xinference 0.15.0__py3-none-any.whl → 0.15.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +204 -1
- xinference/client/restful/restful_client.py +4 -2
- xinference/core/image_interface.py +28 -0
- xinference/core/model.py +28 -0
- xinference/core/supervisor.py +6 -0
- xinference/model/audio/fish_speech.py +9 -9
- xinference/model/audio/model_spec.json +9 -9
- xinference/model/audio/whisper.py +4 -1
- xinference/model/image/core.py +2 -1
- xinference/model/image/model_spec.json +16 -4
- xinference/model/image/model_spec_modelscope.json +16 -4
- xinference/model/image/sdapi.py +136 -0
- xinference/model/image/stable_diffusion/core.py +148 -20
- xinference/model/llm/__init__.py +8 -0
- xinference/model/llm/llm_family.json +393 -0
- xinference/model/llm/llm_family.py +3 -1
- xinference/model/llm/llm_family_modelscope.json +408 -3
- xinference/model/llm/sglang/core.py +3 -0
- xinference/model/llm/transformers/chatglm.py +1 -1
- xinference/model/llm/transformers/core.py +6 -0
- xinference/model/llm/transformers/deepseek_v2.py +340 -0
- xinference/model/llm/transformers/qwen2_audio.py +168 -0
- xinference/model/llm/transformers/qwen2_vl.py +31 -5
- xinference/model/llm/utils.py +104 -84
- xinference/model/llm/vllm/core.py +8 -0
- xinference/thirdparty/fish_speech/fish_speech/configs/firefly_gan_vq.yaml +2 -3
- xinference/thirdparty/fish_speech/fish_speech/configs/text2semantic_finetune.yaml +1 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +1 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +1 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +1 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/pt_BR.json +1 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +1 -1
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/__init__.py +0 -3
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +169 -198
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +4 -27
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +9 -47
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +12 -10
- xinference/thirdparty/fish_speech/tools/api.py +79 -134
- xinference/thirdparty/fish_speech/tools/commons.py +35 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +3 -3
- xinference/thirdparty/fish_speech/tools/file.py +17 -0
- xinference/thirdparty/fish_speech/tools/llama/build_dataset.py +1 -1
- xinference/thirdparty/fish_speech/tools/llama/generate.py +29 -24
- xinference/thirdparty/fish_speech/tools/llama/merge_lora.py +1 -1
- xinference/thirdparty/fish_speech/tools/llama/quantize.py +2 -2
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +34 -0
- xinference/thirdparty/fish_speech/tools/post_api.py +85 -44
- xinference/thirdparty/fish_speech/tools/sensevoice/fun_asr.py +1 -1
- xinference/thirdparty/fish_speech/tools/smart_pad.py +16 -3
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +2 -2
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +4 -2
- xinference/thirdparty/fish_speech/tools/webui.py +12 -146
- xinference/types.py +7 -4
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/{main.632e9148.css → main.5061c4c3.css} +2 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +1 -0
- xinference/web/ui/build/static/js/{main.9cfafbd6.js → main.754740c0.js} +3 -3
- xinference/web/ui/build/static/js/main.754740c0.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/cd90b08d177025dfe84209596fc51878f8a86bcaa6a240848a3d2e5fd4c7ff24.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +1 -0
- {xinference-0.15.0.dist-info → xinference-0.15.1.dist-info}/METADATA +9 -3
- {xinference-0.15.0.dist-info → xinference-0.15.1.dist-info}/RECORD +72 -74
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/lit_module.py +0 -442
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/discriminator.py +0 -44
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/reference.py +0 -115
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/wavenet.py +0 -225
- xinference/thirdparty/fish_speech/tools/auto_rerank.py +0 -159
- xinference/thirdparty/fish_speech/tools/gen_ref.py +0 -36
- xinference/thirdparty/fish_speech/tools/merge_asr_files.py +0 -55
- xinference/web/ui/build/static/css/main.632e9148.css.map +0 -1
- xinference/web/ui/build/static/js/main.9cfafbd6.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/01d6d198156bacbd436c51435edbd4b2cacd47a79db929105eba30f74b67d48d.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/59eb25f514afcc4fefd1b309d192b2455f1e0aec68a9de598ca4b2333fe2c774.json +0 -1
- /xinference/web/ui/build/static/js/{main.9cfafbd6.js.LICENSE.txt → main.754740c0.js.LICENSE.txt} +0 -0
- {xinference-0.15.0.dist-info → xinference-0.15.1.dist-info}/LICENSE +0 -0
- {xinference-0.15.0.dist-info → xinference-0.15.1.dist-info}/WHEEL +0 -0
- {xinference-0.15.0.dist-info → xinference-0.15.1.dist-info}/entry_points.txt +0 -0
- {xinference-0.15.0.dist-info → xinference-0.15.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,340 @@
|
|
|
1
|
+
# Copyright 2022-2023 XProbe Inc.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
import logging
|
|
15
|
+
import uuid
|
|
16
|
+
from typing import Dict, Iterator, List, Optional, Union
|
|
17
|
+
|
|
18
|
+
import torch
|
|
19
|
+
|
|
20
|
+
from ....types import (
|
|
21
|
+
ChatCompletion,
|
|
22
|
+
ChatCompletionChunk,
|
|
23
|
+
Completion,
|
|
24
|
+
CompletionChunk,
|
|
25
|
+
PytorchGenerateConfig,
|
|
26
|
+
)
|
|
27
|
+
from ..llm_family import LLMFamilyV1, LLMSpecV1
|
|
28
|
+
from ..utils import (
|
|
29
|
+
generate_chat_completion,
|
|
30
|
+
generate_completion,
|
|
31
|
+
generate_completion_chunk,
|
|
32
|
+
)
|
|
33
|
+
from .core import PytorchChatModel, PytorchModel
|
|
34
|
+
|
|
35
|
+
logger = logging.getLogger(__name__)
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class DeepSeekV2PytorchModel(PytorchModel):
|
|
39
|
+
def _load_model(self, **kwargs):
|
|
40
|
+
try:
|
|
41
|
+
from transformers import (
|
|
42
|
+
AutoModelForCausalLM,
|
|
43
|
+
AutoTokenizer,
|
|
44
|
+
GenerationConfig,
|
|
45
|
+
)
|
|
46
|
+
except ImportError:
|
|
47
|
+
error_message = "Failed to import module 'transformers'"
|
|
48
|
+
installation_guide = [
|
|
49
|
+
"Please make sure 'transformers' is installed. ",
|
|
50
|
+
"You can install it by `pip install transformers`\n",
|
|
51
|
+
]
|
|
52
|
+
|
|
53
|
+
raise ImportError(f"{error_message}\n\n{''.join(installation_guide)}")
|
|
54
|
+
|
|
55
|
+
tokenizer = AutoTokenizer.from_pretrained(
|
|
56
|
+
self.model_path,
|
|
57
|
+
trust_remote_code=kwargs["trust_remote_code"],
|
|
58
|
+
)
|
|
59
|
+
model = AutoModelForCausalLM.from_pretrained(
|
|
60
|
+
self.model_path,
|
|
61
|
+
attn_implementation="eager",
|
|
62
|
+
torch_dtype=torch.bfloat16,
|
|
63
|
+
trust_remote_code=True,
|
|
64
|
+
device_map="auto",
|
|
65
|
+
)
|
|
66
|
+
model.generation_config = GenerationConfig.from_pretrained(self.model_path)
|
|
67
|
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
|
68
|
+
return model, tokenizer
|
|
69
|
+
|
|
70
|
+
@classmethod
|
|
71
|
+
def match(
|
|
72
|
+
cls, llm_family: "LLMFamilyV1", llm_spec: "LLMSpecV1", quantization: str
|
|
73
|
+
) -> bool:
|
|
74
|
+
if llm_spec.model_format != "pytorch":
|
|
75
|
+
return False
|
|
76
|
+
model_family = llm_family.model_family or llm_family.model_name
|
|
77
|
+
if "deepseek-v2" not in model_family:
|
|
78
|
+
return False
|
|
79
|
+
if "generate" not in llm_family.model_ability:
|
|
80
|
+
return False
|
|
81
|
+
return True
|
|
82
|
+
|
|
83
|
+
def generate(
|
|
84
|
+
self, prompt: str, generate_config: Optional[PytorchGenerateConfig] = None
|
|
85
|
+
) -> Union[Completion, Iterator[CompletionChunk]]:
|
|
86
|
+
input_tensor = self._tokenizer(prompt, return_tensors="pt")
|
|
87
|
+
generate_config = self._sanitize_generate_config(generate_config)
|
|
88
|
+
default_generate_config = self._model.generation_config
|
|
89
|
+
generate_kwargs = {
|
|
90
|
+
"input_ids": input_tensor["input_ids"].cuda(),
|
|
91
|
+
"attention_mask": input_tensor["attention_mask"].cuda(),
|
|
92
|
+
"temperature": float(
|
|
93
|
+
generate_config.get("temperature", default_generate_config.temperature)
|
|
94
|
+
),
|
|
95
|
+
"repetition_penalty": float(generate_config.get("repetition_penalty", 1.0)),
|
|
96
|
+
"top_p": float(generate_config.get("top_p", default_generate_config.top_p)),
|
|
97
|
+
"top_k": int(generate_config.get("top_k", -1)),
|
|
98
|
+
"max_new_tokens": generate_config.get("max_tokens", 512),
|
|
99
|
+
"bos_token_id": default_generate_config.bos_token_id,
|
|
100
|
+
"do_sample": default_generate_config.do_sample,
|
|
101
|
+
"eos_token_id": default_generate_config.eos_token_id,
|
|
102
|
+
}
|
|
103
|
+
|
|
104
|
+
stream = generate_config.get("stream", False)
|
|
105
|
+
if stream:
|
|
106
|
+
return self._generate_stream(generate_kwargs, input_tensor)
|
|
107
|
+
else:
|
|
108
|
+
return self._generate(generate_kwargs, input_tensor)
|
|
109
|
+
|
|
110
|
+
def _generate(self, generate_kwargs, input_ids) -> Completion:
|
|
111
|
+
prompt_tokens = len(input_ids[0])
|
|
112
|
+
logger.info(f"generate_kwargs:{generate_kwargs}")
|
|
113
|
+
generation_output = self._model.generate(**generate_kwargs)
|
|
114
|
+
completion_tokens = len(generation_output[0])
|
|
115
|
+
response = self._tokenizer.decode(
|
|
116
|
+
generation_output[0], skip_special_tokens=True
|
|
117
|
+
)
|
|
118
|
+
return generate_completion(
|
|
119
|
+
self.model_uid,
|
|
120
|
+
response,
|
|
121
|
+
prompt_tokens=prompt_tokens,
|
|
122
|
+
completion_tokens=completion_tokens,
|
|
123
|
+
total_tokens=prompt_tokens + completion_tokens,
|
|
124
|
+
)
|
|
125
|
+
|
|
126
|
+
def _generate_stream(self, generate_kwargs, input_ids):
|
|
127
|
+
from threading import Thread
|
|
128
|
+
|
|
129
|
+
from transformers import TextIteratorStreamer
|
|
130
|
+
|
|
131
|
+
# Initialize the streamer
|
|
132
|
+
streamer = TextIteratorStreamer(
|
|
133
|
+
self._tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10
|
|
134
|
+
)
|
|
135
|
+
# Define the generation configuration
|
|
136
|
+
generate_kwargs["streamer"] = streamer
|
|
137
|
+
# Start the model chat in a separate thread
|
|
138
|
+
thread = Thread(
|
|
139
|
+
target=self._model.generate,
|
|
140
|
+
kwargs=generate_kwargs,
|
|
141
|
+
)
|
|
142
|
+
thread.start()
|
|
143
|
+
|
|
144
|
+
completion_id = str(uuid.uuid1())
|
|
145
|
+
prompt_tokens = len(input_ids[0])
|
|
146
|
+
total_tokens, completion_tokens = 0, 0
|
|
147
|
+
# Loop through the streamer to get the new text as it is generated
|
|
148
|
+
for i, new_text in enumerate(streamer):
|
|
149
|
+
completion_tokens = i
|
|
150
|
+
total_tokens = prompt_tokens + completion_tokens
|
|
151
|
+
yield generate_completion_chunk(
|
|
152
|
+
chunk_text=new_text,
|
|
153
|
+
finish_reason=None,
|
|
154
|
+
chunk_id=completion_id,
|
|
155
|
+
model_uid=self.model_uid,
|
|
156
|
+
prompt_tokens=prompt_tokens,
|
|
157
|
+
completion_tokens=completion_tokens,
|
|
158
|
+
total_tokens=total_tokens,
|
|
159
|
+
)
|
|
160
|
+
yield generate_completion_chunk(
|
|
161
|
+
chunk_text=None,
|
|
162
|
+
finish_reason="stop",
|
|
163
|
+
chunk_id=completion_id,
|
|
164
|
+
model_uid=self.model_uid,
|
|
165
|
+
prompt_tokens=prompt_tokens,
|
|
166
|
+
completion_tokens=completion_tokens,
|
|
167
|
+
total_tokens=total_tokens,
|
|
168
|
+
has_choice=True,
|
|
169
|
+
has_content=False,
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
class DeepSeekV2PytorchChatModel(PytorchChatModel):
|
|
174
|
+
def _load_model(self, **kwargs):
|
|
175
|
+
try:
|
|
176
|
+
from transformers import (
|
|
177
|
+
AutoModelForCausalLM,
|
|
178
|
+
AutoTokenizer,
|
|
179
|
+
GenerationConfig,
|
|
180
|
+
)
|
|
181
|
+
except ImportError:
|
|
182
|
+
error_message = "Failed to import module 'transformers'"
|
|
183
|
+
installation_guide = [
|
|
184
|
+
"Please make sure 'transformers' is installed. ",
|
|
185
|
+
"You can install it by `pip install transformers`\n",
|
|
186
|
+
]
|
|
187
|
+
|
|
188
|
+
raise ImportError(f"{error_message}\n\n{''.join(installation_guide)}")
|
|
189
|
+
|
|
190
|
+
tokenizer = AutoTokenizer.from_pretrained(
|
|
191
|
+
self.model_path,
|
|
192
|
+
trust_remote_code=kwargs["trust_remote_code"],
|
|
193
|
+
)
|
|
194
|
+
logger.info(f"kwargs:{kwargs}")
|
|
195
|
+
model = AutoModelForCausalLM.from_pretrained(
|
|
196
|
+
self.model_path,
|
|
197
|
+
attn_implementation="eager",
|
|
198
|
+
torch_dtype=torch.bfloat16,
|
|
199
|
+
trust_remote_code=True,
|
|
200
|
+
device_map="auto",
|
|
201
|
+
)
|
|
202
|
+
model.generation_config = GenerationConfig.from_pretrained(self.model_path)
|
|
203
|
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
|
204
|
+
return model, tokenizer
|
|
205
|
+
|
|
206
|
+
@classmethod
|
|
207
|
+
def match(
|
|
208
|
+
cls, llm_family: "LLMFamilyV1", llm_spec: "LLMSpecV1", quantization: str
|
|
209
|
+
) -> bool:
|
|
210
|
+
if llm_spec.model_format != "pytorch":
|
|
211
|
+
return False
|
|
212
|
+
model_family = llm_family.model_family or llm_family.model_name
|
|
213
|
+
if "deepseek-v2" not in model_family:
|
|
214
|
+
return False
|
|
215
|
+
if "chat" not in llm_family.model_ability:
|
|
216
|
+
return False
|
|
217
|
+
return True
|
|
218
|
+
|
|
219
|
+
def chat(
|
|
220
|
+
self,
|
|
221
|
+
messages: List[Dict],
|
|
222
|
+
generate_config: Optional[PytorchGenerateConfig] = None,
|
|
223
|
+
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
|
|
224
|
+
assert self.model_family.chat_template is not None
|
|
225
|
+
full_prompt = self.get_full_context(
|
|
226
|
+
messages,
|
|
227
|
+
self.model_family.chat_template,
|
|
228
|
+
tokenizer=self._tokenizer,
|
|
229
|
+
)
|
|
230
|
+
input_tensor = self._tokenizer.encode(
|
|
231
|
+
full_prompt,
|
|
232
|
+
padding=False,
|
|
233
|
+
truncation=False,
|
|
234
|
+
max_length=None,
|
|
235
|
+
add_special_tokens=False,
|
|
236
|
+
return_tensors="pt",
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
generate_config = self._sanitize_generate_config(generate_config)
|
|
240
|
+
default_generate_config = self._model.generation_config
|
|
241
|
+
generate_kwargs = {
|
|
242
|
+
"input_ids": input_tensor.cuda(),
|
|
243
|
+
"temperature": float(
|
|
244
|
+
generate_config.get("temperature", default_generate_config.temperature)
|
|
245
|
+
),
|
|
246
|
+
"repetition_penalty": float(generate_config.get("repetition_penalty", 1.0)),
|
|
247
|
+
"top_p": float(generate_config.get("top_p", default_generate_config.top_p)),
|
|
248
|
+
"top_k": int(generate_config.get("top_k", -1)),
|
|
249
|
+
"max_new_tokens": generate_config.get("max_tokens", 512),
|
|
250
|
+
"bos_token_id": default_generate_config.bos_token_id,
|
|
251
|
+
"do_sample": default_generate_config.do_sample,
|
|
252
|
+
"eos_token_id": default_generate_config.eos_token_id,
|
|
253
|
+
}
|
|
254
|
+
|
|
255
|
+
stream = generate_config.get("stream", False)
|
|
256
|
+
stream_options = generate_config.get("stream_options", None)
|
|
257
|
+
include_usage = (
|
|
258
|
+
stream_options["include_usage"]
|
|
259
|
+
if isinstance(stream_options, dict)
|
|
260
|
+
else False
|
|
261
|
+
)
|
|
262
|
+
if stream:
|
|
263
|
+
chunk = self._generate_stream(generate_kwargs, input_tensor, include_usage)
|
|
264
|
+
return self._to_chat_completion_chunks(chunk)
|
|
265
|
+
else:
|
|
266
|
+
return self._generate(generate_kwargs, input_tensor)
|
|
267
|
+
|
|
268
|
+
def _generate(self, generate_kwargs, input_ids) -> ChatCompletion:
|
|
269
|
+
prompt_tokens = len(input_ids[0])
|
|
270
|
+
generation_output = self._model.generate(**generate_kwargs)
|
|
271
|
+
completion_tokens = len(generation_output[0])
|
|
272
|
+
response = self._tokenizer.decode(
|
|
273
|
+
generation_output[0][input_ids.shape[1] :], skip_special_tokens=True
|
|
274
|
+
)
|
|
275
|
+
return generate_chat_completion(
|
|
276
|
+
self.model_uid,
|
|
277
|
+
response,
|
|
278
|
+
prompt_tokens=prompt_tokens,
|
|
279
|
+
completion_tokens=completion_tokens,
|
|
280
|
+
total_tokens=prompt_tokens + completion_tokens,
|
|
281
|
+
)
|
|
282
|
+
|
|
283
|
+
def _generate_stream(self, generate_kwargs, input_ids, include_usage):
|
|
284
|
+
from threading import Thread
|
|
285
|
+
|
|
286
|
+
from transformers import TextIteratorStreamer
|
|
287
|
+
|
|
288
|
+
# Initialize the streamer
|
|
289
|
+
streamer = TextIteratorStreamer(
|
|
290
|
+
self._tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10
|
|
291
|
+
)
|
|
292
|
+
# Define the generation configuration
|
|
293
|
+
generate_kwargs["streamer"] = streamer
|
|
294
|
+
# Start the model chat in a separate thread
|
|
295
|
+
thread = Thread(
|
|
296
|
+
target=self._model.generate,
|
|
297
|
+
kwargs=generate_kwargs,
|
|
298
|
+
)
|
|
299
|
+
thread.start()
|
|
300
|
+
|
|
301
|
+
completion_id = str(uuid.uuid1())
|
|
302
|
+
prompt_tokens = len(input_ids[0])
|
|
303
|
+
total_tokens, completion_tokens = 0, 0
|
|
304
|
+
# Loop through the streamer to get the new text as it is generated
|
|
305
|
+
for i, new_text in enumerate(streamer):
|
|
306
|
+
completion_tokens = max(completion_tokens, len(streamer.token_cache))
|
|
307
|
+
total_tokens = prompt_tokens + completion_tokens
|
|
308
|
+
yield generate_completion_chunk(
|
|
309
|
+
chunk_text=new_text,
|
|
310
|
+
finish_reason=None,
|
|
311
|
+
chunk_id=completion_id,
|
|
312
|
+
model_uid=self.model_uid,
|
|
313
|
+
prompt_tokens=prompt_tokens,
|
|
314
|
+
completion_tokens=completion_tokens,
|
|
315
|
+
total_tokens=total_tokens,
|
|
316
|
+
)
|
|
317
|
+
yield generate_completion_chunk(
|
|
318
|
+
chunk_text=None,
|
|
319
|
+
finish_reason="stop",
|
|
320
|
+
chunk_id=completion_id,
|
|
321
|
+
model_uid=self.model_uid,
|
|
322
|
+
prompt_tokens=prompt_tokens,
|
|
323
|
+
completion_tokens=completion_tokens,
|
|
324
|
+
total_tokens=total_tokens,
|
|
325
|
+
has_choice=True,
|
|
326
|
+
has_content=False,
|
|
327
|
+
)
|
|
328
|
+
|
|
329
|
+
if include_usage:
|
|
330
|
+
yield generate_completion_chunk(
|
|
331
|
+
chunk_text=None,
|
|
332
|
+
finish_reason=None,
|
|
333
|
+
chunk_id=completion_id,
|
|
334
|
+
model_uid=self.model_uid,
|
|
335
|
+
prompt_tokens=prompt_tokens,
|
|
336
|
+
completion_tokens=completion_tokens,
|
|
337
|
+
total_tokens=total_tokens,
|
|
338
|
+
has_choice=False,
|
|
339
|
+
has_content=False,
|
|
340
|
+
)
|
|
@@ -0,0 +1,168 @@
|
|
|
1
|
+
# Copyright 2022-2023 XProbe Inc.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
import logging
|
|
15
|
+
import uuid
|
|
16
|
+
from io import BytesIO
|
|
17
|
+
from typing import Dict, Iterator, List, Optional, Union
|
|
18
|
+
from urllib.request import urlopen
|
|
19
|
+
|
|
20
|
+
import numpy as np
|
|
21
|
+
|
|
22
|
+
from ....model.utils import select_device
|
|
23
|
+
from ....types import ChatCompletion, ChatCompletionChunk, CompletionChunk
|
|
24
|
+
from ..llm_family import LLMFamilyV1, LLMSpecV1
|
|
25
|
+
from ..utils import generate_chat_completion, generate_completion_chunk
|
|
26
|
+
from .core import PytorchChatModel, PytorchGenerateConfig
|
|
27
|
+
|
|
28
|
+
logger = logging.getLogger(__name__)
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class Qwen2AudioChatModel(PytorchChatModel):
|
|
32
|
+
def __init__(self, *args, **kwargs):
|
|
33
|
+
super().__init__(*args, **kwargs)
|
|
34
|
+
self._processor = None
|
|
35
|
+
self._model = None
|
|
36
|
+
self._device = None
|
|
37
|
+
|
|
38
|
+
@classmethod
|
|
39
|
+
def match(
|
|
40
|
+
cls, model_family: "LLMFamilyV1", model_spec: "LLMSpecV1", quantization: str
|
|
41
|
+
) -> bool:
|
|
42
|
+
llm_family = model_family.model_family or model_family.model_name
|
|
43
|
+
if "qwen2-audio".lower() in llm_family.lower():
|
|
44
|
+
return True
|
|
45
|
+
return False
|
|
46
|
+
|
|
47
|
+
def load(self):
|
|
48
|
+
from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration
|
|
49
|
+
|
|
50
|
+
device = self._pytorch_model_config.get("device", "auto")
|
|
51
|
+
device = select_device(device)
|
|
52
|
+
self._device = device
|
|
53
|
+
# for multiple GPU, set back to auto to make multiple devices work
|
|
54
|
+
device = "auto" if device == "cuda" else device
|
|
55
|
+
|
|
56
|
+
self._processor = AutoProcessor.from_pretrained(
|
|
57
|
+
self.model_path,
|
|
58
|
+
device_map=device,
|
|
59
|
+
# trust_remote_code=True,
|
|
60
|
+
code_revision=self.model_spec.model_revision,
|
|
61
|
+
)
|
|
62
|
+
self._model = Qwen2AudioForConditionalGeneration.from_pretrained(
|
|
63
|
+
self.model_path,
|
|
64
|
+
device_map=device,
|
|
65
|
+
# trust_remote_code=True,
|
|
66
|
+
revision=self.model_spec.model_revision,
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
def _transform_messages(
|
|
70
|
+
self,
|
|
71
|
+
messages: List[Dict],
|
|
72
|
+
):
|
|
73
|
+
import librosa
|
|
74
|
+
|
|
75
|
+
text = self._processor.apply_chat_template(
|
|
76
|
+
messages, add_generation_prompt=True, tokenize=False
|
|
77
|
+
)
|
|
78
|
+
audios: List[np.ndarray] = []
|
|
79
|
+
for msg in messages:
|
|
80
|
+
content = msg["content"]
|
|
81
|
+
if isinstance(content, List):
|
|
82
|
+
for item in content: # type: ignore
|
|
83
|
+
if item.get("type") == "audio" and "audio_url" in item:
|
|
84
|
+
audio = librosa.load(
|
|
85
|
+
BytesIO(urlopen(item["audio_url"]).read()),
|
|
86
|
+
sr=self._processor.feature_extractor.sampling_rate,
|
|
87
|
+
)[0]
|
|
88
|
+
audios.append(audio)
|
|
89
|
+
|
|
90
|
+
return text, audios
|
|
91
|
+
|
|
92
|
+
def chat(
|
|
93
|
+
self,
|
|
94
|
+
messages: List[Dict],
|
|
95
|
+
generate_config: Optional[PytorchGenerateConfig] = None,
|
|
96
|
+
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
|
|
97
|
+
text, audios = self._transform_messages(messages)
|
|
98
|
+
inputs = self._processor(
|
|
99
|
+
text=text, audios=audios, return_tensors="pt", padding=True
|
|
100
|
+
)
|
|
101
|
+
inputs.input_ids = inputs.input_ids.to(self._device)
|
|
102
|
+
generate_config = generate_config if generate_config else {}
|
|
103
|
+
stream = generate_config.get("stream", False) if generate_config else False
|
|
104
|
+
|
|
105
|
+
if stream:
|
|
106
|
+
it = self._generate_stream(inputs, generate_config)
|
|
107
|
+
return self._to_chat_completion_chunks(it)
|
|
108
|
+
else:
|
|
109
|
+
c = self._generate(inputs, generate_config)
|
|
110
|
+
return c
|
|
111
|
+
|
|
112
|
+
def _generate(self, inputs, config: PytorchGenerateConfig = {}) -> ChatCompletion:
|
|
113
|
+
generate_ids = self._model.generate(
|
|
114
|
+
**inputs,
|
|
115
|
+
max_length=config.get("max_tokens", 512),
|
|
116
|
+
)
|
|
117
|
+
generate_ids = generate_ids[:, inputs.input_ids.size(1) :]
|
|
118
|
+
response = self._processor.batch_decode(
|
|
119
|
+
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
|
120
|
+
)[0]
|
|
121
|
+
return generate_chat_completion(self.model_uid, response)
|
|
122
|
+
|
|
123
|
+
def _generate_stream(
|
|
124
|
+
self, inputs, config: PytorchGenerateConfig = {}
|
|
125
|
+
) -> Iterator[CompletionChunk]:
|
|
126
|
+
from threading import Thread
|
|
127
|
+
|
|
128
|
+
from transformers import TextIteratorStreamer
|
|
129
|
+
|
|
130
|
+
tokenizer = self._processor.tokenizer
|
|
131
|
+
streamer = TextIteratorStreamer(
|
|
132
|
+
tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
gen_kwargs = {
|
|
136
|
+
"max_new_tokens": config.get("max_tokens", 512),
|
|
137
|
+
"streamer": streamer,
|
|
138
|
+
**inputs,
|
|
139
|
+
}
|
|
140
|
+
|
|
141
|
+
thread = Thread(target=self._model.generate, kwargs=gen_kwargs)
|
|
142
|
+
thread.start()
|
|
143
|
+
|
|
144
|
+
completion_id = str(uuid.uuid1())
|
|
145
|
+
for new_text in streamer:
|
|
146
|
+
yield generate_completion_chunk(
|
|
147
|
+
chunk_text=new_text,
|
|
148
|
+
finish_reason=None,
|
|
149
|
+
chunk_id=completion_id,
|
|
150
|
+
model_uid=self.model_uid,
|
|
151
|
+
prompt_tokens=-1,
|
|
152
|
+
completion_tokens=-1,
|
|
153
|
+
total_tokens=-1,
|
|
154
|
+
has_choice=True,
|
|
155
|
+
has_content=True,
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
yield generate_completion_chunk(
|
|
159
|
+
chunk_text=None,
|
|
160
|
+
finish_reason="stop",
|
|
161
|
+
chunk_id=completion_id,
|
|
162
|
+
model_uid=self.model_uid,
|
|
163
|
+
prompt_tokens=-1,
|
|
164
|
+
completion_tokens=-1,
|
|
165
|
+
total_tokens=-1,
|
|
166
|
+
has_choice=True,
|
|
167
|
+
has_content=False,
|
|
168
|
+
)
|
|
@@ -11,7 +11,9 @@
|
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
|
+
import importlib.util
|
|
14
15
|
import logging
|
|
16
|
+
import sys
|
|
15
17
|
import uuid
|
|
16
18
|
from typing import Iterator, List, Optional, Union
|
|
17
19
|
|
|
@@ -59,9 +61,19 @@ class Qwen2VLChatModel(PytorchChatModel):
|
|
|
59
61
|
self.model_path, trust_remote_code=True
|
|
60
62
|
)
|
|
61
63
|
self._tokenizer = self._processor.tokenizer
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
64
|
+
flash_attn_installed = importlib.util.find_spec("flash_attn") is not None
|
|
65
|
+
if flash_attn_installed:
|
|
66
|
+
self._model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
67
|
+
self.model_path,
|
|
68
|
+
torch_dtype="bfloat16",
|
|
69
|
+
device_map=device,
|
|
70
|
+
attn_implementation="flash_attention_2",
|
|
71
|
+
trust_remote_code=True,
|
|
72
|
+
).eval()
|
|
73
|
+
else:
|
|
74
|
+
self._model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
75
|
+
self.model_path, device_map=device, trust_remote_code=True
|
|
76
|
+
).eval()
|
|
65
77
|
|
|
66
78
|
def _transform_messages(
|
|
67
79
|
self,
|
|
@@ -177,8 +189,18 @@ class Qwen2VLChatModel(PytorchChatModel):
|
|
|
177
189
|
"streamer": streamer,
|
|
178
190
|
**inputs,
|
|
179
191
|
}
|
|
180
|
-
|
|
181
|
-
|
|
192
|
+
error = None
|
|
193
|
+
|
|
194
|
+
def model_generate():
|
|
195
|
+
try:
|
|
196
|
+
return self._model.generate(**gen_kwargs)
|
|
197
|
+
except Exception:
|
|
198
|
+
nonlocal error
|
|
199
|
+
error = sys.exc_info()
|
|
200
|
+
streamer.end()
|
|
201
|
+
raise
|
|
202
|
+
|
|
203
|
+
thread = Thread(target=model_generate)
|
|
182
204
|
thread.start()
|
|
183
205
|
|
|
184
206
|
completion_id = str(uuid.uuid1())
|
|
@@ -195,6 +217,10 @@ class Qwen2VLChatModel(PytorchChatModel):
|
|
|
195
217
|
has_content=True,
|
|
196
218
|
)
|
|
197
219
|
|
|
220
|
+
if error:
|
|
221
|
+
_, err, tb = error # type: ignore
|
|
222
|
+
raise err.with_traceback(tb)
|
|
223
|
+
|
|
198
224
|
yield generate_completion_chunk(
|
|
199
225
|
chunk_text=None,
|
|
200
226
|
finish_reason="stop",
|