xinference 0.9.4__py3-none-any.whl → 0.10.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (59) hide show
  1. xinference/_version.py +3 -3
  2. xinference/api/oauth2/auth_service.py +47 -18
  3. xinference/api/oauth2/types.py +1 -0
  4. xinference/api/restful_api.py +9 -1
  5. xinference/client/restful/restful_client.py +12 -2
  6. xinference/conftest.py +13 -2
  7. xinference/core/supervisor.py +32 -1
  8. xinference/core/worker.py +139 -20
  9. xinference/deploy/cmdline.py +119 -20
  10. xinference/model/llm/__init__.py +4 -0
  11. xinference/model/llm/llm_family.json +627 -0
  12. xinference/model/llm/llm_family_modelscope.json +471 -0
  13. xinference/model/llm/pytorch/core.py +2 -0
  14. xinference/model/llm/pytorch/deepseek_vl.py +232 -0
  15. xinference/model/llm/pytorch/omnilmm.py +153 -0
  16. xinference/model/llm/utils.py +11 -1
  17. xinference/model/llm/vllm/core.py +3 -0
  18. xinference/thirdparty/deepseek_vl/__init__.py +31 -0
  19. xinference/thirdparty/deepseek_vl/models/__init__.py +28 -0
  20. xinference/thirdparty/deepseek_vl/models/clip_encoder.py +242 -0
  21. xinference/thirdparty/deepseek_vl/models/image_processing_vlm.py +208 -0
  22. xinference/thirdparty/deepseek_vl/models/modeling_vlm.py +170 -0
  23. xinference/thirdparty/deepseek_vl/models/processing_vlm.py +390 -0
  24. xinference/thirdparty/deepseek_vl/models/projector.py +100 -0
  25. xinference/thirdparty/deepseek_vl/models/sam.py +593 -0
  26. xinference/thirdparty/deepseek_vl/models/siglip_vit.py +681 -0
  27. xinference/thirdparty/deepseek_vl/utils/__init__.py +18 -0
  28. xinference/thirdparty/deepseek_vl/utils/conversation.py +348 -0
  29. xinference/thirdparty/deepseek_vl/utils/io.py +78 -0
  30. xinference/thirdparty/omnilmm/__init__.py +0 -0
  31. xinference/thirdparty/omnilmm/chat.py +216 -0
  32. xinference/thirdparty/omnilmm/constants.py +4 -0
  33. xinference/thirdparty/omnilmm/conversation.py +332 -0
  34. xinference/thirdparty/omnilmm/model/__init__.py +1 -0
  35. xinference/thirdparty/omnilmm/model/omnilmm.py +594 -0
  36. xinference/thirdparty/omnilmm/model/resampler.py +166 -0
  37. xinference/thirdparty/omnilmm/model/utils.py +563 -0
  38. xinference/thirdparty/omnilmm/train/__init__.py +13 -0
  39. xinference/thirdparty/omnilmm/train/train_utils.py +150 -0
  40. xinference/thirdparty/omnilmm/utils.py +134 -0
  41. xinference/web/ui/build/asset-manifest.json +3 -3
  42. xinference/web/ui/build/index.html +1 -1
  43. xinference/web/ui/build/static/js/main.98516614.js +3 -0
  44. xinference/web/ui/build/static/js/main.98516614.js.map +1 -0
  45. xinference/web/ui/node_modules/.cache/babel-loader/139969fd25258eb7decc9505f30b779089bba50c402bb5c663008477c7bff73b.json +1 -0
  46. xinference/web/ui/node_modules/.cache/babel-loader/3f357ab57b8e7fade54c667f0e0ebf2787566f72bfdca0fea14e395b5c203753.json +1 -0
  47. xinference/web/ui/node_modules/.cache/babel-loader/9d7c49815d97539207e5aab2fb967591b5fed7791218a0762539efc9491f36af.json +1 -0
  48. xinference/web/ui/node_modules/.cache/babel-loader/d0d0b591d9adaf42b83ad6633f8b7c118541a4b80ea957c303d3bf9b86fbad0a.json +1 -0
  49. {xinference-0.9.4.dist-info → xinference-0.10.0.dist-info}/METADATA +18 -5
  50. {xinference-0.9.4.dist-info → xinference-0.10.0.dist-info}/RECORD +55 -28
  51. xinference/web/ui/build/static/js/main.66b1c4fb.js +0 -3
  52. xinference/web/ui/build/static/js/main.66b1c4fb.js.map +0 -1
  53. xinference/web/ui/node_modules/.cache/babel-loader/c2124cfe036b26befcbd386d1d17743b1a58d0b7a041a17bb67f9924400d63c3.json +0 -1
  54. xinference/web/ui/node_modules/.cache/babel-loader/fd4a8ae5d192331af1bedd1d2d70efcc569708ee6cc4cb479b225d059482aa81.json +0 -1
  55. /xinference/web/ui/build/static/js/{main.66b1c4fb.js.LICENSE.txt → main.98516614.js.LICENSE.txt} +0 -0
  56. {xinference-0.9.4.dist-info → xinference-0.10.0.dist-info}/LICENSE +0 -0
  57. {xinference-0.9.4.dist-info → xinference-0.10.0.dist-info}/WHEEL +0 -0
  58. {xinference-0.9.4.dist-info → xinference-0.10.0.dist-info}/entry_points.txt +0 -0
  59. {xinference-0.9.4.dist-info → xinference-0.10.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,390 @@
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from dataclasses import dataclass
21
+ from typing import Dict, List
22
+
23
+ import torch
24
+ from PIL.Image import Image
25
+ from transformers import LlamaTokenizerFast
26
+ from transformers.processing_utils import ProcessorMixin
27
+
28
+ from .image_processing_vlm import VLMImageProcessor
29
+ from ..utils.conversation import get_conv_template
30
+
31
+
32
+ class DictOutput(object):
33
+ def keys(self):
34
+ return self.__dict__.keys()
35
+
36
+ def __getitem__(self, item):
37
+ return self.__dict__[item]
38
+
39
+ def __setitem__(self, key, value):
40
+ self.__dict__[key] = value
41
+
42
+
43
+ @dataclass
44
+ class VLChatProcessorOutput(DictOutput):
45
+ sft_format: str
46
+ input_ids: torch.Tensor
47
+ pixel_values: torch.Tensor
48
+ num_image_tokens: torch.IntTensor
49
+
50
+ def __len__(self):
51
+ return len(self.input_ids)
52
+
53
+
54
+ @dataclass
55
+ class BatchedVLChatProcessorOutput(DictOutput):
56
+ sft_format: List[str]
57
+ input_ids: torch.Tensor
58
+ pixel_values: torch.Tensor
59
+ attention_mask: torch.Tensor
60
+ images_seq_mask: torch.BoolTensor
61
+ images_emb_mask: torch.BoolTensor
62
+
63
+ def to(self, device, dtype=torch.bfloat16):
64
+ self.input_ids = self.input_ids.to(device)
65
+ self.attention_mask = self.attention_mask.to(device)
66
+ self.images_seq_mask = self.images_seq_mask.to(device)
67
+ self.images_emb_mask = self.images_emb_mask.to(device)
68
+ self.pixel_values = self.pixel_values.to(device=device, dtype=dtype)
69
+ return self
70
+
71
+
72
+ class VLChatProcessor(ProcessorMixin):
73
+ image_processor_class = "AutoImageProcessor"
74
+ tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
75
+
76
+ attributes = ["image_processor", "tokenizer"]
77
+
78
+ system_prompt = (
79
+ "You are a helpful language and vision assistant. "
80
+ "You are able to understand the visual content that the user provides, "
81
+ "and assist the user with a variety of tasks using natural language."
82
+ )
83
+
84
+ def __init__(
85
+ self,
86
+ image_processor: VLMImageProcessor,
87
+ tokenizer: LlamaTokenizerFast,
88
+ image_tag: str = "<image_placeholder>",
89
+ num_image_tokens: int = 576,
90
+ add_special_token: bool = False,
91
+ sft_format: str = "deepseek",
92
+ mask_prompt: bool = True,
93
+ ignore_id: int = -100,
94
+ **kwargs,
95
+ ):
96
+ self.image_processor = image_processor
97
+ self.tokenizer = tokenizer
98
+
99
+ image_id = self.tokenizer.vocab.get(image_tag)
100
+ if image_id is None:
101
+ special_tokens = [image_tag]
102
+ special_tokens_dict = {"additional_special_tokens": special_tokens}
103
+ self.tokenizer.add_special_tokens(special_tokens_dict)
104
+ print(f"Add image tag = {image_tag} to the tokenizer")
105
+
106
+ self.image_tag = image_tag
107
+ self.num_image_tokens = num_image_tokens
108
+ self.add_special_token = add_special_token
109
+ self.sft_format = sft_format
110
+ self.mask_prompt = mask_prompt
111
+ self.ignore_id = ignore_id
112
+
113
+ super().__init__(
114
+ image_processor,
115
+ tokenizer,
116
+ image_tag,
117
+ num_image_tokens,
118
+ add_special_token,
119
+ sft_format,
120
+ mask_prompt,
121
+ ignore_id,
122
+ **kwargs,
123
+ )
124
+
125
+ def new_chat_template(self):
126
+ conv = get_conv_template(self.sft_format)
127
+ conv.set_system_message(self.system_prompt)
128
+ return conv
129
+
130
+ def apply_sft_template_for_multi_turn_prompts(
131
+ self,
132
+ conversations: List[Dict[str, str]],
133
+ sft_format: str = "deepseek",
134
+ system_prompt: str = "",
135
+ ):
136
+ """
137
+ Applies the SFT template to conversation.
138
+
139
+ An example of conversation:
140
+ conversation = [
141
+ {
142
+ "role": "User",
143
+ "content": "<image_placeholder> is Figure 1.\n<image_placeholder> is Figure 2.\nWhich image is brighter?",
144
+ "images": [
145
+ "./multi-images/attribute_comparison_1.png",
146
+ "./multi-images/attribute_comparison_2.png"
147
+ ]
148
+ },
149
+ {
150
+ "role": "Assistant",
151
+ "content": ""
152
+ }
153
+ ]
154
+
155
+ Args:
156
+ conversations (List[Dict]): A conversation with a List of Dict[str, str] text.
157
+ sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
158
+ system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".
159
+
160
+ Returns:
161
+ sft_prompt (str): The formatted text.
162
+ """
163
+
164
+ conv = get_conv_template(sft_format)
165
+ conv.set_system_message(system_prompt)
166
+ for message in conversations:
167
+ conv.append_message(message["role"], message["content"].strip())
168
+ sft_prompt = conv.get_prompt().strip()
169
+
170
+ return sft_prompt
171
+
172
+ @property
173
+ def image_token(self):
174
+ return self.image_tag
175
+
176
+ @property
177
+ def image_id(self):
178
+ image_id = self.tokenizer.vocab.get(self.image_tag)
179
+ return image_id
180
+
181
+ @property
182
+ def pad_id(self):
183
+ pad_id = self.tokenizer.pad_token_id
184
+ if pad_id is None:
185
+ pad_id = self.tokenizer.eos_token_id
186
+
187
+ return pad_id
188
+
189
+ def add_image_token(
190
+ self,
191
+ image_indices: List[int],
192
+ input_ids: torch.LongTensor,
193
+ ):
194
+ """
195
+
196
+ Args:
197
+ image_indices (List[int]): [index_0, index_1, ..., index_j]
198
+ input_ids (torch.LongTensor): [N]
199
+
200
+ Returns:
201
+ input_ids (torch.LongTensor): [N + image tokens]
202
+ num_image_tokens (torch.IntTensor): [n_images]
203
+ """
204
+
205
+ input_slices = []
206
+
207
+ start = 0
208
+ for index in image_indices:
209
+ if self.add_special_token:
210
+ end = index + 1
211
+ else:
212
+ end = index
213
+
214
+ # original text tokens
215
+ input_slices.append(input_ids[start:end])
216
+
217
+ # add image tokens, and set the mask as False
218
+ input_slices.append(
219
+ self.image_id * torch.ones((self.num_image_tokens,), dtype=torch.long)
220
+ )
221
+ start = index + 1
222
+
223
+ # the left part
224
+ input_slices.append(input_ids[start:])
225
+
226
+ # concat all slices
227
+ input_ids = torch.cat(input_slices, dim=0)
228
+ num_image_tokens = torch.IntTensor([self.num_image_tokens] * len(image_indices))
229
+
230
+ return input_ids, num_image_tokens
231
+
232
+ def process_one(
233
+ self,
234
+ prompt: str = None,
235
+ conversations: List[Dict[str, str]] = None,
236
+ images: List[Image] = None,
237
+ **kwargs,
238
+ ):
239
+ """
240
+
241
+ Args:
242
+ prompt (str): the formatted prompt;
243
+ conversations (List[Dict]): conversations with a list of messages;
244
+ images (List[ImageType]): the list of images;
245
+ **kwargs:
246
+
247
+ Returns:
248
+ outputs (BaseProcessorOutput): the output of the processor,
249
+ - input_ids (torch.LongTensor): [N + image tokens]
250
+ - target_ids (torch.LongTensor): [N + image tokens]
251
+ - images (torch.FloatTensor): [n_images, 3, H, W]
252
+ - image_id (int): the id of the image token
253
+ - num_image_tokens (List[int]): the number of image tokens
254
+ """
255
+
256
+ assert (
257
+ prompt is None or conversations is None
258
+ ), "prompt and conversations cannot be used at the same time."
259
+
260
+ if prompt is None:
261
+ # apply sft format
262
+ sft_format = self.apply_sft_template_for_multi_turn_prompts(
263
+ conversations=conversations,
264
+ sft_format=self.sft_format,
265
+ system_prompt=self.system_prompt,
266
+ )
267
+ else:
268
+ sft_format = prompt
269
+
270
+ # tokenize
271
+ input_ids = self.tokenizer.encode(sft_format)
272
+ input_ids = torch.LongTensor(input_ids)
273
+
274
+ # add image tokens to the input_ids
275
+ image_token_mask: torch.BoolTensor = input_ids == self.image_id
276
+ image_indices = image_token_mask.nonzero()
277
+ input_ids, num_image_tokens = self.add_image_token(
278
+ image_indices=image_indices,
279
+ input_ids=input_ids,
280
+ )
281
+
282
+ # load images
283
+ images_outputs = self.image_processor(images, return_tensors="pt")
284
+
285
+ prepare = VLChatProcessorOutput(
286
+ sft_format=sft_format,
287
+ input_ids=input_ids,
288
+ pixel_values=images_outputs.pixel_values,
289
+ num_image_tokens=num_image_tokens,
290
+ )
291
+
292
+ return prepare
293
+
294
+ def __call__(
295
+ self,
296
+ *,
297
+ prompt: str = None,
298
+ conversations: List[Dict[str, str]] = None,
299
+ images: List[Image] = None,
300
+ force_batchify: bool = True,
301
+ **kwargs,
302
+ ):
303
+ """
304
+
305
+ Args:
306
+ prompt (str): the formatted prompt;
307
+ conversations (List[Dict]): conversations with a list of messages;
308
+ images (List[ImageType]): the list of images;
309
+ force_batchify (bool): force batchify the inputs;
310
+ **kwargs:
311
+
312
+ Returns:
313
+ outputs (BaseProcessorOutput): the output of the processor,
314
+ - input_ids (torch.LongTensor): [N + image tokens]
315
+ - images (torch.FloatTensor): [n_images, 3, H, W]
316
+ - image_id (int): the id of the image token
317
+ - num_image_tokens (List[int]): the number of image tokens
318
+ """
319
+
320
+ prepare = self.process_one(
321
+ prompt=prompt, conversations=conversations, images=images
322
+ )
323
+
324
+ if force_batchify:
325
+ prepare = self.batchify([prepare])
326
+
327
+ return prepare
328
+
329
+ def batchify(
330
+ self, prepare_list: List[VLChatProcessorOutput]
331
+ ) -> BatchedVLChatProcessorOutput:
332
+ """
333
+ Preprocesses the inputs for multimodal inference.
334
+
335
+ Args:
336
+ prepare_list (List[VLChatProcessorOutput]): A list of VLChatProcessorOutput.
337
+
338
+ Returns:
339
+ BatchedVLChatProcessorOutput: A dictionary of the inputs to use for multimodal inference.
340
+ """
341
+
342
+ batch_size = len(prepare_list)
343
+ sft_format = []
344
+ n_images = []
345
+ seq_lens = []
346
+ for prepare in prepare_list:
347
+ n_images.append(len(prepare.num_image_tokens))
348
+ seq_lens.append(len(prepare))
349
+
350
+ input_token_max_len = max(seq_lens)
351
+ max_n_images = max(1, max(n_images))
352
+
353
+ batched_input_ids = torch.full(
354
+ (batch_size, input_token_max_len), self.pad_id
355
+ ).long() # FIXME
356
+ batched_attention_mask = torch.zeros((batch_size, input_token_max_len)).long()
357
+ batched_pixel_values = torch.zeros(
358
+ (batch_size, max_n_images, *self.image_processor.default_shape)
359
+ ).float()
360
+ batched_images_seq_mask = torch.zeros((batch_size, input_token_max_len)).bool()
361
+ batched_images_emb_mask = torch.zeros(
362
+ (batch_size, max_n_images, self.num_image_tokens)
363
+ ).bool()
364
+
365
+ for i, prepare in enumerate(prepare_list):
366
+ input_ids = prepare.input_ids
367
+ seq_len = len(prepare)
368
+ n_image = len(prepare.num_image_tokens)
369
+ # left-padding
370
+ batched_attention_mask[i, -seq_len:] = 1
371
+ batched_input_ids[i, -seq_len:] = torch.LongTensor(input_ids)
372
+ batched_images_seq_mask[i, -seq_len:] = input_ids == self.image_id
373
+
374
+ if n_image > 0:
375
+ batched_pixel_values[i, :n_image] = prepare.pixel_values
376
+ for j, n_image_tokens in enumerate(prepare.num_image_tokens):
377
+ batched_images_emb_mask[i, j, :n_image_tokens] = True
378
+
379
+ sft_format.append(prepare.sft_format)
380
+
381
+ batched_prepares = BatchedVLChatProcessorOutput(
382
+ input_ids=batched_input_ids,
383
+ attention_mask=batched_attention_mask,
384
+ pixel_values=batched_pixel_values,
385
+ images_seq_mask=batched_images_seq_mask,
386
+ images_emb_mask=batched_images_emb_mask,
387
+ sft_format=sft_format,
388
+ )
389
+
390
+ return batched_prepares
@@ -0,0 +1,100 @@
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from typing import Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn as nn
24
+ from attrdict import AttrDict
25
+
26
+
27
+ class MlpProjector(nn.Module):
28
+ def __init__(self, cfg):
29
+ super().__init__()
30
+
31
+ self.cfg = cfg
32
+
33
+ if cfg.projector_type == "identity":
34
+ modules = nn.Identity()
35
+
36
+ elif cfg.projector_type == "linear":
37
+ modules = nn.Linear(cfg.input_dim, cfg.n_embed)
38
+
39
+ elif cfg.projector_type == "mlp_gelu":
40
+ mlp_depth = cfg.get("depth", 1)
41
+ modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
42
+ for _ in range(1, mlp_depth):
43
+ modules.append(nn.GELU())
44
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
45
+ modules = nn.Sequential(*modules)
46
+
47
+ elif cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
48
+ mlp_depth = cfg.get("depth", 1)
49
+ self.high_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
50
+ self.low_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
51
+
52
+ modules = []
53
+ for _ in range(1, mlp_depth):
54
+ modules.append(nn.GELU())
55
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
56
+ modules = nn.Sequential(*modules)
57
+
58
+ else:
59
+ raise ValueError(f"Unknown projector type: {cfg.projector_type}")
60
+
61
+ self.layers = modules
62
+
63
+ def forward(
64
+ self, x_or_tuple: Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]
65
+ ):
66
+ """
67
+
68
+ Args:
69
+ x_or_tuple (Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]: if it is a tuple of torch.Tensor,
70
+ then it comes from the hybrid vision encoder, and x = high_res_x, low_res_x);
71
+ otherwise it is the feature from the single vision encoder.
72
+
73
+ Returns:
74
+ x (torch.Tensor): [b, s, c]
75
+ """
76
+
77
+ if isinstance(x_or_tuple, tuple):
78
+ # self.cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
79
+ high_x, low_x = x_or_tuple
80
+ high_x = self.high_up_proj(high_x)
81
+ low_x = self.low_up_proj(low_x)
82
+ x = torch.concat([high_x, low_x], dim=-1)
83
+ else:
84
+ x = x_or_tuple
85
+
86
+ return self.layers(x)
87
+
88
+
89
+ if __name__ == "__main__":
90
+ cfg = AttrDict(
91
+ input_dim=1024,
92
+ n_embed=2048,
93
+ depth=2,
94
+ projector_type="low_high_hybrid_split_mlp_gelu",
95
+ )
96
+ inputs = (torch.rand(4, 576, 1024), torch.rand(4, 576, 1024))
97
+
98
+ m = MlpProjector(cfg)
99
+ out = m(inputs)
100
+ print(out.shape)