raise HTTPException(status_code=400, detail=str(ve))
|
|
1347
|
+
except Exception as e:
|
|
1348
|
+
logger.error(e, exc_info=True)
|
|
1349
|
+
await self._report_error_event(model_uid, str(e))
|
|
1350
|
+
raise HTTPException(status_code=500, detail=str(e))
|
|
1351
|
+
|
|
1352
|
+
try:
|
|
1353
|
+
decoded_texts = await model.convert_ids_to_tokens(body.input, **kwargs)
|
|
1354
|
+
return Response(decoded_texts, media_type="application/json")
|
|
1355
|
+
except RuntimeError as re:
|
|
1356
|
+
logger.error(re, exc_info=True)
|
|
1357
|
+
await self._report_error_event(model_uid, str(re))
|
|
1358
|
+
self.handle_request_limit_error(re)
|
|
1359
|
+
raise HTTPException(status_code=400, detail=str(re))
|
|
1360
|
+
except Exception as e:
|
|
1361
|
+
logger.error(e, exc_info=True)
|
|
1362
|
+
await self._report_error_event(model_uid, str(e))
|
|
1363
|
+
raise HTTPException(status_code=500, detail=str(e))
|
|
1364
|
+
|
|
1315
1365
|
async def rerank(self, request: Request) -> Response:
|
|
1316
1366
|
payload = await request.json()
|
|
1317
1367
|
body = RerankRequest.parse_obj(payload)
|
|
@@ -1495,8 +1545,16 @@ class RESTfulAPI(CancelMixin):
|
|
|
1495
1545
|
**parsed_kwargs,
|
|
1496
1546
|
)
|
|
1497
1547
|
if body.stream:
|
|
1548
|
+
|
|
1549
|
+
async def stream_results():
|
|
1550
|
+
try:
|
|
1551
|
+
async for item in out:
|
|
1552
|
+
yield item
|
|
1553
|
+
finally:
|
|
1554
|
+
await model.decrease_serve_count()
|
|
1555
|
+
|
|
1498
1556
|
return EventSourceResponse(
|
|
1499
|
-
media_type="application/octet-stream", content=
|
|
1557
|
+
media_type="application/octet-stream", content=stream_results()
|
|
1500
1558
|
)
|
|
1501
1559
|
else:
|
|
1502
1560
|
return Response(media_type="application/octet-stream", content=out)
|
|
@@ -1916,9 +1974,13 @@ class RESTfulAPI(CancelMixin):
|
|
|
1916
1974
|
"logit_bias_type",
|
|
1917
1975
|
"user",
|
|
1918
1976
|
}
|
|
1977
|
+
|
|
1919
1978
|
raw_kwargs = {k: v for k, v in raw_body.items() if k not in exclude}
|
|
1920
1979
|
kwargs = body.dict(exclude_unset=True, exclude=exclude)
|
|
1921
1980
|
|
|
1981
|
+
# guided_decoding params
|
|
1982
|
+
kwargs.update(self.extract_guided_params(raw_body=raw_body))
|
|
1983
|
+
|
|
1922
1984
|
# TODO: Decide if this default value override is necessary #1061
|
|
1923
1985
|
if body.max_tokens is None:
|
|
1924
1986
|
kwargs["max_tokens"] = max_tokens_field.default
|
|
@@ -2027,6 +2089,8 @@ class RESTfulAPI(CancelMixin):
|
|
|
2027
2089
|
# https://github.com/openai/openai-python/blob/e0aafc6c1a45334ac889fe3e54957d309c3af93f/src/openai/_streaming.py#L107
|
|
2028
2090
|
yield dict(data=json.dumps({"error": str(ex)}))
|
|
2029
2091
|
return
|
|
2092
|
+
finally:
|
|
2093
|
+
await model.decrease_serve_count()
|
|
2030
2094
|
|
|
2031
2095
|
return EventSourceResponse(stream_results())
|
|
2032
2096
|
else:
|
|
@@ -2279,6 +2343,27 @@ class RESTfulAPI(CancelMixin):
|
|
|
2279
2343
|
logger.error(e, exc_info=True)
|
|
2280
2344
|
raise HTTPException(status_code=500, detail=str(e))
|
|
2281
2345
|
|
|
2346
|
+
@staticmethod
|
|
2347
|
+
def extract_guided_params(raw_body: dict) -> dict:
|
|
2348
|
+
kwargs = {}
|
|
2349
|
+
if raw_body.get("guided_json") is not None:
|
|
2350
|
+
kwargs["guided_json"] = raw_body.get("guided_json")
|
|
2351
|
+
if raw_body.get("guided_regex") is not None:
|
|
2352
|
+
kwargs["guided_regex"] = raw_body.get("guided_regex")
|
|
2353
|
+
if raw_body.get("guided_choice") is not None:
|
|
2354
|
+
kwargs["guided_choice"] = raw_body.get("guided_choice")
|
|
2355
|
+
if raw_body.get("guided_grammar") is not None:
|
|
2356
|
+
kwargs["guided_grammar"] = raw_body.get("guided_grammar")
|
|
2357
|
+
if raw_body.get("guided_json_object") is not None:
|
|
2358
|
+
kwargs["guided_json_object"] = raw_body.get("guided_json_object")
|
|
2359
|
+
if raw_body.get("guided_decoding_backend") is not None:
|
|
2360
|
+
kwargs["guided_decoding_backend"] = raw_body.get("guided_decoding_backend")
|
|
2361
|
+
if raw_body.get("guided_whitespace_pattern") is not None:
|
|
2362
|
+
kwargs["guided_whitespace_pattern"] = raw_body.get(
|
|
2363
|
+
"guided_whitespace_pattern"
|
|
2364
|
+
)
|
|
2365
|
+
return kwargs
|
|
2366
|
+
|
|
2282
2367
|
|
|
2283
2368
|
def run(
|
|
2284
2369
|
supervisor_address: str,
|
|
@@ -126,6 +126,43 @@ class RESTfulEmbeddingModelHandle(RESTfulModelHandle):
|
|
|
126
126
|
response_data = response.json()
|
|
127
127
|
return response_data
|
|
128
128
|
|
|
129
|
+
def convert_ids_to_tokens(
|
|
130
|
+
self, input: Union[List, List[List]], **kwargs
|
|
131
|
+
) -> List[str]:
|
|
132
|
+
"""
|
|
133
|
+
Convert token IDs to human readable tokens via RESTful APIs.
|
|
134
|
+
|
|
135
|
+
Parameters
|
|
136
|
+
----------
|
|
137
|
+
input: Union[List, List[List]]
|
|
138
|
+
Input token IDs to convert, can be a single list of token IDs or a list of token ID lists.
|
|
139
|
+
To convert multiple sequences in a single request, pass a list of token ID lists.
|
|
140
|
+
|
|
141
|
+
Returns
|
|
142
|
+
-------
|
|
143
|
+
list
|
|
144
|
+
A list of decoded tokens in human readable format.
|
|
145
|
+
|
|
146
|
+
Raises
|
|
147
|
+
------
|
|
148
|
+
RuntimeError
|
|
149
|
+
Report the failure of token conversion and provide the error message.
|
|
150
|
+
|
|
151
|
+
"""
|
|
152
|
+
url = f"{self._base_url}/v1/convert_ids_to_tokens"
|
|
153
|
+
request_body = {
|
|
154
|
+
"model": self._model_uid,
|
|
155
|
+
"input": input,
|
|
156
|
+
}
|
|
157
|
+
request_body.update(kwargs)
|
|
158
|
+
response = requests.post(url, json=request_body, headers=self.auth_headers)
|
|
159
|
+
if response.status_code != 200:
|
|
160
|
+
raise RuntimeError(
|
|
161
|
+
f"Failed to decode token ids, detail: {_get_error_string(response)}"
|
|
162
|
+
)
|
|
163
|
+
response_data = response.json()
|
|
164
|
+
return response_data
|
|
165
|
+
|
|
129
166
|
|
|
130
167
|
class RESTfulRerankModelHandle(RESTfulModelHandle):
|
|
131
168
|
def rerank(
|
|
@@ -704,6 +741,8 @@ class RESTfulAudioModelHandle(RESTfulModelHandle):
|
|
|
704
741
|
The speed of the generated audio.
|
|
705
742
|
stream: bool
|
|
706
743
|
Use stream or not.
|
|
744
|
+
prompt_speech: bytes
|
|
745
|
+
The audio bytes to be provided to the model.
|
|
707
746
|
|
|
708
747
|
Returns
|
|
709
748
|
-------
|
xinference/core/model.py
CHANGED
|
@@ -91,21 +91,26 @@ def request_limit(fn):
|
|
|
91
91
|
logger.debug(
|
|
92
92
|
f"Request {fn.__name__}, current serve request count: {self._serve_count}, request limit: {self._request_limits} for the model {self.model_uid()}"
|
|
93
93
|
)
|
|
94
|
-
if self.
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
94
|
+
if 1 + self._serve_count <= self._request_limits:
|
|
95
|
+
self._serve_count += 1
|
|
96
|
+
else:
|
|
97
|
+
raise RuntimeError(
|
|
98
|
+
f"Rate limit reached for the model. Request limit {self._request_limits} for the model: {self.model_uid()}"
|
|
99
|
+
)
|
|
100
|
+
ret = None
|
|
101
101
|
try:
|
|
102
102
|
ret = await fn(self, *args, **kwargs)
|
|
103
103
|
finally:
|
|
104
|
-
if
|
|
104
|
+
if ret is not None and (
|
|
105
|
+
inspect.isasyncgen(ret) or inspect.isgenerator(ret)
|
|
106
|
+
):
|
|
107
|
+
# stream case, let client call model_ref to decrease self._serve_count
|
|
108
|
+
pass
|
|
109
|
+
else:
|
|
105
110
|
self._serve_count -= 1
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
111
|
+
logger.debug(
|
|
112
|
+
f"After request {fn.__name__}, current serve request count: {self._serve_count} for the model {self.model_uid()}"
|
|
113
|
+
)
|
|
109
114
|
return ret
|
|
110
115
|
|
|
111
116
|
return wrapped_func
|
|
@@ -215,7 +220,9 @@ class ModelActor(xo.StatelessActor, CancelMixin):
|
|
|
215
220
|
self._model_description = (
|
|
216
221
|
model_description.to_dict() if model_description else {}
|
|
217
222
|
)
|
|
218
|
-
self._request_limits =
|
|
223
|
+
self._request_limits = (
|
|
224
|
+
float("inf") if request_limits is None else request_limits
|
|
225
|
+
)
|
|
219
226
|
self._pending_requests: asyncio.Queue = asyncio.Queue()
|
|
220
227
|
self._handle_pending_requests_task = None
|
|
221
228
|
self._lock = (
|
|
@@ -268,6 +275,9 @@ class ModelActor(xo.StatelessActor, CancelMixin):
|
|
|
268
275
|
def __repr__(self) -> str:
|
|
269
276
|
return f"ModelActor({self._replica_model_uid})"
|
|
270
277
|
|
|
278
|
+
def decrease_serve_count(self):
|
|
279
|
+
self._serve_count -= 1
|
|
280
|
+
|
|
271
281
|
async def _record_completion_metrics(
|
|
272
282
|
self, duration, completion_tokens, prompt_tokens
|
|
273
283
|
):
|
|
@@ -794,6 +804,19 @@ class ModelActor(xo.StatelessActor, CancelMixin):
|
|
|
794
804
|
f"Model {self._model.model_spec} is not for creating embedding."
|
|
795
805
|
)
|
|
796
806
|
|
|
807
|
+
@request_limit
|
|
808
|
+
@log_async(logger=logger)
|
|
809
|
+
async def convert_ids_to_tokens(
|
|
810
|
+
self, input: Union[List, List[List]], *args, **kwargs
|
|
811
|
+
):
|
|
812
|
+
kwargs.pop("request_id", None)
|
|
813
|
+
if hasattr(self._model, "convert_ids_to_tokens"):
|
|
814
|
+
return await self._call_wrapper_json(
|
|
815
|
+
self._model.convert_ids_to_tokens, input, *args, **kwargs
|
|
816
|
+
)
|
|
817
|
+
|
|
818
|
+
raise AttributeError(f"Model {self._model.model_spec} can convert token id.")
|
|
819
|
+
|
|
797
820
|
@request_limit
|
|
798
821
|
@log_async(logger=logger)
|
|
799
822
|
async def rerank(
|
|
@@ -15,6 +15,8 @@
|
|
|
15
15
|
import codecs
|
|
16
16
|
import json
|
|
17
17
|
import os
|
|
18
|
+
import platform
|
|
19
|
+
import sys
|
|
18
20
|
import warnings
|
|
19
21
|
from typing import Any, Dict
|
|
20
22
|
|
|
@@ -55,6 +57,14 @@ def register_custom_model():
|
|
|
55
57
|
warnings.warn(f"{user_defined_audio_dir}/{f} has error, {e}")
|
|
56
58
|
|
|
57
59
|
|
|
60
|
+
def _need_filter(spec: dict):
|
|
61
|
+
if (sys.platform != "darwin" or platform.processor() != "arm") and spec.get(
|
|
62
|
+
"engine", ""
|
|
63
|
+
).upper() == "MLX":
|
|
64
|
+
return True
|
|
65
|
+
return False
|
|
66
|
+
|
|
67
|
+
|
|
58
68
|
def _install():
|
|
59
69
|
_model_spec_json = os.path.join(os.path.dirname(__file__), "model_spec.json")
|
|
60
70
|
_model_spec_modelscope_json = os.path.join(
|
|
@@ -64,6 +74,7 @@ def _install():
|
|
|
64
74
|
dict(
|
|
65
75
|
(spec["model_name"], AudioModelFamilyV1(**spec))
|
|
66
76
|
for spec in json.load(codecs.open(_model_spec_json, "r", encoding="utf-8"))
|
|
77
|
+
if not _need_filter(spec)
|
|
67
78
|
)
|
|
68
79
|
)
|
|
69
80
|
for model_name, model_spec in BUILTIN_AUDIO_MODELS.items():
|
|
@@ -75,6 +86,7 @@ def _install():
|
|
|
75
86
|
for spec in json.load(
|
|
76
87
|
codecs.open(_model_spec_modelscope_json, "r", encoding="utf-8")
|
|
77
88
|
)
|
|
89
|
+
if not _need_filter(spec)
|
|
78
90
|
)
|
|
79
91
|
)
|
|
80
92
|
for model_name, model_spec in MODELSCOPE_AUDIO_MODELS.items():
|
xinference/model/audio/core.py
CHANGED
|
@@ -24,6 +24,7 @@ from .cosyvoice import CosyVoiceModel
|
|
|
24
24
|
from .fish_speech import FishSpeechModel
|
|
25
25
|
from .funasr import FunASRModel
|
|
26
26
|
from .whisper import WhisperModel
|
|
27
|
+
from .whisper_mlx import WhisperMLXModel
|
|
27
28
|
|
|
28
29
|
logger = logging.getLogger(__name__)
|
|
29
30
|
|
|
@@ -43,11 +44,12 @@ class AudioModelFamilyV1(CacheableModelSpec):
|
|
|
43
44
|
model_family: str
|
|
44
45
|
model_name: str
|
|
45
46
|
model_id: str
|
|
46
|
-
model_revision: str
|
|
47
|
+
model_revision: Optional[str]
|
|
47
48
|
multilingual: bool
|
|
48
49
|
model_ability: Optional[str]
|
|
49
50
|
default_model_config: Optional[Dict[str, Any]]
|
|
50
51
|
default_transcription_config: Optional[Dict[str, Any]]
|
|
52
|
+
engine: Optional[str]
|
|
51
53
|
|
|
52
54
|
|
|
53
55
|
class AudioModelDescription(ModelDescription):
|
|
@@ -160,17 +162,32 @@ def create_audio_model_instance(
|
|
|
160
162
|
model_path: Optional[str] = None,
|
|
161
163
|
**kwargs,
|
|
162
164
|
) -> Tuple[
|
|
163
|
-
Union[
|
|
165
|
+
Union[
|
|
166
|
+
WhisperModel,
|
|
167
|
+
WhisperMLXModel,
|
|
168
|
+
FunASRModel,
|
|
169
|
+
ChatTTSModel,
|
|
170
|
+
CosyVoiceModel,
|
|
171
|
+
FishSpeechModel,
|
|
172
|
+
],
|
|
164
173
|
AudioModelDescription,
|
|
165
174
|
]:
|
|
166
175
|
model_spec = match_audio(model_name, download_hub)
|
|
167
176
|
if model_path is None:
|
|
168
177
|
model_path = cache(model_spec)
|
|
169
178
|
model: Union[
|
|
170
|
-
WhisperModel,
|
|
179
|
+
WhisperModel,
|
|
180
|
+
WhisperMLXModel,
|
|
181
|
+
FunASRModel,
|
|
182
|
+
ChatTTSModel,
|
|
183
|
+
CosyVoiceModel,
|
|
184
|
+
FishSpeechModel,
|
|
171
185
|
]
|
|
172
186
|
if model_spec.model_family == "whisper":
|
|
173
|
-
|
|
187
|
+
if not model_spec.engine:
|
|
188
|
+
model = WhisperModel(model_uid, model_path, model_spec, **kwargs)
|
|
189
|
+
else:
|
|
190
|
+
model = WhisperMLXModel(model_uid, model_path, model_spec, **kwargs)
|
|
174
191
|
elif model_spec.model_family == "funasr":
|
|
175
192
|
model = FunASRModel(model_uid, model_path, model_spec, **kwargs)
|
|
176
193
|
elif model_spec.model_family == "ChatTTS":
|
|
@@ -81,12 +81,14 @@ class FishSpeechModel:
|
|
|
81
81
|
if not is_device_available(self._device):
|
|
82
82
|
raise ValueError(f"Device {self._device} is not available!")
|
|
83
83
|
|
|
84
|
-
|
|
84
|
+
enable_compile = self._kwargs.get("compile", False)
|
|
85
|
+
precision = self._kwargs.get("precision", torch.bfloat16)
|
|
86
|
+
logger.info("Loading Llama model, compile=%s...", enable_compile)
|
|
85
87
|
self._llama_queue = launch_thread_safe_queue(
|
|
86
88
|
checkpoint_path=self._model_path,
|
|
87
89
|
device=self._device,
|
|
88
|
-
precision=
|
|
89
|
-
compile=
|
|
90
|
+
precision=precision,
|
|
91
|
+
compile=enable_compile,
|
|
90
92
|
)
|
|
91
93
|
logger.info("Llama model loaded, loading VQ-GAN model...")
|
|
92
94
|
|
|
@@ -112,9 +114,10 @@ class FishSpeechModel:
|
|
|
112
114
|
top_p,
|
|
113
115
|
repetition_penalty,
|
|
114
116
|
temperature,
|
|
117
|
+
seed="0",
|
|
115
118
|
streaming=False,
|
|
116
119
|
):
|
|
117
|
-
from fish_speech.utils import autocast_exclude_mps
|
|
120
|
+
from fish_speech.utils import autocast_exclude_mps, set_seed
|
|
118
121
|
from tools.api import decode_vq_tokens, encode_reference
|
|
119
122
|
from tools.llama.generate import (
|
|
120
123
|
GenerateRequest,
|
|
@@ -122,6 +125,11 @@ class FishSpeechModel:
|
|
|
122
125
|
WrappedGenerateResponse,
|
|
123
126
|
)
|
|
124
127
|
|
|
128
|
+
seed = int(seed)
|
|
129
|
+
if seed != 0:
|
|
130
|
+
set_seed(seed)
|
|
131
|
+
logger.warning(f"set seed: {seed}")
|
|
132
|
+
|
|
125
133
|
# Parse reference audio aka prompt
|
|
126
134
|
prompt_tokens = encode_reference(
|
|
127
135
|
decoder_model=self._model,
|
|
@@ -137,7 +145,7 @@ class FishSpeechModel:
|
|
|
137
145
|
top_p=top_p,
|
|
138
146
|
repetition_penalty=repetition_penalty,
|
|
139
147
|
temperature=temperature,
|
|
140
|
-
compile=False,
|
|
148
|
+
compile=self._kwargs.get("compile", False),
|
|
141
149
|
iterative_prompt=chunk_length > 0,
|
|
142
150
|
chunk_length=chunk_length,
|
|
143
151
|
max_length=2048,
|
|
@@ -153,22 +161,20 @@ class FishSpeechModel:
|
|
|
153
161
|
)
|
|
154
162
|
)
|
|
155
163
|
|
|
156
|
-
if streaming:
|
|
157
|
-
yield wav_chunk_header(), None, None
|
|
158
|
-
|
|
159
164
|
segments = []
|
|
160
165
|
|
|
161
166
|
while True:
|
|
162
|
-
result: WrappedGenerateResponse = response_queue.get()
|
|
167
|
+
result: WrappedGenerateResponse = response_queue.get()
|
|
163
168
|
if result.status == "error":
|
|
164
|
-
raise
|
|
169
|
+
raise result.response
|
|
165
170
|
|
|
166
|
-
result: GenerateResponse = result.response
|
|
171
|
+
result: GenerateResponse = result.response
|
|
167
172
|
if result.action == "next":
|
|
168
173
|
break
|
|
169
174
|
|
|
170
175
|
with autocast_exclude_mps(
|
|
171
|
-
device_type=self._model.device.type,
|
|
176
|
+
device_type=self._model.device.type,
|
|
177
|
+
dtype=self._kwargs.get("precision", torch.bfloat16),
|
|
172
178
|
):
|
|
173
179
|
fake_audios = decode_vq_tokens(
|
|
174
180
|
decoder_model=self._model,
|
|
@@ -179,7 +185,7 @@ class FishSpeechModel:
|
|
|
179
185
|
segments.append(fake_audios)
|
|
180
186
|
|
|
181
187
|
if streaming:
|
|
182
|
-
yield
|
|
188
|
+
yield fake_audios, None, None
|
|
183
189
|
|
|
184
190
|
if len(segments) == 0:
|
|
185
191
|
raise Exception("No audio generated, please check the input text.")
|
|
@@ -204,29 +210,58 @@ class FishSpeechModel:
|
|
|
204
210
|
logger.warning("Fish speech does not support setting voice: %s.", voice)
|
|
205
211
|
if speed != 1.0:
|
|
206
212
|
logger.warning("Fish speech does not support setting speed: %s.", speed)
|
|
207
|
-
if stream is True:
|
|
208
|
-
logger.warning("stream mode is not implemented.")
|
|
209
213
|
import torchaudio
|
|
210
214
|
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
)
|
|
215
|
+
prompt_speech = kwargs.get("prompt_speech")
|
|
216
|
+
result = self._inference(
|
|
217
|
+
text=input,
|
|
218
|
+
enable_reference_audio=kwargs.get(
|
|
219
|
+
"enable_reference_audio", prompt_speech is not None
|
|
220
|
+
),
|
|
221
|
+
reference_audio=prompt_speech,
|
|
222
|
+
reference_text=kwargs.get("reference_text", ""),
|
|
223
|
+
max_new_tokens=kwargs.get("max_new_tokens", 1024),
|
|
224
|
+
chunk_length=kwargs.get("chunk_length", 200),
|
|
225
|
+
top_p=kwargs.get("top_p", 0.7),
|
|
226
|
+
repetition_penalty=kwargs.get("repetition_penalty", 1.2),
|
|
227
|
+
temperature=kwargs.get("temperature", 0.7),
|
|
228
|
+
streaming=stream,
|
|
223
229
|
)
|
|
224
|
-
sample_rate, audio = result[0][1]
|
|
225
|
-
audio = np.array([audio])
|
|
226
230
|
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
231
|
+
if stream:
|
|
232
|
+
|
|
233
|
+
def _stream_generator():
|
|
234
|
+
with BytesIO() as out:
|
|
235
|
+
writer = torchaudio.io.StreamWriter(out, format=response_format)
|
|
236
|
+
writer.add_audio_stream(
|
|
237
|
+
sample_rate=self._model.spec_transform.sample_rate,
|
|
238
|
+
num_channels=1,
|
|
239
|
+
)
|
|
240
|
+
i = 0
|
|
241
|
+
last_pos = 0
|
|
242
|
+
with writer.open():
|
|
243
|
+
for chunk in result:
|
|
244
|
+
chunk = chunk[0]
|
|
245
|
+
if chunk is not None:
|
|
246
|
+
chunk = chunk.reshape((chunk.shape[0], 1))
|
|
247
|
+
trans_chunk = torch.from_numpy(chunk)
|
|
248
|
+
writer.write_audio_chunk(i, trans_chunk)
|
|
249
|
+
new_last_pos = out.tell()
|
|
250
|
+
if new_last_pos != last_pos:
|
|
251
|
+
out.seek(last_pos)
|
|
252
|
+
encoded_bytes = out.read()
|
|
253
|
+
yield encoded_bytes
|
|
254
|
+
last_pos = new_last_pos
|
|
255
|
+
|
|
256
|
+
return _stream_generator()
|
|
257
|
+
else:
|
|
258
|
+
result = list(result)
|
|
259
|
+
sample_rate, audio = result[0][1]
|
|
260
|
+
audio = np.array([audio])
|
|
261
|
+
|
|
262
|
+
# Save the generated audio
|
|
263
|
+
with BytesIO() as out:
|
|
264
|
+
torchaudio.save(
|
|
265
|
+
out, torch.from_numpy(audio), sample_rate, format=response_format
|
|
266
|
+
)
|
|
267
|
+
return out.getvalue()
|