xinference 0.9.3__py3-none-any.whl → 0.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/oauth2/auth_service.py +47 -18
- xinference/api/oauth2/types.py +1 -0
- xinference/api/restful_api.py +16 -11
- xinference/client/restful/restful_client.py +12 -2
- xinference/conftest.py +13 -2
- xinference/constants.py +2 -0
- xinference/core/supervisor.py +32 -1
- xinference/core/worker.py +139 -20
- xinference/deploy/cmdline.py +119 -20
- xinference/model/llm/__init__.py +6 -0
- xinference/model/llm/llm_family.json +711 -10
- xinference/model/llm/llm_family_modelscope.json +557 -7
- xinference/model/llm/pytorch/chatglm.py +2 -1
- xinference/model/llm/pytorch/core.py +2 -0
- xinference/model/llm/pytorch/deepseek_vl.py +232 -0
- xinference/model/llm/pytorch/internlm2.py +2 -1
- xinference/model/llm/pytorch/omnilmm.py +153 -0
- xinference/model/llm/sglang/__init__.py +13 -0
- xinference/model/llm/sglang/core.py +365 -0
- xinference/model/llm/utils.py +46 -13
- xinference/model/llm/vllm/core.py +10 -0
- xinference/thirdparty/deepseek_vl/__init__.py +31 -0
- xinference/thirdparty/deepseek_vl/models/__init__.py +28 -0
- xinference/thirdparty/deepseek_vl/models/clip_encoder.py +242 -0
- xinference/thirdparty/deepseek_vl/models/image_processing_vlm.py +208 -0
- xinference/thirdparty/deepseek_vl/models/modeling_vlm.py +170 -0
- xinference/thirdparty/deepseek_vl/models/processing_vlm.py +390 -0
- xinference/thirdparty/deepseek_vl/models/projector.py +100 -0
- xinference/thirdparty/deepseek_vl/models/sam.py +593 -0
- xinference/thirdparty/deepseek_vl/models/siglip_vit.py +681 -0
- xinference/thirdparty/deepseek_vl/utils/__init__.py +18 -0
- xinference/thirdparty/deepseek_vl/utils/conversation.py +348 -0
- xinference/thirdparty/deepseek_vl/utils/io.py +78 -0
- xinference/thirdparty/omnilmm/__init__.py +0 -0
- xinference/thirdparty/omnilmm/chat.py +216 -0
- xinference/thirdparty/omnilmm/constants.py +4 -0
- xinference/thirdparty/omnilmm/conversation.py +332 -0
- xinference/thirdparty/omnilmm/model/__init__.py +1 -0
- xinference/thirdparty/omnilmm/model/omnilmm.py +594 -0
- xinference/thirdparty/omnilmm/model/resampler.py +166 -0
- xinference/thirdparty/omnilmm/model/utils.py +563 -0
- xinference/thirdparty/omnilmm/train/__init__.py +13 -0
- xinference/thirdparty/omnilmm/train/train_utils.py +150 -0
- xinference/thirdparty/omnilmm/utils.py +134 -0
- xinference/web/ui/build/asset-manifest.json +3 -3
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/js/main.98516614.js +3 -0
- xinference/web/ui/build/static/js/main.98516614.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/139969fd25258eb7decc9505f30b779089bba50c402bb5c663008477c7bff73b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3f357ab57b8e7fade54c667f0e0ebf2787566f72bfdca0fea14e395b5c203753.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9d7c49815d97539207e5aab2fb967591b5fed7791218a0762539efc9491f36af.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d0d0b591d9adaf42b83ad6633f8b7c118541a4b80ea957c303d3bf9b86fbad0a.json +1 -0
- {xinference-0.9.3.dist-info → xinference-0.10.0.dist-info}/METADATA +21 -5
- {xinference-0.9.3.dist-info → xinference-0.10.0.dist-info}/RECORD +60 -31
- xinference/web/ui/build/static/js/main.66b1c4fb.js +0 -3
- xinference/web/ui/build/static/js/main.66b1c4fb.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c2124cfe036b26befcbd386d1d17743b1a58d0b7a041a17bb67f9924400d63c3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/fd4a8ae5d192331af1bedd1d2d70efcc569708ee6cc4cb479b225d059482aa81.json +0 -1
- /xinference/web/ui/build/static/js/{main.66b1c4fb.js.LICENSE.txt → main.98516614.js.LICENSE.txt} +0 -0
- {xinference-0.9.3.dist-info → xinference-0.10.0.dist-info}/LICENSE +0 -0
- {xinference-0.9.3.dist-info → xinference-0.10.0.dist-info}/WHEEL +0 -0
- {xinference-0.9.3.dist-info → xinference-0.10.0.dist-info}/entry_points.txt +0 -0
- {xinference-0.9.3.dist-info → xinference-0.10.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,242 @@
|
|
|
1
|
+
# Copyright (c) 2023-2024 DeepSeek.
|
|
2
|
+
#
|
|
3
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
4
|
+
# this software and associated documentation files (the "Software"), to deal in
|
|
5
|
+
# the Software without restriction, including without limitation the rights to
|
|
6
|
+
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
7
|
+
# the Software, and to permit persons to whom the Software is furnished to do so,
|
|
8
|
+
# subject to the following conditions:
|
|
9
|
+
#
|
|
10
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
11
|
+
# copies or substantial portions of the Software.
|
|
12
|
+
#
|
|
13
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
14
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
15
|
+
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
16
|
+
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
17
|
+
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
18
|
+
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
19
|
+
|
|
20
|
+
from typing import Dict, List, Literal, Optional, Tuple, Union
|
|
21
|
+
|
|
22
|
+
import torch
|
|
23
|
+
import torch.nn as nn
|
|
24
|
+
import torchvision.transforms
|
|
25
|
+
from einops import rearrange
|
|
26
|
+
|
|
27
|
+
from .sam import create_sam_vit
|
|
28
|
+
from .siglip_vit import create_siglip_vit
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class CLIPVisionTower(nn.Module):
|
|
32
|
+
def __init__(
|
|
33
|
+
self,
|
|
34
|
+
model_name: str = "siglip_large_patch16_384",
|
|
35
|
+
image_size: Union[Tuple[int, int], int] = 336,
|
|
36
|
+
select_feature: str = "patch",
|
|
37
|
+
select_layer: int = -2,
|
|
38
|
+
select_layers: list = None,
|
|
39
|
+
ckpt_path: str = "",
|
|
40
|
+
pixel_mean: Optional[List[float]] = None,
|
|
41
|
+
pixel_std: Optional[List[float]] = None,
|
|
42
|
+
**kwargs,
|
|
43
|
+
):
|
|
44
|
+
super().__init__()
|
|
45
|
+
|
|
46
|
+
self.model_name = model_name
|
|
47
|
+
self.select_feature = select_feature
|
|
48
|
+
self.select_layer = select_layer
|
|
49
|
+
self.select_layers = select_layers
|
|
50
|
+
|
|
51
|
+
vision_tower_params = {
|
|
52
|
+
"model_name": model_name,
|
|
53
|
+
"image_size": image_size,
|
|
54
|
+
"ckpt_path": ckpt_path,
|
|
55
|
+
"select_layer": select_layer,
|
|
56
|
+
}
|
|
57
|
+
vision_tower_params.update(kwargs)
|
|
58
|
+
self.vision_tower, self.forward_kwargs = self.build_vision_tower(
|
|
59
|
+
vision_tower_params
|
|
60
|
+
)
|
|
61
|
+
|
|
62
|
+
if pixel_mean is not None and pixel_std is not None:
|
|
63
|
+
image_norm = torchvision.transforms.Normalize(
|
|
64
|
+
mean=pixel_mean, std=pixel_std
|
|
65
|
+
)
|
|
66
|
+
else:
|
|
67
|
+
image_norm = None
|
|
68
|
+
|
|
69
|
+
self.image_norm = image_norm
|
|
70
|
+
|
|
71
|
+
def build_vision_tower(self, vision_tower_params):
|
|
72
|
+
if self.model_name.startswith("siglip"):
|
|
73
|
+
self.select_feature = "same"
|
|
74
|
+
vision_tower = create_siglip_vit(**vision_tower_params)
|
|
75
|
+
forward_kwargs = dict()
|
|
76
|
+
|
|
77
|
+
elif self.model_name.startswith("sam"):
|
|
78
|
+
vision_tower = create_sam_vit(**vision_tower_params)
|
|
79
|
+
forward_kwargs = dict()
|
|
80
|
+
|
|
81
|
+
else: # huggingface
|
|
82
|
+
from transformers import CLIPVisionModel
|
|
83
|
+
|
|
84
|
+
vision_tower = CLIPVisionModel.from_pretrained(**vision_tower_params)
|
|
85
|
+
forward_kwargs = dict(output_hidden_states=True)
|
|
86
|
+
|
|
87
|
+
return vision_tower, forward_kwargs
|
|
88
|
+
|
|
89
|
+
def feature_select(self, image_forward_outs):
|
|
90
|
+
if isinstance(image_forward_outs, torch.Tensor):
|
|
91
|
+
# the output has been the self.select_layer"s features
|
|
92
|
+
image_features = image_forward_outs
|
|
93
|
+
else:
|
|
94
|
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
|
95
|
+
|
|
96
|
+
if self.select_feature == "patch":
|
|
97
|
+
# if the output has cls_token
|
|
98
|
+
image_features = image_features[:, 1:]
|
|
99
|
+
elif self.select_feature == "cls_patch":
|
|
100
|
+
image_features = image_features
|
|
101
|
+
elif self.select_feature == "same":
|
|
102
|
+
image_features = image_features
|
|
103
|
+
|
|
104
|
+
else:
|
|
105
|
+
raise ValueError(f"Unexpected select feature: {self.select_feature}")
|
|
106
|
+
return image_features
|
|
107
|
+
|
|
108
|
+
def forward(self, images):
|
|
109
|
+
"""
|
|
110
|
+
|
|
111
|
+
Args:
|
|
112
|
+
images (torch.Tensor): [b, 3, H, W]
|
|
113
|
+
|
|
114
|
+
Returns:
|
|
115
|
+
image_features (torch.Tensor): [b, n_patch, d]
|
|
116
|
+
"""
|
|
117
|
+
|
|
118
|
+
if self.image_norm is not None:
|
|
119
|
+
images = self.image_norm(images)
|
|
120
|
+
|
|
121
|
+
image_forward_outs = self.vision_tower(images, **self.forward_kwargs)
|
|
122
|
+
image_features = self.feature_select(image_forward_outs)
|
|
123
|
+
return image_features
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
class HybridVisionTower(nn.Module):
|
|
127
|
+
def __init__(
|
|
128
|
+
self,
|
|
129
|
+
high_res_cfg: Dict,
|
|
130
|
+
low_res_cfg: Dict,
|
|
131
|
+
freeze_high: bool = False,
|
|
132
|
+
freeze_low: bool = False,
|
|
133
|
+
concat_type: Literal["feature", "sequence", "add", "tuple"] = "tuple",
|
|
134
|
+
**ignore_kwargs,
|
|
135
|
+
):
|
|
136
|
+
super().__init__()
|
|
137
|
+
|
|
138
|
+
self.vision_tower_high = CLIPVisionTower(**high_res_cfg)
|
|
139
|
+
self.vision_tower_low = CLIPVisionTower(**low_res_cfg)
|
|
140
|
+
self.low_res_size = low_res_cfg["image_size"]
|
|
141
|
+
self.concat_type = concat_type
|
|
142
|
+
|
|
143
|
+
self.high_layer_norm = nn.LayerNorm(high_res_cfg.get("output_dim", 1024))
|
|
144
|
+
self.low_layer_norm = nn.LayerNorm(low_res_cfg.get("output_dim", 1024))
|
|
145
|
+
|
|
146
|
+
if freeze_high:
|
|
147
|
+
for p_name, p in self.vision_tower_high.named_parameters():
|
|
148
|
+
p.requires_grad = False
|
|
149
|
+
self.vision_tower_high = self.vision_tower_high.eval()
|
|
150
|
+
else:
|
|
151
|
+
# train donwsamples and neck
|
|
152
|
+
for p_name, p in self.vision_tower_high.named_parameters():
|
|
153
|
+
if "downsamples" in p_name or "neck" in p_name:
|
|
154
|
+
p.requires_grad = True
|
|
155
|
+
else:
|
|
156
|
+
p.requires_grad = False
|
|
157
|
+
|
|
158
|
+
if freeze_low:
|
|
159
|
+
for p in self.vision_tower_low.parameters():
|
|
160
|
+
p.requires_grad = False
|
|
161
|
+
self.vision_tower_low = self.vision_tower_low.eval()
|
|
162
|
+
|
|
163
|
+
self.resize = torchvision.transforms.Resize(self.low_res_size, antialias=True)
|
|
164
|
+
|
|
165
|
+
def forward(self, images: torch.Tensor):
|
|
166
|
+
"""
|
|
167
|
+
|
|
168
|
+
Args:
|
|
169
|
+
images (torch.Tensor): [bs, 3, H, W]
|
|
170
|
+
|
|
171
|
+
Returns:
|
|
172
|
+
res (torch.Tensor): [bs, t, c]
|
|
173
|
+
"""
|
|
174
|
+
|
|
175
|
+
# [bs, c, h, w]
|
|
176
|
+
high_images = images
|
|
177
|
+
|
|
178
|
+
# [bs, c, h_low, w_low]
|
|
179
|
+
low_images = self.resize(images)
|
|
180
|
+
|
|
181
|
+
# separately run two vision towers
|
|
182
|
+
# run high_res vision tower
|
|
183
|
+
high_res = self.vision_tower_high(high_images)
|
|
184
|
+
# [bs, c, h, w] -> [bs, h*w, c]
|
|
185
|
+
high_res = rearrange(high_res, "b c h w -> b (h w) c")
|
|
186
|
+
# run low_res vision tower
|
|
187
|
+
low_res = self.vision_tower_low(low_images)
|
|
188
|
+
|
|
189
|
+
if self.concat_type == "feature":
|
|
190
|
+
images_features = torch.cat([high_res, low_res], dim=-1)
|
|
191
|
+
elif self.concat_type == "sequence":
|
|
192
|
+
images_features = torch.cat([high_res, low_res], dim=1)
|
|
193
|
+
elif self.concat_type == "add":
|
|
194
|
+
images_features = high_res + low_res
|
|
195
|
+
elif self.concat_type == "tuple":
|
|
196
|
+
images_features = (high_res, low_res)
|
|
197
|
+
|
|
198
|
+
else:
|
|
199
|
+
raise ValueError(
|
|
200
|
+
"Currently only support `feature`, `sequence`, `add` and `tuple` concat type."
|
|
201
|
+
)
|
|
202
|
+
|
|
203
|
+
return images_features
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
if __name__ == "__main__":
|
|
207
|
+
image_size = 1024
|
|
208
|
+
x = torch.zeros(2, 3, image_size, image_size).bfloat16().cuda()
|
|
209
|
+
|
|
210
|
+
high_res_cfg = dict(
|
|
211
|
+
model_name="sam_b_downsample",
|
|
212
|
+
select_feature="same",
|
|
213
|
+
image_size=image_size,
|
|
214
|
+
pixel_mean=(0.48145466, 0.4578275, 0.40821073),
|
|
215
|
+
pixel_std=(0.26862954, 0.26130258, 0.27577711),
|
|
216
|
+
select_layer=-1,
|
|
217
|
+
ckpt_path="",
|
|
218
|
+
)
|
|
219
|
+
|
|
220
|
+
low_res_cfg = dict(
|
|
221
|
+
model_name="siglip_large_patch16_384",
|
|
222
|
+
select_feature="same",
|
|
223
|
+
image_size=384,
|
|
224
|
+
pixel_mean=(0.5, 0.5, 0.5),
|
|
225
|
+
pixel_std=(0.5, 0.5, 0.5),
|
|
226
|
+
select_layer=-1,
|
|
227
|
+
ckpt_path="",
|
|
228
|
+
)
|
|
229
|
+
|
|
230
|
+
net = (
|
|
231
|
+
HybridVisionTower(
|
|
232
|
+
high_res_cfg=high_res_cfg,
|
|
233
|
+
low_res_cfg=low_res_cfg,
|
|
234
|
+
freeze_high=True,
|
|
235
|
+
freeze_low=True,
|
|
236
|
+
concat_type="tuple",
|
|
237
|
+
)
|
|
238
|
+
.bfloat16()
|
|
239
|
+
.cuda()
|
|
240
|
+
)
|
|
241
|
+
high_x, low_x = net(x)
|
|
242
|
+
print(x.shape, high_x.shape, low_x.shape)
|
|
@@ -0,0 +1,208 @@
|
|
|
1
|
+
# Copyright (c) 2023-2024 DeepSeek.
|
|
2
|
+
#
|
|
3
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
4
|
+
# this software and associated documentation files (the "Software"), to deal in
|
|
5
|
+
# the Software without restriction, including without limitation the rights to
|
|
6
|
+
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
7
|
+
# the Software, and to permit persons to whom the Software is furnished to do so,
|
|
8
|
+
# subject to the following conditions:
|
|
9
|
+
#
|
|
10
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
11
|
+
# copies or substantial portions of the Software.
|
|
12
|
+
#
|
|
13
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
14
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
15
|
+
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
16
|
+
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
17
|
+
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
18
|
+
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
19
|
+
|
|
20
|
+
from typing import List, Tuple, Union
|
|
21
|
+
|
|
22
|
+
import numpy as np
|
|
23
|
+
import torch
|
|
24
|
+
import torchvision
|
|
25
|
+
import torchvision.transforms.functional
|
|
26
|
+
from PIL import Image
|
|
27
|
+
from transformers import AutoImageProcessor, PretrainedConfig
|
|
28
|
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
|
29
|
+
from transformers.image_utils import to_numpy_array
|
|
30
|
+
from transformers.utils import logging
|
|
31
|
+
|
|
32
|
+
logger = logging.get_logger(__name__)
|
|
33
|
+
|
|
34
|
+
ImageType = Union[np.ndarray, torch.Tensor, Image.Image]
|
|
35
|
+
IMAGENET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
|
36
|
+
IMAGENET_STD = (0.26862954, 0.26130258, 0.27577711)
|
|
37
|
+
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5)
|
|
38
|
+
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def expand2square(pil_img, background_color):
|
|
42
|
+
width, height = pil_img.size
|
|
43
|
+
if width == height:
|
|
44
|
+
return pil_img
|
|
45
|
+
elif width > height:
|
|
46
|
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
|
47
|
+
result.paste(pil_img, (0, (width - height) // 2))
|
|
48
|
+
return result
|
|
49
|
+
else:
|
|
50
|
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
|
51
|
+
result.paste(pil_img, ((height - width) // 2, 0))
|
|
52
|
+
return result
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
class VLMImageProcessorConfig(PretrainedConfig):
|
|
56
|
+
model_type = "deepseek_vlm"
|
|
57
|
+
image_size: int
|
|
58
|
+
min_size: int
|
|
59
|
+
image_mean: Union[Tuple[float, float, float], List[float]]
|
|
60
|
+
image_std: Union[Tuple[float, float, float], List[float]]
|
|
61
|
+
rescale_factor: float
|
|
62
|
+
do_normalize: bool
|
|
63
|
+
|
|
64
|
+
def __init__(
|
|
65
|
+
self,
|
|
66
|
+
image_size: int,
|
|
67
|
+
min_size: int = 14,
|
|
68
|
+
image_mean: Union[Tuple[float, float, float], List[float]] = (
|
|
69
|
+
0.48145466,
|
|
70
|
+
0.4578275,
|
|
71
|
+
0.40821073,
|
|
72
|
+
),
|
|
73
|
+
image_std: Union[Tuple[float, float, float], List[float]] = (
|
|
74
|
+
0.26862954,
|
|
75
|
+
0.26130258,
|
|
76
|
+
0.27577711,
|
|
77
|
+
),
|
|
78
|
+
rescale_factor: float = 1.0 / 255.0,
|
|
79
|
+
do_normalize: bool = True,
|
|
80
|
+
**kwargs,
|
|
81
|
+
):
|
|
82
|
+
self.image_size = image_size
|
|
83
|
+
self.min_size = min_size
|
|
84
|
+
self.image_mean = image_mean
|
|
85
|
+
self.image_std = image_std
|
|
86
|
+
self.rescale_factor = rescale_factor
|
|
87
|
+
self.do_normalize = do_normalize
|
|
88
|
+
|
|
89
|
+
super().__init__(**kwargs)
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
class VLMImageProcessor(BaseImageProcessor):
|
|
93
|
+
model_input_names = ["pixel_values"]
|
|
94
|
+
|
|
95
|
+
def __init__(
|
|
96
|
+
self,
|
|
97
|
+
image_size: int,
|
|
98
|
+
min_size: int = 14,
|
|
99
|
+
image_mean: Union[Tuple[float, float, float], List[float]] = (
|
|
100
|
+
0.48145466,
|
|
101
|
+
0.4578275,
|
|
102
|
+
0.40821073,
|
|
103
|
+
),
|
|
104
|
+
image_std: Union[Tuple[float, float, float], List[float]] = (
|
|
105
|
+
0.26862954,
|
|
106
|
+
0.26130258,
|
|
107
|
+
0.27577711,
|
|
108
|
+
),
|
|
109
|
+
rescale_factor: float = 1.0 / 255.0,
|
|
110
|
+
do_normalize: bool = True,
|
|
111
|
+
**kwargs,
|
|
112
|
+
):
|
|
113
|
+
super().__init__(**kwargs)
|
|
114
|
+
|
|
115
|
+
self.image_size = image_size
|
|
116
|
+
self.rescale_factor = rescale_factor
|
|
117
|
+
self.image_mean = image_mean
|
|
118
|
+
self.image_std = image_std
|
|
119
|
+
self.min_size = min_size
|
|
120
|
+
self.do_normalize = do_normalize
|
|
121
|
+
|
|
122
|
+
if image_mean is None:
|
|
123
|
+
self.background_color = (127, 127, 127)
|
|
124
|
+
else:
|
|
125
|
+
self.background_color = tuple([int(x * 255) for x in image_mean])
|
|
126
|
+
|
|
127
|
+
def resize(self, pil_img: Image) -> np.ndarray:
|
|
128
|
+
"""
|
|
129
|
+
|
|
130
|
+
Args:
|
|
131
|
+
pil_img (PIL.Image): [H, W, 3] in PIL.Image in RGB
|
|
132
|
+
|
|
133
|
+
Returns:
|
|
134
|
+
x (np.ndarray): [3, self.image_size, self.image_size]
|
|
135
|
+
"""
|
|
136
|
+
|
|
137
|
+
width, height = pil_img.size
|
|
138
|
+
max_size = max(width, height)
|
|
139
|
+
|
|
140
|
+
size = [
|
|
141
|
+
max(int(height / max_size * self.image_size), self.min_size),
|
|
142
|
+
max(int(width / max_size * self.image_size), self.min_size),
|
|
143
|
+
]
|
|
144
|
+
|
|
145
|
+
if width <= 0 or height <= 0 or size[0] <= 0 or size[1] <= 0:
|
|
146
|
+
print(f"orig size = {pil_img.size}, new size = {size}")
|
|
147
|
+
raise ValueError("Invalid size!")
|
|
148
|
+
|
|
149
|
+
pil_img = torchvision.transforms.functional.resize(
|
|
150
|
+
pil_img,
|
|
151
|
+
size,
|
|
152
|
+
interpolation=torchvision.transforms.functional.InterpolationMode.BICUBIC,
|
|
153
|
+
antialias=True,
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
pil_img = expand2square(pil_img, self.background_color)
|
|
157
|
+
x = to_numpy_array(pil_img)
|
|
158
|
+
|
|
159
|
+
# [H, W, 3] -> [3, H, W]
|
|
160
|
+
x = np.transpose(x, (2, 0, 1))
|
|
161
|
+
|
|
162
|
+
return x
|
|
163
|
+
|
|
164
|
+
def preprocess(self, images, return_tensors: str = "pt", **kwargs) -> BatchFeature:
|
|
165
|
+
# resize and pad to [self.image_size, self.image_size]
|
|
166
|
+
# then convert from [H, W, 3] to [3, H, W]
|
|
167
|
+
images: List[np.ndarray] = [self.resize(image) for image in images]
|
|
168
|
+
|
|
169
|
+
# resacle from [0, 255] -> [0, 1]
|
|
170
|
+
images = [
|
|
171
|
+
self.rescale(
|
|
172
|
+
image=image,
|
|
173
|
+
scale=self.rescale_factor,
|
|
174
|
+
input_data_format="channels_first",
|
|
175
|
+
)
|
|
176
|
+
for image in images
|
|
177
|
+
]
|
|
178
|
+
|
|
179
|
+
# normalize
|
|
180
|
+
if self.do_normalize:
|
|
181
|
+
images = [
|
|
182
|
+
self.normalize(
|
|
183
|
+
image=image,
|
|
184
|
+
mean=self.image_mean,
|
|
185
|
+
std=self.image_std,
|
|
186
|
+
input_data_format="channels_first",
|
|
187
|
+
)
|
|
188
|
+
for image in images
|
|
189
|
+
]
|
|
190
|
+
|
|
191
|
+
data = {"pixel_values": images}
|
|
192
|
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
|
193
|
+
|
|
194
|
+
@property
|
|
195
|
+
def default_shape(self):
|
|
196
|
+
return [3, self.image_size, self.image_size]
|
|
197
|
+
|
|
198
|
+
|
|
199
|
+
AutoImageProcessor.register(VLMImageProcessorConfig, VLMImageProcessor)
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
if __name__ == "__main__":
|
|
203
|
+
image_processor = VLMImageProcessor(
|
|
204
|
+
image_size=1024,
|
|
205
|
+
image_mean=IMAGENET_INCEPTION_MEAN,
|
|
206
|
+
image_std=IMAGENET_INCEPTION_STD,
|
|
207
|
+
do_normalize=True,
|
|
208
|
+
)
|
|
@@ -0,0 +1,170 @@
|
|
|
1
|
+
# Copyright (c) 2023-2024 DeepSeek.
|
|
2
|
+
#
|
|
3
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
4
|
+
# this software and associated documentation files (the "Software"), to deal in
|
|
5
|
+
# the Software without restriction, including without limitation the rights to
|
|
6
|
+
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
7
|
+
# the Software, and to permit persons to whom the Software is furnished to do so,
|
|
8
|
+
# subject to the following conditions:
|
|
9
|
+
#
|
|
10
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
11
|
+
# copies or substantial portions of the Software.
|
|
12
|
+
#
|
|
13
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
14
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
15
|
+
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
16
|
+
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
17
|
+
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
18
|
+
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
19
|
+
|
|
20
|
+
import torch
|
|
21
|
+
from attrdict import AttrDict
|
|
22
|
+
from einops import rearrange
|
|
23
|
+
from transformers import (
|
|
24
|
+
AutoConfig,
|
|
25
|
+
AutoModelForCausalLM,
|
|
26
|
+
LlamaConfig,
|
|
27
|
+
LlamaForCausalLM,
|
|
28
|
+
PreTrainedModel,
|
|
29
|
+
)
|
|
30
|
+
from transformers.configuration_utils import PretrainedConfig
|
|
31
|
+
|
|
32
|
+
from .clip_encoder import CLIPVisionTower, HybridVisionTower
|
|
33
|
+
from .projector import MlpProjector
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def model_name_to_cls(cls_name):
|
|
37
|
+
if "MlpProjector" in cls_name:
|
|
38
|
+
cls = MlpProjector
|
|
39
|
+
|
|
40
|
+
elif "CLIPVisionTower" in cls_name:
|
|
41
|
+
cls = CLIPVisionTower
|
|
42
|
+
|
|
43
|
+
elif "HybridVisionTower" in cls_name:
|
|
44
|
+
cls = HybridVisionTower
|
|
45
|
+
|
|
46
|
+
else:
|
|
47
|
+
raise ValueError(f"class_name {cls_name} is invalid.")
|
|
48
|
+
|
|
49
|
+
return cls
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
class VisionConfig(PretrainedConfig):
|
|
53
|
+
model_type = "vision"
|
|
54
|
+
cls: str = ""
|
|
55
|
+
params: AttrDict = {}
|
|
56
|
+
|
|
57
|
+
def __init__(self, **kwargs):
|
|
58
|
+
super().__init__(**kwargs)
|
|
59
|
+
|
|
60
|
+
self.cls = kwargs.get("cls", "")
|
|
61
|
+
if not isinstance(self.cls, str):
|
|
62
|
+
self.cls = self.cls.__name__
|
|
63
|
+
|
|
64
|
+
self.params = AttrDict(kwargs.get("params", {}))
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
class AlignerConfig(PretrainedConfig):
|
|
68
|
+
model_type = "aligner"
|
|
69
|
+
cls: str = ""
|
|
70
|
+
params: AttrDict = {}
|
|
71
|
+
|
|
72
|
+
def __init__(self, **kwargs):
|
|
73
|
+
super().__init__(**kwargs)
|
|
74
|
+
|
|
75
|
+
self.cls = kwargs.get("cls", "")
|
|
76
|
+
if not isinstance(self.cls, str):
|
|
77
|
+
self.cls = self.cls.__name__
|
|
78
|
+
|
|
79
|
+
self.params = AttrDict(kwargs.get("params", {}))
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
class MultiModalityConfig(PretrainedConfig):
|
|
83
|
+
model_type = "multi_modality"
|
|
84
|
+
vision_config: VisionConfig
|
|
85
|
+
aligner_config: AlignerConfig
|
|
86
|
+
language_config: LlamaConfig
|
|
87
|
+
|
|
88
|
+
def __init__(self, **kwargs):
|
|
89
|
+
super().__init__(**kwargs)
|
|
90
|
+
vision_config = kwargs.get("vision_config", {})
|
|
91
|
+
self.vision_config = VisionConfig(**vision_config)
|
|
92
|
+
|
|
93
|
+
aligner_config = kwargs.get("aligner_config", {})
|
|
94
|
+
self.aligner_config = AlignerConfig(**aligner_config)
|
|
95
|
+
|
|
96
|
+
language_config = kwargs.get("language_config", {})
|
|
97
|
+
if isinstance(language_config, LlamaConfig):
|
|
98
|
+
self.language_config = language_config
|
|
99
|
+
else:
|
|
100
|
+
self.language_config = LlamaConfig(**language_config)
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
class MultiModalityPreTrainedModel(PreTrainedModel):
|
|
104
|
+
config_class = MultiModalityConfig
|
|
105
|
+
base_model_prefix = "multi_modality"
|
|
106
|
+
_no_split_modules = []
|
|
107
|
+
_skip_keys_device_placement = "past_key_values"
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
class MultiModalityCausalLM(MultiModalityPreTrainedModel):
|
|
111
|
+
def __init__(self, config: MultiModalityConfig):
|
|
112
|
+
super().__init__(config)
|
|
113
|
+
|
|
114
|
+
vision_config = config.vision_config
|
|
115
|
+
vision_cls = model_name_to_cls(vision_config.cls)
|
|
116
|
+
self.vision_model = vision_cls(**vision_config.params)
|
|
117
|
+
|
|
118
|
+
aligner_config = config.aligner_config
|
|
119
|
+
aligner_cls = model_name_to_cls(aligner_config.cls)
|
|
120
|
+
self.aligner = aligner_cls(aligner_config.params)
|
|
121
|
+
|
|
122
|
+
language_config = config.language_config
|
|
123
|
+
self.language_model = LlamaForCausalLM(language_config)
|
|
124
|
+
|
|
125
|
+
def prepare_inputs_embeds(
|
|
126
|
+
self,
|
|
127
|
+
input_ids: torch.LongTensor,
|
|
128
|
+
pixel_values: torch.FloatTensor,
|
|
129
|
+
images_seq_mask: torch.LongTensor,
|
|
130
|
+
images_emb_mask: torch.LongTensor,
|
|
131
|
+
**kwargs,
|
|
132
|
+
):
|
|
133
|
+
"""
|
|
134
|
+
|
|
135
|
+
Args:
|
|
136
|
+
input_ids (torch.LongTensor): [b, T]
|
|
137
|
+
pixel_values (torch.FloatTensor): [b, n_images, 3, h, w]
|
|
138
|
+
images_seq_mask (torch.BoolTensor): [b, T]
|
|
139
|
+
images_emb_mask (torch.BoolTensor): [b, n_images, n_image_tokens]
|
|
140
|
+
|
|
141
|
+
assert torch.sum(images_seq_mask) == torch.sum(images_emb_mask)
|
|
142
|
+
|
|
143
|
+
Returns:
|
|
144
|
+
input_embeds (torch.Tensor): [b, T, D]
|
|
145
|
+
"""
|
|
146
|
+
|
|
147
|
+
bs, n = pixel_values.shape[0:2]
|
|
148
|
+
images = rearrange(pixel_values, "b n c h w -> (b n) c h w")
|
|
149
|
+
# [b x n, T2, D]
|
|
150
|
+
images_embeds = self.aligner(self.vision_model(images))
|
|
151
|
+
|
|
152
|
+
# [b x n, T2, D] -> [b, n x T2, D]
|
|
153
|
+
images_embeds = rearrange(images_embeds, "(b n) t d -> b (n t) d", b=bs, n=n)
|
|
154
|
+
# [b, n, T2] -> [b, n x T2]
|
|
155
|
+
images_emb_mask = rearrange(images_emb_mask, "b n t -> b (n t)")
|
|
156
|
+
|
|
157
|
+
# [b, T, D]
|
|
158
|
+
input_ids[input_ids < 0] = 0 # ignore the image embeddings
|
|
159
|
+
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
|
|
160
|
+
|
|
161
|
+
# replace with the image embeddings
|
|
162
|
+
inputs_embeds[images_seq_mask] = images_embeds[images_emb_mask]
|
|
163
|
+
|
|
164
|
+
return inputs_embeds
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
AutoConfig.register("vision", VisionConfig)
|
|
168
|
+
AutoConfig.register("aligner", AlignerConfig)
|
|
169
|
+
AutoConfig.register("multi_modality", MultiModalityConfig)
|
|
170
|
+
AutoModelForCausalLM.register(MultiModalityConfig, MultiModalityCausalLM)
|