xinference 0.15.4__py3-none-any.whl → 0.16.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/__init__.py +0 -4
- xinference/_version.py +3 -3
- xinference/constants.py +4 -4
- xinference/core/model.py +89 -18
- xinference/core/scheduler.py +10 -7
- xinference/core/utils.py +9 -0
- xinference/deploy/supervisor.py +4 -0
- xinference/model/__init__.py +4 -0
- xinference/model/image/scheduler/__init__.py +13 -0
- xinference/model/image/scheduler/flux.py +533 -0
- xinference/model/image/stable_diffusion/core.py +6 -31
- xinference/model/image/utils.py +39 -3
- xinference/model/llm/__init__.py +2 -0
- xinference/model/llm/llm_family.json +169 -1
- xinference/model/llm/llm_family_modelscope.json +108 -0
- xinference/model/llm/transformers/chatglm.py +104 -0
- xinference/model/llm/transformers/core.py +37 -111
- xinference/model/llm/transformers/deepseek_v2.py +0 -226
- xinference/model/llm/transformers/internlm2.py +3 -95
- xinference/model/llm/transformers/opt.py +68 -0
- xinference/model/llm/transformers/utils.py +4 -284
- xinference/model/llm/utils.py +2 -2
- xinference/model/llm/vllm/core.py +16 -1
- xinference/utils.py +2 -3
- xinference/web/ui/build/asset-manifest.json +3 -3
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/js/{main.e51a356d.js → main.f7da0140.js} +3 -3
- xinference/web/ui/build/static/js/main.f7da0140.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +1 -0
- {xinference-0.15.4.dist-info → xinference-0.16.0.dist-info}/METADATA +36 -4
- {xinference-0.15.4.dist-info → xinference-0.16.0.dist-info}/RECORD +36 -33
- xinference/web/ui/build/static/js/main.e51a356d.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4385c1095eefbff0a8ec3b2964ba6e5a66a05ab31be721483ca2f43e2a91f6ff.json +0 -1
- /xinference/web/ui/build/static/js/{main.e51a356d.js.LICENSE.txt → main.f7da0140.js.LICENSE.txt} +0 -0
- {xinference-0.15.4.dist-info → xinference-0.16.0.dist-info}/LICENSE +0 -0
- {xinference-0.15.4.dist-info → xinference-0.16.0.dist-info}/WHEEL +0 -0
- {xinference-0.15.4.dist-info → xinference-0.16.0.dist-info}/entry_points.txt +0 -0
- {xinference-0.15.4.dist-info → xinference-0.16.0.dist-info}/top_level.txt +0 -0
|
@@ -12,24 +12,10 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
import logging
|
|
15
|
-
import uuid
|
|
16
|
-
from typing import Dict, Iterator, List, Optional, Union
|
|
17
15
|
|
|
18
16
|
import torch
|
|
19
17
|
|
|
20
|
-
from ....types import (
|
|
21
|
-
ChatCompletion,
|
|
22
|
-
ChatCompletionChunk,
|
|
23
|
-
Completion,
|
|
24
|
-
CompletionChunk,
|
|
25
|
-
PytorchGenerateConfig,
|
|
26
|
-
)
|
|
27
18
|
from ..llm_family import LLMFamilyV1, LLMSpecV1
|
|
28
|
-
from ..utils import (
|
|
29
|
-
generate_chat_completion,
|
|
30
|
-
generate_completion,
|
|
31
|
-
generate_completion_chunk,
|
|
32
|
-
)
|
|
33
19
|
from .core import PytorchChatModel, PytorchModel
|
|
34
20
|
|
|
35
21
|
logger = logging.getLogger(__name__)
|
|
@@ -80,95 +66,6 @@ class DeepSeekV2PytorchModel(PytorchModel):
|
|
|
80
66
|
return False
|
|
81
67
|
return True
|
|
82
68
|
|
|
83
|
-
def generate(
|
|
84
|
-
self, prompt: str, generate_config: Optional[PytorchGenerateConfig] = None
|
|
85
|
-
) -> Union[Completion, Iterator[CompletionChunk]]:
|
|
86
|
-
input_tensor = self._tokenizer(prompt, return_tensors="pt")
|
|
87
|
-
generate_config = self._sanitize_generate_config(generate_config)
|
|
88
|
-
default_generate_config = self._model.generation_config
|
|
89
|
-
generate_kwargs = {
|
|
90
|
-
"input_ids": input_tensor["input_ids"].cuda(),
|
|
91
|
-
"attention_mask": input_tensor["attention_mask"].cuda(),
|
|
92
|
-
"temperature": float(
|
|
93
|
-
generate_config.get("temperature", default_generate_config.temperature)
|
|
94
|
-
),
|
|
95
|
-
"repetition_penalty": float(generate_config.get("repetition_penalty", 1.0)),
|
|
96
|
-
"top_p": float(generate_config.get("top_p", default_generate_config.top_p)),
|
|
97
|
-
"top_k": int(generate_config.get("top_k", -1)),
|
|
98
|
-
"max_new_tokens": generate_config.get("max_tokens", 512),
|
|
99
|
-
"bos_token_id": default_generate_config.bos_token_id,
|
|
100
|
-
"do_sample": default_generate_config.do_sample,
|
|
101
|
-
"eos_token_id": default_generate_config.eos_token_id,
|
|
102
|
-
}
|
|
103
|
-
|
|
104
|
-
stream = generate_config.get("stream", False)
|
|
105
|
-
if stream:
|
|
106
|
-
return self._generate_stream(generate_kwargs, input_tensor)
|
|
107
|
-
else:
|
|
108
|
-
return self._generate(generate_kwargs, input_tensor)
|
|
109
|
-
|
|
110
|
-
def _generate(self, generate_kwargs, input_ids) -> Completion:
|
|
111
|
-
prompt_tokens = len(input_ids[0])
|
|
112
|
-
logger.info(f"generate_kwargs:{generate_kwargs}")
|
|
113
|
-
generation_output = self._model.generate(**generate_kwargs)
|
|
114
|
-
completion_tokens = len(generation_output[0])
|
|
115
|
-
response = self._tokenizer.decode(
|
|
116
|
-
generation_output[0], skip_special_tokens=True
|
|
117
|
-
)
|
|
118
|
-
return generate_completion(
|
|
119
|
-
self.model_uid,
|
|
120
|
-
response,
|
|
121
|
-
prompt_tokens=prompt_tokens,
|
|
122
|
-
completion_tokens=completion_tokens,
|
|
123
|
-
total_tokens=prompt_tokens + completion_tokens,
|
|
124
|
-
)
|
|
125
|
-
|
|
126
|
-
def _generate_stream(self, generate_kwargs, input_ids):
|
|
127
|
-
from threading import Thread
|
|
128
|
-
|
|
129
|
-
from transformers import TextIteratorStreamer
|
|
130
|
-
|
|
131
|
-
# Initialize the streamer
|
|
132
|
-
streamer = TextIteratorStreamer(
|
|
133
|
-
self._tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10
|
|
134
|
-
)
|
|
135
|
-
# Define the generation configuration
|
|
136
|
-
generate_kwargs["streamer"] = streamer
|
|
137
|
-
# Start the model chat in a separate thread
|
|
138
|
-
thread = Thread(
|
|
139
|
-
target=self._model.generate,
|
|
140
|
-
kwargs=generate_kwargs,
|
|
141
|
-
)
|
|
142
|
-
thread.start()
|
|
143
|
-
|
|
144
|
-
completion_id = str(uuid.uuid1())
|
|
145
|
-
prompt_tokens = len(input_ids[0])
|
|
146
|
-
total_tokens, completion_tokens = 0, 0
|
|
147
|
-
# Loop through the streamer to get the new text as it is generated
|
|
148
|
-
for i, new_text in enumerate(streamer):
|
|
149
|
-
completion_tokens = i
|
|
150
|
-
total_tokens = prompt_tokens + completion_tokens
|
|
151
|
-
yield generate_completion_chunk(
|
|
152
|
-
chunk_text=new_text,
|
|
153
|
-
finish_reason=None,
|
|
154
|
-
chunk_id=completion_id,
|
|
155
|
-
model_uid=self.model_uid,
|
|
156
|
-
prompt_tokens=prompt_tokens,
|
|
157
|
-
completion_tokens=completion_tokens,
|
|
158
|
-
total_tokens=total_tokens,
|
|
159
|
-
)
|
|
160
|
-
yield generate_completion_chunk(
|
|
161
|
-
chunk_text=None,
|
|
162
|
-
finish_reason="stop",
|
|
163
|
-
chunk_id=completion_id,
|
|
164
|
-
model_uid=self.model_uid,
|
|
165
|
-
prompt_tokens=prompt_tokens,
|
|
166
|
-
completion_tokens=completion_tokens,
|
|
167
|
-
total_tokens=total_tokens,
|
|
168
|
-
has_choice=True,
|
|
169
|
-
has_content=False,
|
|
170
|
-
)
|
|
171
|
-
|
|
172
69
|
|
|
173
70
|
class DeepSeekV2PytorchChatModel(PytorchChatModel):
|
|
174
71
|
def _load_model(self, **kwargs):
|
|
@@ -215,126 +112,3 @@ class DeepSeekV2PytorchChatModel(PytorchChatModel):
|
|
|
215
112
|
if "chat" not in llm_family.model_ability:
|
|
216
113
|
return False
|
|
217
114
|
return True
|
|
218
|
-
|
|
219
|
-
def chat(
|
|
220
|
-
self,
|
|
221
|
-
messages: List[Dict],
|
|
222
|
-
generate_config: Optional[PytorchGenerateConfig] = None,
|
|
223
|
-
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
|
|
224
|
-
assert self.model_family.chat_template is not None
|
|
225
|
-
full_prompt = self.get_full_context(
|
|
226
|
-
messages,
|
|
227
|
-
self.model_family.chat_template,
|
|
228
|
-
tokenizer=self._tokenizer,
|
|
229
|
-
)
|
|
230
|
-
input_tensor = self._tokenizer.encode(
|
|
231
|
-
full_prompt,
|
|
232
|
-
padding=False,
|
|
233
|
-
truncation=False,
|
|
234
|
-
max_length=None,
|
|
235
|
-
add_special_tokens=False,
|
|
236
|
-
return_tensors="pt",
|
|
237
|
-
)
|
|
238
|
-
|
|
239
|
-
generate_config = self._sanitize_generate_config(generate_config)
|
|
240
|
-
default_generate_config = self._model.generation_config
|
|
241
|
-
generate_kwargs = {
|
|
242
|
-
"input_ids": input_tensor.cuda(),
|
|
243
|
-
"temperature": float(
|
|
244
|
-
generate_config.get("temperature", default_generate_config.temperature)
|
|
245
|
-
),
|
|
246
|
-
"repetition_penalty": float(generate_config.get("repetition_penalty", 1.0)),
|
|
247
|
-
"top_p": float(generate_config.get("top_p", default_generate_config.top_p)),
|
|
248
|
-
"top_k": int(generate_config.get("top_k", -1)),
|
|
249
|
-
"max_new_tokens": generate_config.get("max_tokens", 512),
|
|
250
|
-
"bos_token_id": default_generate_config.bos_token_id,
|
|
251
|
-
"do_sample": default_generate_config.do_sample,
|
|
252
|
-
"eos_token_id": default_generate_config.eos_token_id,
|
|
253
|
-
}
|
|
254
|
-
|
|
255
|
-
stream = generate_config.get("stream", False)
|
|
256
|
-
stream_options = generate_config.get("stream_options", None)
|
|
257
|
-
include_usage = (
|
|
258
|
-
stream_options["include_usage"]
|
|
259
|
-
if isinstance(stream_options, dict)
|
|
260
|
-
else False
|
|
261
|
-
)
|
|
262
|
-
if stream:
|
|
263
|
-
chunk = self._generate_stream(generate_kwargs, input_tensor, include_usage)
|
|
264
|
-
return self._to_chat_completion_chunks(chunk)
|
|
265
|
-
else:
|
|
266
|
-
return self._generate(generate_kwargs, input_tensor)
|
|
267
|
-
|
|
268
|
-
def _generate(self, generate_kwargs, input_ids) -> ChatCompletion:
|
|
269
|
-
prompt_tokens = len(input_ids[0])
|
|
270
|
-
generation_output = self._model.generate(**generate_kwargs)
|
|
271
|
-
completion_tokens = len(generation_output[0])
|
|
272
|
-
response = self._tokenizer.decode(
|
|
273
|
-
generation_output[0][input_ids.shape[1] :], skip_special_tokens=True
|
|
274
|
-
)
|
|
275
|
-
return generate_chat_completion(
|
|
276
|
-
self.model_uid,
|
|
277
|
-
response,
|
|
278
|
-
prompt_tokens=prompt_tokens,
|
|
279
|
-
completion_tokens=completion_tokens,
|
|
280
|
-
total_tokens=prompt_tokens + completion_tokens,
|
|
281
|
-
)
|
|
282
|
-
|
|
283
|
-
def _generate_stream(self, generate_kwargs, input_ids, include_usage):
|
|
284
|
-
from threading import Thread
|
|
285
|
-
|
|
286
|
-
from transformers import TextIteratorStreamer
|
|
287
|
-
|
|
288
|
-
# Initialize the streamer
|
|
289
|
-
streamer = TextIteratorStreamer(
|
|
290
|
-
self._tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10
|
|
291
|
-
)
|
|
292
|
-
# Define the generation configuration
|
|
293
|
-
generate_kwargs["streamer"] = streamer
|
|
294
|
-
# Start the model chat in a separate thread
|
|
295
|
-
thread = Thread(
|
|
296
|
-
target=self._model.generate,
|
|
297
|
-
kwargs=generate_kwargs,
|
|
298
|
-
)
|
|
299
|
-
thread.start()
|
|
300
|
-
|
|
301
|
-
completion_id = str(uuid.uuid1())
|
|
302
|
-
prompt_tokens = len(input_ids[0])
|
|
303
|
-
total_tokens, completion_tokens = 0, 0
|
|
304
|
-
# Loop through the streamer to get the new text as it is generated
|
|
305
|
-
for i, new_text in enumerate(streamer):
|
|
306
|
-
completion_tokens = max(completion_tokens, len(streamer.token_cache))
|
|
307
|
-
total_tokens = prompt_tokens + completion_tokens
|
|
308
|
-
yield generate_completion_chunk(
|
|
309
|
-
chunk_text=new_text,
|
|
310
|
-
finish_reason=None,
|
|
311
|
-
chunk_id=completion_id,
|
|
312
|
-
model_uid=self.model_uid,
|
|
313
|
-
prompt_tokens=prompt_tokens,
|
|
314
|
-
completion_tokens=completion_tokens,
|
|
315
|
-
total_tokens=total_tokens,
|
|
316
|
-
)
|
|
317
|
-
yield generate_completion_chunk(
|
|
318
|
-
chunk_text=None,
|
|
319
|
-
finish_reason="stop",
|
|
320
|
-
chunk_id=completion_id,
|
|
321
|
-
model_uid=self.model_uid,
|
|
322
|
-
prompt_tokens=prompt_tokens,
|
|
323
|
-
completion_tokens=completion_tokens,
|
|
324
|
-
total_tokens=total_tokens,
|
|
325
|
-
has_choice=True,
|
|
326
|
-
has_content=False,
|
|
327
|
-
)
|
|
328
|
-
|
|
329
|
-
if include_usage:
|
|
330
|
-
yield generate_completion_chunk(
|
|
331
|
-
chunk_text=None,
|
|
332
|
-
finish_reason=None,
|
|
333
|
-
chunk_id=completion_id,
|
|
334
|
-
model_uid=self.model_uid,
|
|
335
|
-
prompt_tokens=prompt_tokens,
|
|
336
|
-
completion_tokens=completion_tokens,
|
|
337
|
-
total_tokens=total_tokens,
|
|
338
|
-
has_choice=False,
|
|
339
|
-
has_content=False,
|
|
340
|
-
)
|
|
@@ -11,13 +11,12 @@
|
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
|
-
|
|
15
|
-
from typing import
|
|
14
|
+
|
|
15
|
+
from typing import List, Optional
|
|
16
16
|
|
|
17
17
|
from ....core.scheduler import InferenceRequest
|
|
18
|
-
from ....types import
|
|
18
|
+
from ....types import LoRA
|
|
19
19
|
from ..llm_family import LLMFamilyV1, LLMSpecV1
|
|
20
|
-
from ..utils import generate_chat_completion, generate_completion_chunk, parse_messages
|
|
21
20
|
from .core import PytorchChatModel, PytorchModelConfig
|
|
22
21
|
|
|
23
22
|
|
|
@@ -93,94 +92,3 @@ class Internlm2PytorchChatModel(PytorchChatModel):
|
|
|
93
92
|
if top_p is None:
|
|
94
93
|
raw_config["top_p"] = 0.8
|
|
95
94
|
return raw_config
|
|
96
|
-
|
|
97
|
-
def chat(
|
|
98
|
-
self,
|
|
99
|
-
messages: List[Dict],
|
|
100
|
-
generate_config: Optional[PytorchGenerateConfig] = None,
|
|
101
|
-
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
|
|
102
|
-
kwargs: Dict[str, Any] = {}
|
|
103
|
-
generate_config = generate_config or {}
|
|
104
|
-
temperature = generate_config.get("temperature")
|
|
105
|
-
if temperature is not None:
|
|
106
|
-
kwargs["temperature"] = float(temperature)
|
|
107
|
-
top_p = generate_config.get("top_p")
|
|
108
|
-
if top_p is not None:
|
|
109
|
-
kwargs["top_p"] = float(top_p)
|
|
110
|
-
max_new_tokens = generate_config.get("max_tokens")
|
|
111
|
-
if max_new_tokens is not None:
|
|
112
|
-
kwargs["max_length"] = int(max_new_tokens)
|
|
113
|
-
|
|
114
|
-
stream = generate_config.get("stream", False)
|
|
115
|
-
stream_options = generate_config.pop("stream_options", None)
|
|
116
|
-
include_usage = (
|
|
117
|
-
stream_options["include_usage"]
|
|
118
|
-
if isinstance(stream_options, dict)
|
|
119
|
-
else False
|
|
120
|
-
)
|
|
121
|
-
|
|
122
|
-
prompt, system_prompt, chat_history = parse_messages(messages)
|
|
123
|
-
if chat_history:
|
|
124
|
-
input_history = [
|
|
125
|
-
(chat_history[i]["content"], (chat_history[i + 1]["content"]))
|
|
126
|
-
for i in range(0, len(chat_history), 2)
|
|
127
|
-
]
|
|
128
|
-
else:
|
|
129
|
-
input_history = []
|
|
130
|
-
if system_prompt:
|
|
131
|
-
kwargs["meta_instruction"] = system_prompt
|
|
132
|
-
if stream:
|
|
133
|
-
|
|
134
|
-
def _stream_generator():
|
|
135
|
-
last_chunk_text_length = 0
|
|
136
|
-
chunk_id = "chat-" + str(uuid.uuid1())
|
|
137
|
-
prompt_tokens, completion_tokens, total_tokens = 0, 0, 0
|
|
138
|
-
inputs = self._tokenizer([prompt], return_tensors="pt")
|
|
139
|
-
inputs = inputs.to(self._model.device)
|
|
140
|
-
prompt_tokens = len(inputs["input_ids"][0])
|
|
141
|
-
for chunk_text, _ in self._model.stream_chat(
|
|
142
|
-
self._tokenizer, prompt, input_history, **kwargs
|
|
143
|
-
):
|
|
144
|
-
completion_tokens = completion_tokens + 1
|
|
145
|
-
total_tokens = prompt_tokens + completion_tokens
|
|
146
|
-
chunk_text = chunk_text[last_chunk_text_length:]
|
|
147
|
-
last_chunk_text_length += len(chunk_text)
|
|
148
|
-
|
|
149
|
-
yield generate_completion_chunk(
|
|
150
|
-
chunk_text,
|
|
151
|
-
finish_reason=None,
|
|
152
|
-
chunk_id=chunk_id,
|
|
153
|
-
model_uid=self.model_uid,
|
|
154
|
-
prompt_tokens=prompt_tokens,
|
|
155
|
-
completion_tokens=completion_tokens,
|
|
156
|
-
total_tokens=total_tokens,
|
|
157
|
-
)
|
|
158
|
-
yield generate_completion_chunk(
|
|
159
|
-
None,
|
|
160
|
-
finish_reason="stop",
|
|
161
|
-
chunk_id=chunk_id,
|
|
162
|
-
model_uid=self.model_uid,
|
|
163
|
-
prompt_tokens=prompt_tokens,
|
|
164
|
-
completion_tokens=completion_tokens,
|
|
165
|
-
total_tokens=total_tokens,
|
|
166
|
-
has_choice=True,
|
|
167
|
-
has_content=False,
|
|
168
|
-
)
|
|
169
|
-
if include_usage:
|
|
170
|
-
yield generate_completion_chunk(
|
|
171
|
-
None,
|
|
172
|
-
finish_reason=None,
|
|
173
|
-
chunk_id=chunk_id,
|
|
174
|
-
model_uid=self.model_uid,
|
|
175
|
-
prompt_tokens=prompt_tokens,
|
|
176
|
-
completion_tokens=completion_tokens,
|
|
177
|
-
total_tokens=total_tokens,
|
|
178
|
-
has_choice=False,
|
|
179
|
-
)
|
|
180
|
-
|
|
181
|
-
return self._to_chat_completion_chunks(_stream_generator())
|
|
182
|
-
else:
|
|
183
|
-
response, _ = self._model.chat(
|
|
184
|
-
self._tokenizer, prompt, input_history, **kwargs
|
|
185
|
-
)
|
|
186
|
-
return generate_chat_completion(self.model_uid, response)
|
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
# Copyright 2022-2024 XProbe Inc.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
from builtins import classmethod
|
|
15
|
+
from typing import List, Optional
|
|
16
|
+
|
|
17
|
+
from ....core.scheduler import InferenceRequest
|
|
18
|
+
from ....types import LoRA
|
|
19
|
+
from ..llm_family import LLMFamilyV1, LLMSpecV1
|
|
20
|
+
from .core import PytorchModel, PytorchModelConfig
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class OptPytorchModel(PytorchModel):
|
|
24
|
+
def __init__(
|
|
25
|
+
self,
|
|
26
|
+
model_uid: str,
|
|
27
|
+
model_family: "LLMFamilyV1",
|
|
28
|
+
model_spec: "LLMSpecV1",
|
|
29
|
+
quantization: str,
|
|
30
|
+
model_path: str,
|
|
31
|
+
pytorch_model_config: Optional[PytorchModelConfig] = None,
|
|
32
|
+
peft_model: Optional[List[LoRA]] = None,
|
|
33
|
+
):
|
|
34
|
+
super().__init__(
|
|
35
|
+
model_uid,
|
|
36
|
+
model_family,
|
|
37
|
+
model_spec,
|
|
38
|
+
quantization,
|
|
39
|
+
model_path,
|
|
40
|
+
pytorch_model_config=pytorch_model_config,
|
|
41
|
+
peft_model=peft_model,
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
@classmethod
|
|
45
|
+
def match(
|
|
46
|
+
cls, llm_family: "LLMFamilyV1", llm_spec: "LLMSpecV1", quantization: str
|
|
47
|
+
) -> bool:
|
|
48
|
+
if llm_spec.model_format != "pytorch":
|
|
49
|
+
return False
|
|
50
|
+
model_family = llm_family.model_family or llm_family.model_name
|
|
51
|
+
if model_family != "opt":
|
|
52
|
+
return False
|
|
53
|
+
return True
|
|
54
|
+
|
|
55
|
+
def build_prefill_position_ids(
|
|
56
|
+
self, batch_size: int, seq_length: int, reqs: List[InferenceRequest]
|
|
57
|
+
):
|
|
58
|
+
"""
|
|
59
|
+
Mainly for UT.
|
|
60
|
+
Transformers code in `main` branch supports `position_ids` parameter (https://github.com/huggingface/transformers/blob/main/src/transformers/models/opt/modeling_opt.py#L1076),
|
|
61
|
+
while in release branch, it doesn't (https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/opt/modeling_opt.py#L886).
|
|
62
|
+
"""
|
|
63
|
+
return None
|
|
64
|
+
|
|
65
|
+
def build_decode_position_ids(
|
|
66
|
+
self, batch_size: int, seq_length: int, reqs: List[InferenceRequest]
|
|
67
|
+
):
|
|
68
|
+
return None
|