xinference 0.15.0__py3-none-any.whl → 0.15.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +204 -1
- xinference/client/restful/restful_client.py +4 -2
- xinference/core/image_interface.py +28 -0
- xinference/core/model.py +30 -2
- xinference/core/supervisor.py +6 -0
- xinference/model/audio/cosyvoice.py +3 -3
- xinference/model/audio/fish_speech.py +9 -9
- xinference/model/audio/model_spec.json +9 -9
- xinference/model/audio/whisper.py +4 -1
- xinference/model/image/core.py +2 -1
- xinference/model/image/model_spec.json +16 -4
- xinference/model/image/model_spec_modelscope.json +16 -4
- xinference/model/image/sdapi.py +136 -0
- xinference/model/image/stable_diffusion/core.py +163 -24
- xinference/model/llm/__init__.py +9 -1
- xinference/model/llm/llm_family.json +1241 -0
- xinference/model/llm/llm_family.py +3 -1
- xinference/model/llm/llm_family_modelscope.json +1301 -3
- xinference/model/llm/sglang/core.py +7 -0
- xinference/model/llm/transformers/chatglm.py +1 -1
- xinference/model/llm/transformers/core.py +6 -0
- xinference/model/llm/transformers/deepseek_v2.py +340 -0
- xinference/model/llm/transformers/qwen2_audio.py +168 -0
- xinference/model/llm/transformers/qwen2_vl.py +31 -5
- xinference/model/llm/utils.py +104 -84
- xinference/model/llm/vllm/core.py +13 -0
- xinference/thirdparty/fish_speech/fish_speech/configs/firefly_gan_vq.yaml +2 -3
- xinference/thirdparty/fish_speech/fish_speech/configs/text2semantic_finetune.yaml +1 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +1 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +1 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +1 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/pt_BR.json +1 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +1 -1
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/__init__.py +0 -3
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +169 -198
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +4 -27
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +9 -47
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +12 -10
- xinference/thirdparty/fish_speech/tools/api.py +79 -134
- xinference/thirdparty/fish_speech/tools/commons.py +35 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +3 -3
- xinference/thirdparty/fish_speech/tools/file.py +17 -0
- xinference/thirdparty/fish_speech/tools/llama/build_dataset.py +1 -1
- xinference/thirdparty/fish_speech/tools/llama/generate.py +29 -24
- xinference/thirdparty/fish_speech/tools/llama/merge_lora.py +1 -1
- xinference/thirdparty/fish_speech/tools/llama/quantize.py +2 -2
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +34 -0
- xinference/thirdparty/fish_speech/tools/post_api.py +85 -44
- xinference/thirdparty/fish_speech/tools/sensevoice/fun_asr.py +1 -1
- xinference/thirdparty/fish_speech/tools/smart_pad.py +16 -3
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +2 -2
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +4 -2
- xinference/thirdparty/fish_speech/tools/webui.py +12 -146
- xinference/types.py +7 -4
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/{main.632e9148.css → main.5061c4c3.css} +2 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +1 -0
- xinference/web/ui/build/static/js/{main.9cfafbd6.js → main.29578905.js} +3 -3
- xinference/web/ui/build/static/js/main.29578905.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +1 -0
- {xinference-0.15.0.dist-info → xinference-0.15.2.dist-info}/METADATA +13 -7
- {xinference-0.15.0.dist-info → xinference-0.15.2.dist-info}/RECORD +73 -75
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/lit_module.py +0 -442
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/discriminator.py +0 -44
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/reference.py +0 -115
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/wavenet.py +0 -225
- xinference/thirdparty/fish_speech/tools/auto_rerank.py +0 -159
- xinference/thirdparty/fish_speech/tools/gen_ref.py +0 -36
- xinference/thirdparty/fish_speech/tools/merge_asr_files.py +0 -55
- xinference/web/ui/build/static/css/main.632e9148.css.map +0 -1
- xinference/web/ui/build/static/js/main.9cfafbd6.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/01d6d198156bacbd436c51435edbd4b2cacd47a79db929105eba30f74b67d48d.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/59eb25f514afcc4fefd1b309d192b2455f1e0aec68a9de598ca4b2333fe2c774.json +0 -1
- /xinference/web/ui/build/static/js/{main.9cfafbd6.js.LICENSE.txt → main.29578905.js.LICENSE.txt} +0 -0
- {xinference-0.15.0.dist-info → xinference-0.15.2.dist-info}/LICENSE +0 -0
- {xinference-0.15.0.dist-info → xinference-0.15.2.dist-info}/WHEEL +0 -0
- {xinference-0.15.0.dist-info → xinference-0.15.2.dist-info}/entry_points.txt +0 -0
- {xinference-0.15.0.dist-info → xinference-0.15.2.dist-info}/top_level.txt +0 -0
|
@@ -1,442 +0,0 @@
|
|
|
1
|
-
import itertools
|
|
2
|
-
import math
|
|
3
|
-
from typing import Any, Callable
|
|
4
|
-
|
|
5
|
-
import lightning as L
|
|
6
|
-
import torch
|
|
7
|
-
import torch.nn.functional as F
|
|
8
|
-
# import wandb
|
|
9
|
-
from lightning.pytorch.loggers import TensorBoardLogger, WandbLogger
|
|
10
|
-
from matplotlib import pyplot as plt
|
|
11
|
-
from torch import nn
|
|
12
|
-
|
|
13
|
-
from fish_speech.models.vqgan.modules.discriminator import Discriminator
|
|
14
|
-
from fish_speech.models.vqgan.modules.wavenet import WaveNet
|
|
15
|
-
from fish_speech.models.vqgan.utils import avg_with_mask, plot_mel, sequence_mask
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
class VQGAN(L.LightningModule):
|
|
19
|
-
def __init__(
|
|
20
|
-
self,
|
|
21
|
-
optimizer: Callable,
|
|
22
|
-
lr_scheduler: Callable,
|
|
23
|
-
encoder: WaveNet,
|
|
24
|
-
quantizer: nn.Module,
|
|
25
|
-
decoder: WaveNet,
|
|
26
|
-
discriminator: Discriminator,
|
|
27
|
-
vocoder: nn.Module,
|
|
28
|
-
encode_mel_transform: nn.Module,
|
|
29
|
-
gt_mel_transform: nn.Module,
|
|
30
|
-
weight_adv: float = 1.0,
|
|
31
|
-
weight_vq: float = 1.0,
|
|
32
|
-
weight_mel: float = 1.0,
|
|
33
|
-
sampling_rate: int = 44100,
|
|
34
|
-
freeze_encoder: bool = False,
|
|
35
|
-
):
|
|
36
|
-
super().__init__()
|
|
37
|
-
|
|
38
|
-
# Model parameters
|
|
39
|
-
self.optimizer_builder = optimizer
|
|
40
|
-
self.lr_scheduler_builder = lr_scheduler
|
|
41
|
-
|
|
42
|
-
# Modules
|
|
43
|
-
self.encoder = encoder
|
|
44
|
-
self.quantizer = quantizer
|
|
45
|
-
self.decoder = decoder
|
|
46
|
-
self.vocoder = vocoder
|
|
47
|
-
self.discriminator = discriminator
|
|
48
|
-
self.encode_mel_transform = encode_mel_transform
|
|
49
|
-
self.gt_mel_transform = gt_mel_transform
|
|
50
|
-
|
|
51
|
-
# A simple linear layer to project quality to condition channels
|
|
52
|
-
self.quality_projection = nn.Linear(1, 768)
|
|
53
|
-
|
|
54
|
-
# Freeze vocoder
|
|
55
|
-
for param in self.vocoder.parameters():
|
|
56
|
-
param.requires_grad = False
|
|
57
|
-
|
|
58
|
-
# Loss weights
|
|
59
|
-
self.weight_adv = weight_adv
|
|
60
|
-
self.weight_vq = weight_vq
|
|
61
|
-
self.weight_mel = weight_mel
|
|
62
|
-
|
|
63
|
-
# Other parameters
|
|
64
|
-
self.sampling_rate = sampling_rate
|
|
65
|
-
|
|
66
|
-
# Disable strict loading
|
|
67
|
-
self.strict_loading = False
|
|
68
|
-
|
|
69
|
-
# If encoder is frozen
|
|
70
|
-
if freeze_encoder:
|
|
71
|
-
for param in self.encoder.parameters():
|
|
72
|
-
param.requires_grad = False
|
|
73
|
-
|
|
74
|
-
for param in self.quantizer.parameters():
|
|
75
|
-
param.requires_grad = False
|
|
76
|
-
|
|
77
|
-
self.automatic_optimization = False
|
|
78
|
-
|
|
79
|
-
def on_save_checkpoint(self, checkpoint):
|
|
80
|
-
# Do not save vocoder
|
|
81
|
-
state_dict = checkpoint["state_dict"]
|
|
82
|
-
for name in list(state_dict.keys()):
|
|
83
|
-
if "vocoder" in name:
|
|
84
|
-
state_dict.pop(name)
|
|
85
|
-
|
|
86
|
-
def configure_optimizers(self):
|
|
87
|
-
optimizer_generator = self.optimizer_builder(
|
|
88
|
-
itertools.chain(
|
|
89
|
-
self.encoder.parameters(),
|
|
90
|
-
self.quantizer.parameters(),
|
|
91
|
-
self.decoder.parameters(),
|
|
92
|
-
self.quality_projection.parameters(),
|
|
93
|
-
)
|
|
94
|
-
)
|
|
95
|
-
optimizer_discriminator = self.optimizer_builder(
|
|
96
|
-
self.discriminator.parameters()
|
|
97
|
-
)
|
|
98
|
-
|
|
99
|
-
lr_scheduler_generator = self.lr_scheduler_builder(optimizer_generator)
|
|
100
|
-
lr_scheduler_discriminator = self.lr_scheduler_builder(optimizer_discriminator)
|
|
101
|
-
|
|
102
|
-
return (
|
|
103
|
-
{
|
|
104
|
-
"optimizer": optimizer_generator,
|
|
105
|
-
"lr_scheduler": {
|
|
106
|
-
"scheduler": lr_scheduler_generator,
|
|
107
|
-
"interval": "step",
|
|
108
|
-
"name": "optimizer/generator",
|
|
109
|
-
},
|
|
110
|
-
},
|
|
111
|
-
{
|
|
112
|
-
"optimizer": optimizer_discriminator,
|
|
113
|
-
"lr_scheduler": {
|
|
114
|
-
"scheduler": lr_scheduler_discriminator,
|
|
115
|
-
"interval": "step",
|
|
116
|
-
"name": "optimizer/discriminator",
|
|
117
|
-
},
|
|
118
|
-
},
|
|
119
|
-
)
|
|
120
|
-
|
|
121
|
-
def training_step(self, batch, batch_idx):
|
|
122
|
-
optim_g, optim_d = self.optimizers()
|
|
123
|
-
|
|
124
|
-
audios, audio_lengths = batch["audios"], batch["audio_lengths"]
|
|
125
|
-
|
|
126
|
-
audios = audios.float()
|
|
127
|
-
audios = audios[:, None, :]
|
|
128
|
-
|
|
129
|
-
with torch.no_grad():
|
|
130
|
-
encoded_mels = self.encode_mel_transform(audios)
|
|
131
|
-
gt_mels = self.gt_mel_transform(audios)
|
|
132
|
-
quality = ((gt_mels.mean(-1) > -8).sum(-1) - 90) / 10
|
|
133
|
-
quality = quality.unsqueeze(-1)
|
|
134
|
-
|
|
135
|
-
mel_lengths = audio_lengths // self.gt_mel_transform.hop_length
|
|
136
|
-
mel_masks = sequence_mask(mel_lengths, gt_mels.shape[2])
|
|
137
|
-
mel_masks_float_conv = mel_masks[:, None, :].float()
|
|
138
|
-
gt_mels = gt_mels * mel_masks_float_conv
|
|
139
|
-
encoded_mels = encoded_mels * mel_masks_float_conv
|
|
140
|
-
|
|
141
|
-
# Encode
|
|
142
|
-
encoded_features = self.encoder(encoded_mels) * mel_masks_float_conv
|
|
143
|
-
|
|
144
|
-
# Quantize
|
|
145
|
-
vq_result = self.quantizer(encoded_features)
|
|
146
|
-
loss_vq = getattr("vq_result", "loss", 0.0)
|
|
147
|
-
vq_recon_features = vq_result.z * mel_masks_float_conv
|
|
148
|
-
vq_recon_features = (
|
|
149
|
-
vq_recon_features + self.quality_projection(quality)[:, :, None]
|
|
150
|
-
)
|
|
151
|
-
|
|
152
|
-
# VQ Decode
|
|
153
|
-
gen_mel = (
|
|
154
|
-
self.decoder(
|
|
155
|
-
torch.randn_like(vq_recon_features) * mel_masks_float_conv,
|
|
156
|
-
condition=vq_recon_features,
|
|
157
|
-
)
|
|
158
|
-
* mel_masks_float_conv
|
|
159
|
-
)
|
|
160
|
-
|
|
161
|
-
# Discriminator
|
|
162
|
-
real_logits = self.discriminator(gt_mels)
|
|
163
|
-
fake_logits = self.discriminator(gen_mel.detach())
|
|
164
|
-
d_mask = F.interpolate(
|
|
165
|
-
mel_masks_float_conv, size=(real_logits.shape[2],), mode="nearest"
|
|
166
|
-
)
|
|
167
|
-
|
|
168
|
-
loss_real = avg_with_mask((real_logits - 1) ** 2, d_mask)
|
|
169
|
-
loss_fake = avg_with_mask(fake_logits**2, d_mask)
|
|
170
|
-
|
|
171
|
-
loss_d = loss_real + loss_fake
|
|
172
|
-
|
|
173
|
-
self.log(
|
|
174
|
-
"train/discriminator/loss",
|
|
175
|
-
loss_d,
|
|
176
|
-
on_step=True,
|
|
177
|
-
on_epoch=False,
|
|
178
|
-
prog_bar=True,
|
|
179
|
-
logger=True,
|
|
180
|
-
)
|
|
181
|
-
|
|
182
|
-
# Discriminator backward
|
|
183
|
-
optim_d.zero_grad()
|
|
184
|
-
self.manual_backward(loss_d)
|
|
185
|
-
self.clip_gradients(
|
|
186
|
-
optim_d, gradient_clip_val=1000.0, gradient_clip_algorithm="norm"
|
|
187
|
-
)
|
|
188
|
-
optim_d.step()
|
|
189
|
-
|
|
190
|
-
# Mel Loss, applying l1, using a weighted sum
|
|
191
|
-
mel_distance = (
|
|
192
|
-
gen_mel - gt_mels
|
|
193
|
-
).abs() # * 0.5 + self.ssim(gen_mel, gt_mels) * 0.5
|
|
194
|
-
loss_mel_low_freq = avg_with_mask(mel_distance[:, :40, :], mel_masks_float_conv)
|
|
195
|
-
loss_mel_mid_freq = avg_with_mask(
|
|
196
|
-
mel_distance[:, 40:70, :], mel_masks_float_conv
|
|
197
|
-
)
|
|
198
|
-
loss_mel_high_freq = avg_with_mask(
|
|
199
|
-
mel_distance[:, 70:, :], mel_masks_float_conv
|
|
200
|
-
)
|
|
201
|
-
loss_mel = (
|
|
202
|
-
loss_mel_low_freq * 0.6 + loss_mel_mid_freq * 0.3 + loss_mel_high_freq * 0.1
|
|
203
|
-
)
|
|
204
|
-
|
|
205
|
-
# Adversarial Loss
|
|
206
|
-
fake_logits = self.discriminator(gen_mel)
|
|
207
|
-
loss_adv = avg_with_mask((fake_logits - 1) ** 2, d_mask)
|
|
208
|
-
|
|
209
|
-
# Total loss
|
|
210
|
-
loss = (
|
|
211
|
-
self.weight_vq * loss_vq
|
|
212
|
-
+ self.weight_mel * loss_mel
|
|
213
|
-
+ self.weight_adv * loss_adv
|
|
214
|
-
)
|
|
215
|
-
|
|
216
|
-
# Log losses
|
|
217
|
-
self.log(
|
|
218
|
-
"train/generator/loss",
|
|
219
|
-
loss,
|
|
220
|
-
on_step=True,
|
|
221
|
-
on_epoch=False,
|
|
222
|
-
prog_bar=True,
|
|
223
|
-
logger=True,
|
|
224
|
-
)
|
|
225
|
-
self.log(
|
|
226
|
-
"train/generator/loss_vq",
|
|
227
|
-
loss_vq,
|
|
228
|
-
on_step=True,
|
|
229
|
-
on_epoch=False,
|
|
230
|
-
prog_bar=False,
|
|
231
|
-
logger=True,
|
|
232
|
-
)
|
|
233
|
-
self.log(
|
|
234
|
-
"train/generator/loss_mel",
|
|
235
|
-
loss_mel,
|
|
236
|
-
on_step=True,
|
|
237
|
-
on_epoch=False,
|
|
238
|
-
prog_bar=False,
|
|
239
|
-
logger=True,
|
|
240
|
-
)
|
|
241
|
-
self.log(
|
|
242
|
-
"train/generator/loss_adv",
|
|
243
|
-
loss_adv,
|
|
244
|
-
on_step=True,
|
|
245
|
-
on_epoch=False,
|
|
246
|
-
prog_bar=False,
|
|
247
|
-
logger=True,
|
|
248
|
-
)
|
|
249
|
-
|
|
250
|
-
# Generator backward
|
|
251
|
-
optim_g.zero_grad()
|
|
252
|
-
self.manual_backward(loss)
|
|
253
|
-
self.clip_gradients(
|
|
254
|
-
optim_g, gradient_clip_val=1000.0, gradient_clip_algorithm="norm"
|
|
255
|
-
)
|
|
256
|
-
optim_g.step()
|
|
257
|
-
|
|
258
|
-
scheduler_g, scheduler_d = self.lr_schedulers()
|
|
259
|
-
scheduler_g.step()
|
|
260
|
-
scheduler_d.step()
|
|
261
|
-
|
|
262
|
-
def validation_step(self, batch: Any, batch_idx: int):
|
|
263
|
-
audios, audio_lengths = batch["audios"], batch["audio_lengths"]
|
|
264
|
-
|
|
265
|
-
audios = audios.float()
|
|
266
|
-
audios = audios[:, None, :]
|
|
267
|
-
|
|
268
|
-
encoded_mels = self.encode_mel_transform(audios)
|
|
269
|
-
gt_mels = self.gt_mel_transform(audios)
|
|
270
|
-
|
|
271
|
-
mel_lengths = audio_lengths // self.gt_mel_transform.hop_length
|
|
272
|
-
mel_masks = sequence_mask(mel_lengths, gt_mels.shape[2])
|
|
273
|
-
mel_masks_float_conv = mel_masks[:, None, :].float()
|
|
274
|
-
gt_mels = gt_mels * mel_masks_float_conv
|
|
275
|
-
encoded_mels = encoded_mels * mel_masks_float_conv
|
|
276
|
-
|
|
277
|
-
# Encode
|
|
278
|
-
encoded_features = self.encoder(encoded_mels) * mel_masks_float_conv
|
|
279
|
-
|
|
280
|
-
# Quantize
|
|
281
|
-
vq_recon_features = self.quantizer(encoded_features).z * mel_masks_float_conv
|
|
282
|
-
vq_recon_features = (
|
|
283
|
-
vq_recon_features
|
|
284
|
-
+ self.quality_projection(
|
|
285
|
-
torch.ones(
|
|
286
|
-
vq_recon_features.shape[0], 1, device=vq_recon_features.device
|
|
287
|
-
)
|
|
288
|
-
* 2
|
|
289
|
-
)[:, :, None]
|
|
290
|
-
)
|
|
291
|
-
|
|
292
|
-
# VQ Decode
|
|
293
|
-
gen_aux_mels = (
|
|
294
|
-
self.decoder(
|
|
295
|
-
torch.randn_like(vq_recon_features) * mel_masks_float_conv,
|
|
296
|
-
condition=vq_recon_features,
|
|
297
|
-
)
|
|
298
|
-
* mel_masks_float_conv
|
|
299
|
-
)
|
|
300
|
-
loss_mel = avg_with_mask((gen_aux_mels - gt_mels).abs(), mel_masks_float_conv)
|
|
301
|
-
|
|
302
|
-
self.log(
|
|
303
|
-
"val/loss_mel",
|
|
304
|
-
loss_mel,
|
|
305
|
-
on_step=False,
|
|
306
|
-
on_epoch=True,
|
|
307
|
-
prog_bar=False,
|
|
308
|
-
logger=True,
|
|
309
|
-
sync_dist=True,
|
|
310
|
-
)
|
|
311
|
-
|
|
312
|
-
recon_audios = self.vocoder(gt_mels)
|
|
313
|
-
gen_aux_audios = self.vocoder(gen_aux_mels)
|
|
314
|
-
|
|
315
|
-
# only log the first batch
|
|
316
|
-
if batch_idx != 0:
|
|
317
|
-
return
|
|
318
|
-
|
|
319
|
-
for idx, (
|
|
320
|
-
gt_mel,
|
|
321
|
-
gen_aux_mel,
|
|
322
|
-
audio,
|
|
323
|
-
gen_aux_audio,
|
|
324
|
-
recon_audio,
|
|
325
|
-
audio_len,
|
|
326
|
-
) in enumerate(
|
|
327
|
-
zip(
|
|
328
|
-
gt_mels,
|
|
329
|
-
gen_aux_mels,
|
|
330
|
-
audios.cpu().float(),
|
|
331
|
-
gen_aux_audios.cpu().float(),
|
|
332
|
-
recon_audios.cpu().float(),
|
|
333
|
-
audio_lengths,
|
|
334
|
-
)
|
|
335
|
-
):
|
|
336
|
-
if idx > 4:
|
|
337
|
-
break
|
|
338
|
-
|
|
339
|
-
mel_len = audio_len // self.gt_mel_transform.hop_length
|
|
340
|
-
|
|
341
|
-
image_mels = plot_mel(
|
|
342
|
-
[
|
|
343
|
-
gt_mel[:, :mel_len],
|
|
344
|
-
gen_aux_mel[:, :mel_len],
|
|
345
|
-
],
|
|
346
|
-
[
|
|
347
|
-
"Ground-Truth",
|
|
348
|
-
"Auxiliary",
|
|
349
|
-
],
|
|
350
|
-
)
|
|
351
|
-
|
|
352
|
-
if isinstance(self.logger, WandbLogger):
|
|
353
|
-
self.logger.experiment.log(
|
|
354
|
-
{
|
|
355
|
-
"reconstruction_mel": wandb.Image(image_mels, caption="mels"),
|
|
356
|
-
"wavs": [
|
|
357
|
-
wandb.Audio(
|
|
358
|
-
audio[0, :audio_len],
|
|
359
|
-
sample_rate=self.sampling_rate,
|
|
360
|
-
caption="gt",
|
|
361
|
-
),
|
|
362
|
-
wandb.Audio(
|
|
363
|
-
gen_aux_audio[0, :audio_len],
|
|
364
|
-
sample_rate=self.sampling_rate,
|
|
365
|
-
caption="aux",
|
|
366
|
-
),
|
|
367
|
-
wandb.Audio(
|
|
368
|
-
recon_audio[0, :audio_len],
|
|
369
|
-
sample_rate=self.sampling_rate,
|
|
370
|
-
caption="recon",
|
|
371
|
-
),
|
|
372
|
-
],
|
|
373
|
-
},
|
|
374
|
-
)
|
|
375
|
-
|
|
376
|
-
if isinstance(self.logger, TensorBoardLogger):
|
|
377
|
-
self.logger.experiment.add_figure(
|
|
378
|
-
f"sample-{idx}/mels",
|
|
379
|
-
image_mels,
|
|
380
|
-
global_step=self.global_step,
|
|
381
|
-
)
|
|
382
|
-
self.logger.experiment.add_audio(
|
|
383
|
-
f"sample-{idx}/wavs/gt",
|
|
384
|
-
audio[0, :audio_len],
|
|
385
|
-
self.global_step,
|
|
386
|
-
sample_rate=self.sampling_rate,
|
|
387
|
-
)
|
|
388
|
-
self.logger.experiment.add_audio(
|
|
389
|
-
f"sample-{idx}/wavs/gen",
|
|
390
|
-
gen_aux_audio[0, :audio_len],
|
|
391
|
-
self.global_step,
|
|
392
|
-
sample_rate=self.sampling_rate,
|
|
393
|
-
)
|
|
394
|
-
self.logger.experiment.add_audio(
|
|
395
|
-
f"sample-{idx}/wavs/recon",
|
|
396
|
-
recon_audio[0, :audio_len],
|
|
397
|
-
self.global_step,
|
|
398
|
-
sample_rate=self.sampling_rate,
|
|
399
|
-
)
|
|
400
|
-
|
|
401
|
-
plt.close(image_mels)
|
|
402
|
-
|
|
403
|
-
def encode(self, audios, audio_lengths):
|
|
404
|
-
audios = audios.float()
|
|
405
|
-
|
|
406
|
-
mels = self.encode_mel_transform(audios)
|
|
407
|
-
mel_lengths = audio_lengths // self.encode_mel_transform.hop_length
|
|
408
|
-
mel_masks = sequence_mask(mel_lengths, mels.shape[2])
|
|
409
|
-
mel_masks_float_conv = mel_masks[:, None, :].float()
|
|
410
|
-
mels = mels * mel_masks_float_conv
|
|
411
|
-
|
|
412
|
-
# Encode
|
|
413
|
-
encoded_features = self.encoder(mels) * mel_masks_float_conv
|
|
414
|
-
feature_lengths = mel_lengths // math.prod(self.quantizer.downsample_factor)
|
|
415
|
-
|
|
416
|
-
return self.quantizer.encode(encoded_features), feature_lengths
|
|
417
|
-
|
|
418
|
-
def decode(self, indices, feature_lengths, return_audios=False):
|
|
419
|
-
factor = math.prod(self.quantizer.downsample_factor)
|
|
420
|
-
mel_masks = sequence_mask(feature_lengths * factor, indices.shape[2] * factor)
|
|
421
|
-
mel_masks_float_conv = mel_masks[:, None, :].float()
|
|
422
|
-
|
|
423
|
-
z = self.quantizer.decode(indices) * mel_masks_float_conv
|
|
424
|
-
z = (
|
|
425
|
-
z
|
|
426
|
-
+ self.quality_projection(torch.ones(z.shape[0], 1, device=z.device) * 2)[
|
|
427
|
-
:, :, None
|
|
428
|
-
]
|
|
429
|
-
)
|
|
430
|
-
|
|
431
|
-
gen_mel = (
|
|
432
|
-
self.decoder(
|
|
433
|
-
torch.randn_like(z) * mel_masks_float_conv,
|
|
434
|
-
condition=z,
|
|
435
|
-
)
|
|
436
|
-
* mel_masks_float_conv
|
|
437
|
-
)
|
|
438
|
-
|
|
439
|
-
if return_audios:
|
|
440
|
-
return self.vocoder(gen_mel)
|
|
441
|
-
|
|
442
|
-
return gen_mel
|
|
@@ -1,44 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
from torch import nn
|
|
3
|
-
from torch.nn.utils.parametrizations import weight_norm
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
class Discriminator(nn.Module):
|
|
7
|
-
def __init__(self):
|
|
8
|
-
super().__init__()
|
|
9
|
-
|
|
10
|
-
blocks = []
|
|
11
|
-
convs = [
|
|
12
|
-
(1, 64, (3, 9), 1, (1, 4)),
|
|
13
|
-
(64, 128, (3, 9), (1, 2), (1, 4)),
|
|
14
|
-
(128, 256, (3, 9), (1, 2), (1, 4)),
|
|
15
|
-
(256, 512, (3, 9), (1, 2), (1, 4)),
|
|
16
|
-
(512, 1024, (3, 3), 1, (1, 1)),
|
|
17
|
-
(1024, 1, (3, 3), 1, (1, 1)),
|
|
18
|
-
]
|
|
19
|
-
|
|
20
|
-
for idx, (in_channels, out_channels, kernel_size, stride, padding) in enumerate(
|
|
21
|
-
convs
|
|
22
|
-
):
|
|
23
|
-
blocks.append(
|
|
24
|
-
weight_norm(
|
|
25
|
-
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
|
|
26
|
-
)
|
|
27
|
-
)
|
|
28
|
-
|
|
29
|
-
if idx != len(convs) - 1:
|
|
30
|
-
blocks.append(nn.SiLU(inplace=True))
|
|
31
|
-
|
|
32
|
-
self.blocks = nn.Sequential(*blocks)
|
|
33
|
-
|
|
34
|
-
def forward(self, x):
|
|
35
|
-
return self.blocks(x[:, None])[:, 0]
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
if __name__ == "__main__":
|
|
39
|
-
model = Discriminator()
|
|
40
|
-
print(sum(p.numel() for p in model.parameters()) / 1_000_000)
|
|
41
|
-
x = torch.randn(1, 128, 1024)
|
|
42
|
-
y = model(x)
|
|
43
|
-
print(y.shape)
|
|
44
|
-
print(y)
|
|
@@ -1,115 +0,0 @@
|
|
|
1
|
-
from typing import Optional
|
|
2
|
-
|
|
3
|
-
import torch
|
|
4
|
-
import torch.nn.functional as F
|
|
5
|
-
from torch import nn
|
|
6
|
-
|
|
7
|
-
from fish_speech.utils import autocast_exclude_mps
|
|
8
|
-
|
|
9
|
-
from .wavenet import WaveNet
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
class ReferenceEncoder(WaveNet):
|
|
13
|
-
def __init__(
|
|
14
|
-
self,
|
|
15
|
-
input_channels: Optional[int] = None,
|
|
16
|
-
output_channels: Optional[int] = None,
|
|
17
|
-
residual_channels: int = 512,
|
|
18
|
-
residual_layers: int = 20,
|
|
19
|
-
dilation_cycle: Optional[int] = 4,
|
|
20
|
-
num_heads: int = 8,
|
|
21
|
-
latent_len: int = 4,
|
|
22
|
-
):
|
|
23
|
-
super().__init__(
|
|
24
|
-
input_channels=input_channels,
|
|
25
|
-
residual_channels=residual_channels,
|
|
26
|
-
residual_layers=residual_layers,
|
|
27
|
-
dilation_cycle=dilation_cycle,
|
|
28
|
-
)
|
|
29
|
-
|
|
30
|
-
self.head_dim = residual_channels // num_heads
|
|
31
|
-
self.num_heads = num_heads
|
|
32
|
-
|
|
33
|
-
self.latent_len = latent_len
|
|
34
|
-
self.latent = nn.Parameter(torch.zeros(1, self.latent_len, residual_channels))
|
|
35
|
-
|
|
36
|
-
self.q = nn.Linear(residual_channels, residual_channels, bias=True)
|
|
37
|
-
self.kv = nn.Linear(residual_channels, residual_channels * 2, bias=True)
|
|
38
|
-
self.q_norm = nn.LayerNorm(self.head_dim)
|
|
39
|
-
self.k_norm = nn.LayerNorm(self.head_dim)
|
|
40
|
-
self.proj = nn.Linear(residual_channels, residual_channels)
|
|
41
|
-
self.proj_drop = nn.Dropout(0.1)
|
|
42
|
-
|
|
43
|
-
self.norm = nn.LayerNorm(residual_channels)
|
|
44
|
-
self.mlp = nn.Sequential(
|
|
45
|
-
nn.Linear(residual_channels, residual_channels * 4),
|
|
46
|
-
nn.SiLU(),
|
|
47
|
-
nn.Linear(residual_channels * 4, residual_channels),
|
|
48
|
-
)
|
|
49
|
-
self.output_projection_attn = nn.Linear(residual_channels, output_channels)
|
|
50
|
-
|
|
51
|
-
torch.nn.init.trunc_normal_(self.latent, std=0.02)
|
|
52
|
-
self.apply(self.init_weights)
|
|
53
|
-
|
|
54
|
-
def init_weights(self, m):
|
|
55
|
-
if isinstance(m, nn.Linear):
|
|
56
|
-
torch.nn.init.trunc_normal_(m.weight, std=0.02)
|
|
57
|
-
if m.bias is not None:
|
|
58
|
-
torch.nn.init.constant_(m.bias, 0)
|
|
59
|
-
|
|
60
|
-
def forward(self, x, attn_mask=None):
|
|
61
|
-
x = super().forward(x).mT
|
|
62
|
-
B, N, C = x.shape
|
|
63
|
-
|
|
64
|
-
# Calculate mask
|
|
65
|
-
if attn_mask is not None:
|
|
66
|
-
assert attn_mask.shape == (B, N) and attn_mask.dtype == torch.bool
|
|
67
|
-
|
|
68
|
-
attn_mask = attn_mask[:, None, None, :].expand(
|
|
69
|
-
B, self.num_heads, self.latent_len, N
|
|
70
|
-
)
|
|
71
|
-
|
|
72
|
-
q_latent = self.latent.expand(B, -1, -1)
|
|
73
|
-
q = (
|
|
74
|
-
self.q(q_latent)
|
|
75
|
-
.reshape(B, self.latent_len, self.num_heads, self.head_dim)
|
|
76
|
-
.transpose(1, 2)
|
|
77
|
-
)
|
|
78
|
-
|
|
79
|
-
kv = (
|
|
80
|
-
self.kv(x)
|
|
81
|
-
.reshape(B, N, 2, self.num_heads, self.head_dim)
|
|
82
|
-
.permute(2, 0, 3, 1, 4)
|
|
83
|
-
)
|
|
84
|
-
k, v = kv.unbind(0)
|
|
85
|
-
|
|
86
|
-
q, k = self.q_norm(q), self.k_norm(k)
|
|
87
|
-
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
|
|
88
|
-
|
|
89
|
-
x = x.transpose(1, 2).reshape(B, self.latent_len, C)
|
|
90
|
-
x = self.proj(x)
|
|
91
|
-
x = self.proj_drop(x)
|
|
92
|
-
|
|
93
|
-
x = x + self.mlp(self.norm(x))
|
|
94
|
-
x = self.output_projection_attn(x)
|
|
95
|
-
x = x.mean(1)
|
|
96
|
-
|
|
97
|
-
return x
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
if __name__ == "__main__":
|
|
101
|
-
with autocast_exclude_mps(device_type="cpu", dtype=torch.bfloat16):
|
|
102
|
-
model = ReferenceEncoder(
|
|
103
|
-
input_channels=128,
|
|
104
|
-
output_channels=64,
|
|
105
|
-
residual_channels=384,
|
|
106
|
-
residual_layers=20,
|
|
107
|
-
dilation_cycle=4,
|
|
108
|
-
num_heads=8,
|
|
109
|
-
)
|
|
110
|
-
x = torch.randn(4, 128, 64)
|
|
111
|
-
mask = torch.ones(4, 64, dtype=torch.bool)
|
|
112
|
-
y = model(x, mask)
|
|
113
|
-
print(y.shape)
|
|
114
|
-
loss = F.mse_loss(y, torch.randn(4, 64))
|
|
115
|
-
loss.backward()
|