xinference 0.14.2__py3-none-any.whl → 0.14.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/core/chat_interface.py +1 -1
- xinference/core/image_interface.py +9 -0
- xinference/core/model.py +4 -1
- xinference/core/worker.py +60 -44
- xinference/model/audio/chattts.py +25 -9
- xinference/model/audio/core.py +8 -2
- xinference/model/audio/cosyvoice.py +4 -3
- xinference/model/audio/custom.py +4 -5
- xinference/model/audio/fish_speech.py +228 -0
- xinference/model/audio/model_spec.json +8 -0
- xinference/model/embedding/core.py +25 -1
- xinference/model/embedding/custom.py +4 -5
- xinference/model/flexible/core.py +5 -1
- xinference/model/image/custom.py +4 -5
- xinference/model/image/model_spec.json +2 -1
- xinference/model/image/model_spec_modelscope.json +2 -1
- xinference/model/image/stable_diffusion/core.py +66 -3
- xinference/model/llm/__init__.py +6 -0
- xinference/model/llm/llm_family.json +54 -9
- xinference/model/llm/llm_family.py +7 -6
- xinference/model/llm/llm_family_modelscope.json +56 -10
- xinference/model/llm/lmdeploy/__init__.py +0 -0
- xinference/model/llm/lmdeploy/core.py +557 -0
- xinference/model/llm/sglang/core.py +7 -1
- xinference/model/llm/transformers/cogvlm2.py +4 -45
- xinference/model/llm/transformers/cogvlm2_video.py +524 -0
- xinference/model/llm/transformers/core.py +3 -0
- xinference/model/llm/transformers/glm4v.py +2 -23
- xinference/model/llm/transformers/intern_vl.py +94 -11
- xinference/model/llm/transformers/minicpmv25.py +2 -23
- xinference/model/llm/transformers/minicpmv26.py +2 -22
- xinference/model/llm/transformers/yi_vl.py +2 -24
- xinference/model/llm/utils.py +13 -1
- xinference/model/llm/vllm/core.py +1 -34
- xinference/model/rerank/custom.py +4 -5
- xinference/model/utils.py +41 -1
- xinference/model/video/core.py +3 -1
- xinference/model/video/diffusers.py +41 -38
- xinference/model/video/model_spec.json +24 -1
- xinference/model/video/model_spec_modelscope.json +25 -1
- xinference/thirdparty/fish_speech/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/callbacks/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/callbacks/grad_norm.py +113 -0
- xinference/thirdparty/fish_speech/fish_speech/configs/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/configs/lora/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +2 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/concat_repeat.py +53 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/text_data_pb2.py +33 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/text_data_stream.py +36 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/semantic.py +496 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/vqgan.py +147 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/core.py +40 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +123 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/pt_BR.json +133 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +122 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/scan.py +122 -0
- xinference/thirdparty/fish_speech/fish_speech/models/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/lit_module.py +202 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +779 -0
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/lora.py +92 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/__init__.py +3 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/lit_module.py +442 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/discriminator.py +44 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +625 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +139 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/reference.py +115 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/wavenet.py +225 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/utils.py +94 -0
- xinference/thirdparty/fish_speech/fish_speech/scheduler.py +40 -0
- xinference/thirdparty/fish_speech/fish_speech/text/__init__.py +4 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_class.py +172 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_constant.py +30 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/basic_util.py +342 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/cardinal.py +32 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/date.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/digit.py +32 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/fraction.py +35 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/money.py +43 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/percentage.py +33 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/telephone.py +51 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +177 -0
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +69 -0
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +130 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +139 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/__init__.py +23 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/braceexpand.py +217 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/context.py +13 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/file.py +16 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/instantiators.py +50 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/logger.py +55 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/logging_utils.py +48 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/rich_utils.py +100 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/spectrogram.py +122 -0
- xinference/thirdparty/fish_speech/fish_speech/utils/utils.py +114 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/launch_utils.py +120 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1237 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +495 -0
- xinference/thirdparty/fish_speech/tools/auto_rerank.py +159 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +55 -0
- xinference/thirdparty/fish_speech/tools/extract_model.py +21 -0
- xinference/thirdparty/fish_speech/tools/file.py +108 -0
- xinference/thirdparty/fish_speech/tools/gen_ref.py +36 -0
- xinference/thirdparty/fish_speech/tools/llama/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/llama/build_dataset.py +169 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +171 -0
- xinference/thirdparty/fish_speech/tools/llama/generate.py +698 -0
- xinference/thirdparty/fish_speech/tools/llama/merge_lora.py +95 -0
- xinference/thirdparty/fish_speech/tools/llama/quantize.py +497 -0
- xinference/thirdparty/fish_speech/tools/llama/rebuild_tokenizer.py +57 -0
- xinference/thirdparty/fish_speech/tools/merge_asr_files.py +55 -0
- xinference/thirdparty/fish_speech/tools/post_api.py +164 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/auto_model.py +573 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/fun_asr.py +332 -0
- xinference/thirdparty/fish_speech/tools/sensevoice/vad_utils.py +61 -0
- xinference/thirdparty/fish_speech/tools/smart_pad.py +47 -0
- xinference/thirdparty/fish_speech/tools/vqgan/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/vqgan/create_train_split.py +83 -0
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +227 -0
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +120 -0
- xinference/thirdparty/fish_speech/tools/webui.py +619 -0
- xinference/thirdparty/fish_speech/tools/whisper_asr.py +176 -0
- xinference/thirdparty/matcha/__init__.py +0 -0
- xinference/thirdparty/matcha/app.py +357 -0
- xinference/thirdparty/matcha/cli.py +419 -0
- xinference/thirdparty/matcha/data/__init__.py +0 -0
- xinference/thirdparty/matcha/data/components/__init__.py +0 -0
- xinference/thirdparty/matcha/data/text_mel_datamodule.py +274 -0
- xinference/thirdparty/matcha/hifigan/__init__.py +0 -0
- xinference/thirdparty/matcha/hifigan/config.py +28 -0
- xinference/thirdparty/matcha/hifigan/denoiser.py +64 -0
- xinference/thirdparty/matcha/hifigan/env.py +17 -0
- xinference/thirdparty/matcha/hifigan/meldataset.py +217 -0
- xinference/thirdparty/matcha/hifigan/models.py +368 -0
- xinference/thirdparty/matcha/hifigan/xutils.py +60 -0
- xinference/thirdparty/matcha/models/__init__.py +0 -0
- xinference/thirdparty/matcha/models/baselightningmodule.py +210 -0
- xinference/thirdparty/matcha/models/components/__init__.py +0 -0
- xinference/thirdparty/matcha/models/components/decoder.py +443 -0
- xinference/thirdparty/matcha/models/components/flow_matching.py +132 -0
- xinference/thirdparty/matcha/models/components/text_encoder.py +410 -0
- xinference/thirdparty/matcha/models/components/transformer.py +316 -0
- xinference/thirdparty/matcha/models/matcha_tts.py +244 -0
- xinference/thirdparty/matcha/onnx/__init__.py +0 -0
- xinference/thirdparty/matcha/onnx/export.py +181 -0
- xinference/thirdparty/matcha/onnx/infer.py +168 -0
- xinference/thirdparty/matcha/text/__init__.py +53 -0
- xinference/thirdparty/matcha/text/cleaners.py +121 -0
- xinference/thirdparty/matcha/text/numbers.py +71 -0
- xinference/thirdparty/matcha/text/symbols.py +17 -0
- xinference/thirdparty/matcha/train.py +122 -0
- xinference/thirdparty/matcha/utils/__init__.py +5 -0
- xinference/thirdparty/matcha/utils/audio.py +82 -0
- xinference/thirdparty/matcha/utils/generate_data_statistics.py +112 -0
- xinference/thirdparty/matcha/utils/get_durations_from_trained_model.py +195 -0
- xinference/thirdparty/matcha/utils/instantiators.py +56 -0
- xinference/thirdparty/matcha/utils/logging_utils.py +53 -0
- xinference/thirdparty/matcha/utils/model.py +90 -0
- xinference/thirdparty/matcha/utils/monotonic_align/__init__.py +22 -0
- xinference/thirdparty/matcha/utils/monotonic_align/core.pyx +47 -0
- xinference/thirdparty/matcha/utils/monotonic_align/setup.py +7 -0
- xinference/thirdparty/matcha/utils/pylogger.py +21 -0
- xinference/thirdparty/matcha/utils/rich_utils.py +101 -0
- xinference/thirdparty/matcha/utils/utils.py +259 -0
- xinference/web/ui/build/asset-manifest.json +3 -3
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/js/{main.ffc26121.js → main.661c7b0a.js} +3 -3
- xinference/web/ui/build/static/js/main.661c7b0a.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/070d8c6b3b0f3485c6d3885f0b6bbfdf9643e088a468acbd5d596f2396071c16.json +1 -0
- {xinference-0.14.2.dist-info → xinference-0.14.4.dist-info}/METADATA +31 -11
- {xinference-0.14.2.dist-info → xinference-0.14.4.dist-info}/RECORD +189 -49
- xinference/web/ui/build/static/js/main.ffc26121.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/2f40209b32e7e46a2eab6b8c8a355eb42c3caa8bc3228dd929f32fd2b3940294.json +0 -1
- /xinference/web/ui/build/static/js/{main.ffc26121.js.LICENSE.txt → main.661c7b0a.js.LICENSE.txt} +0 -0
- {xinference-0.14.2.dist-info → xinference-0.14.4.dist-info}/LICENSE +0 -0
- {xinference-0.14.2.dist-info → xinference-0.14.4.dist-info}/WHEEL +0 -0
- {xinference-0.14.2.dist-info → xinference-0.14.4.dist-info}/entry_points.txt +0 -0
- {xinference-0.14.2.dist-info → xinference-0.14.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,90 @@
|
|
|
1
|
+
""" from https://github.com/jaywalnut310/glow-tts """
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import torch
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def sequence_mask(length, max_length=None):
|
|
8
|
+
if max_length is None:
|
|
9
|
+
max_length = length.max()
|
|
10
|
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
|
11
|
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def fix_len_compatibility(length, num_downsamplings_in_unet=2):
|
|
15
|
+
factor = torch.scalar_tensor(2).pow(num_downsamplings_in_unet)
|
|
16
|
+
length = (length / factor).ceil() * factor
|
|
17
|
+
if not torch.onnx.is_in_onnx_export():
|
|
18
|
+
return length.int().item()
|
|
19
|
+
else:
|
|
20
|
+
return length
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def convert_pad_shape(pad_shape):
|
|
24
|
+
inverted_shape = pad_shape[::-1]
|
|
25
|
+
pad_shape = [item for sublist in inverted_shape for item in sublist]
|
|
26
|
+
return pad_shape
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def generate_path(duration, mask):
|
|
30
|
+
device = duration.device
|
|
31
|
+
|
|
32
|
+
b, t_x, t_y = mask.shape
|
|
33
|
+
cum_duration = torch.cumsum(duration, 1)
|
|
34
|
+
path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device)
|
|
35
|
+
|
|
36
|
+
cum_duration_flat = cum_duration.view(b * t_x)
|
|
37
|
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
|
38
|
+
path = path.view(b, t_x, t_y)
|
|
39
|
+
path = path - torch.nn.functional.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
|
40
|
+
path = path * mask
|
|
41
|
+
return path
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
def duration_loss(logw, logw_, lengths):
|
|
45
|
+
loss = torch.sum((logw - logw_) ** 2) / torch.sum(lengths)
|
|
46
|
+
return loss
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def normalize(data, mu, std):
|
|
50
|
+
if not isinstance(mu, (float, int)):
|
|
51
|
+
if isinstance(mu, list):
|
|
52
|
+
mu = torch.tensor(mu, dtype=data.dtype, device=data.device)
|
|
53
|
+
elif isinstance(mu, torch.Tensor):
|
|
54
|
+
mu = mu.to(data.device)
|
|
55
|
+
elif isinstance(mu, np.ndarray):
|
|
56
|
+
mu = torch.from_numpy(mu).to(data.device)
|
|
57
|
+
mu = mu.unsqueeze(-1)
|
|
58
|
+
|
|
59
|
+
if not isinstance(std, (float, int)):
|
|
60
|
+
if isinstance(std, list):
|
|
61
|
+
std = torch.tensor(std, dtype=data.dtype, device=data.device)
|
|
62
|
+
elif isinstance(std, torch.Tensor):
|
|
63
|
+
std = std.to(data.device)
|
|
64
|
+
elif isinstance(std, np.ndarray):
|
|
65
|
+
std = torch.from_numpy(std).to(data.device)
|
|
66
|
+
std = std.unsqueeze(-1)
|
|
67
|
+
|
|
68
|
+
return (data - mu) / std
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def denormalize(data, mu, std):
|
|
72
|
+
if not isinstance(mu, float):
|
|
73
|
+
if isinstance(mu, list):
|
|
74
|
+
mu = torch.tensor(mu, dtype=data.dtype, device=data.device)
|
|
75
|
+
elif isinstance(mu, torch.Tensor):
|
|
76
|
+
mu = mu.to(data.device)
|
|
77
|
+
elif isinstance(mu, np.ndarray):
|
|
78
|
+
mu = torch.from_numpy(mu).to(data.device)
|
|
79
|
+
mu = mu.unsqueeze(-1)
|
|
80
|
+
|
|
81
|
+
if not isinstance(std, float):
|
|
82
|
+
if isinstance(std, list):
|
|
83
|
+
std = torch.tensor(std, dtype=data.dtype, device=data.device)
|
|
84
|
+
elif isinstance(std, torch.Tensor):
|
|
85
|
+
std = std.to(data.device)
|
|
86
|
+
elif isinstance(std, np.ndarray):
|
|
87
|
+
std = torch.from_numpy(std).to(data.device)
|
|
88
|
+
std = std.unsqueeze(-1)
|
|
89
|
+
|
|
90
|
+
return data * std + mu
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import torch
|
|
3
|
+
|
|
4
|
+
from matcha.utils.monotonic_align.core import maximum_path_c
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def maximum_path(value, mask):
|
|
8
|
+
"""Cython optimised version.
|
|
9
|
+
value: [b, t_x, t_y]
|
|
10
|
+
mask: [b, t_x, t_y]
|
|
11
|
+
"""
|
|
12
|
+
value = value * mask
|
|
13
|
+
device = value.device
|
|
14
|
+
dtype = value.dtype
|
|
15
|
+
value = value.data.cpu().numpy().astype(np.float32)
|
|
16
|
+
path = np.zeros_like(value).astype(np.int32)
|
|
17
|
+
mask = mask.data.cpu().numpy()
|
|
18
|
+
|
|
19
|
+
t_x_max = mask.sum(1)[:, 0].astype(np.int32)
|
|
20
|
+
t_y_max = mask.sum(2)[:, 0].astype(np.int32)
|
|
21
|
+
maximum_path_c(path, value, t_x_max, t_y_max)
|
|
22
|
+
return torch.from_numpy(path).to(device=device, dtype=dtype)
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
cimport cython
|
|
4
|
+
cimport numpy as np
|
|
5
|
+
|
|
6
|
+
from cython.parallel import prange
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
@cython.boundscheck(False)
|
|
10
|
+
@cython.wraparound(False)
|
|
11
|
+
cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_x, int t_y, float max_neg_val) nogil:
|
|
12
|
+
cdef int x
|
|
13
|
+
cdef int y
|
|
14
|
+
cdef float v_prev
|
|
15
|
+
cdef float v_cur
|
|
16
|
+
cdef float tmp
|
|
17
|
+
cdef int index = t_x - 1
|
|
18
|
+
|
|
19
|
+
for y in range(t_y):
|
|
20
|
+
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
|
21
|
+
if x == y:
|
|
22
|
+
v_cur = max_neg_val
|
|
23
|
+
else:
|
|
24
|
+
v_cur = value[x, y-1]
|
|
25
|
+
if x == 0:
|
|
26
|
+
if y == 0:
|
|
27
|
+
v_prev = 0.
|
|
28
|
+
else:
|
|
29
|
+
v_prev = max_neg_val
|
|
30
|
+
else:
|
|
31
|
+
v_prev = value[x-1, y-1]
|
|
32
|
+
value[x, y] = max(v_cur, v_prev) + value[x, y]
|
|
33
|
+
|
|
34
|
+
for y in range(t_y - 1, -1, -1):
|
|
35
|
+
path[index, y] = 1
|
|
36
|
+
if index != 0 and (index == y or value[index, y-1] < value[index-1, y-1]):
|
|
37
|
+
index = index - 1
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
@cython.boundscheck(False)
|
|
41
|
+
@cython.wraparound(False)
|
|
42
|
+
cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_xs, int[::1] t_ys, float max_neg_val=-1e9) nogil:
|
|
43
|
+
cdef int b = values.shape[0]
|
|
44
|
+
|
|
45
|
+
cdef int i
|
|
46
|
+
for i in prange(b, nogil=True):
|
|
47
|
+
maximum_path_each(paths[i], values[i], t_xs[i], t_ys[i], max_neg_val)
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
|
|
3
|
+
from lightning.pytorch.utilities import rank_zero_only
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def get_pylogger(name: str = __name__) -> logging.Logger:
|
|
7
|
+
"""Initializes a multi-GPU-friendly python command line logger.
|
|
8
|
+
|
|
9
|
+
:param name: The name of the logger, defaults to ``__name__``.
|
|
10
|
+
|
|
11
|
+
:return: A logger object.
|
|
12
|
+
"""
|
|
13
|
+
logger = logging.getLogger(name)
|
|
14
|
+
|
|
15
|
+
# this ensures all logging levels get marked with the rank zero decorator
|
|
16
|
+
# otherwise logs would get multiplied for each GPU process in multi-GPU setup
|
|
17
|
+
logging_levels = ("debug", "info", "warning", "error", "exception", "fatal", "critical")
|
|
18
|
+
for level in logging_levels:
|
|
19
|
+
setattr(logger, level, rank_zero_only(getattr(logger, level)))
|
|
20
|
+
|
|
21
|
+
return logger
|
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
from pathlib import Path
|
|
2
|
+
from typing import Sequence
|
|
3
|
+
|
|
4
|
+
import rich
|
|
5
|
+
import rich.syntax
|
|
6
|
+
import rich.tree
|
|
7
|
+
from hydra.core.hydra_config import HydraConfig
|
|
8
|
+
from lightning.pytorch.utilities import rank_zero_only
|
|
9
|
+
from omegaconf import DictConfig, OmegaConf, open_dict
|
|
10
|
+
from rich.prompt import Prompt
|
|
11
|
+
|
|
12
|
+
from matcha.utils import pylogger
|
|
13
|
+
|
|
14
|
+
log = pylogger.get_pylogger(__name__)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@rank_zero_only
|
|
18
|
+
def print_config_tree(
|
|
19
|
+
cfg: DictConfig,
|
|
20
|
+
print_order: Sequence[str] = (
|
|
21
|
+
"data",
|
|
22
|
+
"model",
|
|
23
|
+
"callbacks",
|
|
24
|
+
"logger",
|
|
25
|
+
"trainer",
|
|
26
|
+
"paths",
|
|
27
|
+
"extras",
|
|
28
|
+
),
|
|
29
|
+
resolve: bool = False,
|
|
30
|
+
save_to_file: bool = False,
|
|
31
|
+
) -> None:
|
|
32
|
+
"""Prints the contents of a DictConfig as a tree structure using the Rich library.
|
|
33
|
+
|
|
34
|
+
:param cfg: A DictConfig composed by Hydra.
|
|
35
|
+
:param print_order: Determines in what order config components are printed. Default is ``("data", "model",
|
|
36
|
+
"callbacks", "logger", "trainer", "paths", "extras")``.
|
|
37
|
+
:param resolve: Whether to resolve reference fields of DictConfig. Default is ``False``.
|
|
38
|
+
:param save_to_file: Whether to export config to the hydra output folder. Default is ``False``.
|
|
39
|
+
"""
|
|
40
|
+
style = "dim"
|
|
41
|
+
tree = rich.tree.Tree("CONFIG", style=style, guide_style=style)
|
|
42
|
+
|
|
43
|
+
queue = []
|
|
44
|
+
|
|
45
|
+
# add fields from `print_order` to queue
|
|
46
|
+
for field in print_order:
|
|
47
|
+
_ = (
|
|
48
|
+
queue.append(field)
|
|
49
|
+
if field in cfg
|
|
50
|
+
else log.warning(f"Field '{field}' not found in config. Skipping '{field}' config printing...")
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
# add all the other fields to queue (not specified in `print_order`)
|
|
54
|
+
for field in cfg:
|
|
55
|
+
if field not in queue:
|
|
56
|
+
queue.append(field)
|
|
57
|
+
|
|
58
|
+
# generate config tree from queue
|
|
59
|
+
for field in queue:
|
|
60
|
+
branch = tree.add(field, style=style, guide_style=style)
|
|
61
|
+
|
|
62
|
+
config_group = cfg[field]
|
|
63
|
+
if isinstance(config_group, DictConfig):
|
|
64
|
+
branch_content = OmegaConf.to_yaml(config_group, resolve=resolve)
|
|
65
|
+
else:
|
|
66
|
+
branch_content = str(config_group)
|
|
67
|
+
|
|
68
|
+
branch.add(rich.syntax.Syntax(branch_content, "yaml"))
|
|
69
|
+
|
|
70
|
+
# print config tree
|
|
71
|
+
rich.print(tree)
|
|
72
|
+
|
|
73
|
+
# save config tree to file
|
|
74
|
+
if save_to_file:
|
|
75
|
+
with open(Path(cfg.paths.output_dir, "config_tree.log"), "w") as file:
|
|
76
|
+
rich.print(tree, file=file)
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
@rank_zero_only
|
|
80
|
+
def enforce_tags(cfg: DictConfig, save_to_file: bool = False) -> None:
|
|
81
|
+
"""Prompts user to input tags from command line if no tags are provided in config.
|
|
82
|
+
|
|
83
|
+
:param cfg: A DictConfig composed by Hydra.
|
|
84
|
+
:param save_to_file: Whether to export tags to the hydra output folder. Default is ``False``.
|
|
85
|
+
"""
|
|
86
|
+
if not cfg.get("tags"):
|
|
87
|
+
if "id" in HydraConfig().cfg.hydra.job:
|
|
88
|
+
raise ValueError("Specify tags before launching a multirun!")
|
|
89
|
+
|
|
90
|
+
log.warning("No tags provided in config. Prompting user to input tags...")
|
|
91
|
+
tags = Prompt.ask("Enter a list of comma separated tags", default="dev")
|
|
92
|
+
tags = [t.strip() for t in tags.split(",") if t != ""]
|
|
93
|
+
|
|
94
|
+
with open_dict(cfg):
|
|
95
|
+
cfg.tags = tags
|
|
96
|
+
|
|
97
|
+
log.info(f"Tags: {cfg.tags}")
|
|
98
|
+
|
|
99
|
+
if save_to_file:
|
|
100
|
+
with open(Path(cfg.paths.output_dir, "tags.log"), "w") as file:
|
|
101
|
+
rich.print(cfg.tags, file=file)
|
|
@@ -0,0 +1,259 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import sys
|
|
3
|
+
import warnings
|
|
4
|
+
from importlib.util import find_spec
|
|
5
|
+
from math import ceil
|
|
6
|
+
from pathlib import Path
|
|
7
|
+
from typing import Any, Callable, Dict, Tuple
|
|
8
|
+
|
|
9
|
+
import gdown
|
|
10
|
+
import matplotlib.pyplot as plt
|
|
11
|
+
import numpy as np
|
|
12
|
+
import torch
|
|
13
|
+
import wget
|
|
14
|
+
from omegaconf import DictConfig
|
|
15
|
+
|
|
16
|
+
from matcha.utils import pylogger, rich_utils
|
|
17
|
+
|
|
18
|
+
log = pylogger.get_pylogger(__name__)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def extras(cfg: DictConfig) -> None:
|
|
22
|
+
"""Applies optional utilities before the task is started.
|
|
23
|
+
|
|
24
|
+
Utilities:
|
|
25
|
+
- Ignoring python warnings
|
|
26
|
+
- Setting tags from command line
|
|
27
|
+
- Rich config printing
|
|
28
|
+
|
|
29
|
+
:param cfg: A DictConfig object containing the config tree.
|
|
30
|
+
"""
|
|
31
|
+
# return if no `extras` config
|
|
32
|
+
if not cfg.get("extras"):
|
|
33
|
+
log.warning("Extras config not found! <cfg.extras=null>")
|
|
34
|
+
return
|
|
35
|
+
|
|
36
|
+
# disable python warnings
|
|
37
|
+
if cfg.extras.get("ignore_warnings"):
|
|
38
|
+
log.info("Disabling python warnings! <cfg.extras.ignore_warnings=True>")
|
|
39
|
+
warnings.filterwarnings("ignore")
|
|
40
|
+
|
|
41
|
+
# prompt user to input tags from command line if none are provided in the config
|
|
42
|
+
if cfg.extras.get("enforce_tags"):
|
|
43
|
+
log.info("Enforcing tags! <cfg.extras.enforce_tags=True>")
|
|
44
|
+
rich_utils.enforce_tags(cfg, save_to_file=True)
|
|
45
|
+
|
|
46
|
+
# pretty print config tree using Rich library
|
|
47
|
+
if cfg.extras.get("print_config"):
|
|
48
|
+
log.info("Printing config tree with Rich! <cfg.extras.print_config=True>")
|
|
49
|
+
rich_utils.print_config_tree(cfg, resolve=True, save_to_file=True)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def task_wrapper(task_func: Callable) -> Callable:
|
|
53
|
+
"""Optional decorator that controls the failure behavior when executing the task function.
|
|
54
|
+
|
|
55
|
+
This wrapper can be used to:
|
|
56
|
+
- make sure loggers are closed even if the task function raises an exception (prevents multirun failure)
|
|
57
|
+
- save the exception to a `.log` file
|
|
58
|
+
- mark the run as failed with a dedicated file in the `logs/` folder (so we can find and rerun it later)
|
|
59
|
+
- etc. (adjust depending on your needs)
|
|
60
|
+
|
|
61
|
+
Example:
|
|
62
|
+
```
|
|
63
|
+
@utils.task_wrapper
|
|
64
|
+
def train(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
|
65
|
+
...
|
|
66
|
+
return metric_dict, object_dict
|
|
67
|
+
```
|
|
68
|
+
|
|
69
|
+
:param task_func: The task function to be wrapped.
|
|
70
|
+
|
|
71
|
+
:return: The wrapped task function.
|
|
72
|
+
"""
|
|
73
|
+
|
|
74
|
+
def wrap(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
|
75
|
+
# execute the task
|
|
76
|
+
try:
|
|
77
|
+
metric_dict, object_dict = task_func(cfg=cfg)
|
|
78
|
+
|
|
79
|
+
# things to do if exception occurs
|
|
80
|
+
except Exception as ex:
|
|
81
|
+
# save exception to `.log` file
|
|
82
|
+
log.exception("")
|
|
83
|
+
|
|
84
|
+
# some hyperparameter combinations might be invalid or cause out-of-memory errors
|
|
85
|
+
# so when using hparam search plugins like Optuna, you might want to disable
|
|
86
|
+
# raising the below exception to avoid multirun failure
|
|
87
|
+
raise ex
|
|
88
|
+
|
|
89
|
+
# things to always do after either success or exception
|
|
90
|
+
finally:
|
|
91
|
+
# display output dir path in terminal
|
|
92
|
+
log.info(f"Output dir: {cfg.paths.output_dir}")
|
|
93
|
+
|
|
94
|
+
# always close wandb run (even if exception occurs so multirun won't fail)
|
|
95
|
+
if find_spec("wandb"): # check if wandb is installed
|
|
96
|
+
import wandb
|
|
97
|
+
|
|
98
|
+
if wandb.run:
|
|
99
|
+
log.info("Closing wandb!")
|
|
100
|
+
wandb.finish()
|
|
101
|
+
|
|
102
|
+
return metric_dict, object_dict
|
|
103
|
+
|
|
104
|
+
return wrap
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
def get_metric_value(metric_dict: Dict[str, Any], metric_name: str) -> float:
|
|
108
|
+
"""Safely retrieves value of the metric logged in LightningModule.
|
|
109
|
+
|
|
110
|
+
:param metric_dict: A dict containing metric values.
|
|
111
|
+
:param metric_name: The name of the metric to retrieve.
|
|
112
|
+
:return: The value of the metric.
|
|
113
|
+
"""
|
|
114
|
+
if not metric_name:
|
|
115
|
+
log.info("Metric name is None! Skipping metric value retrieval...")
|
|
116
|
+
return None
|
|
117
|
+
|
|
118
|
+
if metric_name not in metric_dict:
|
|
119
|
+
raise ValueError(
|
|
120
|
+
f"Metric value not found! <metric_name={metric_name}>\n"
|
|
121
|
+
"Make sure metric name logged in LightningModule is correct!\n"
|
|
122
|
+
"Make sure `optimized_metric` name in `hparams_search` config is correct!"
|
|
123
|
+
)
|
|
124
|
+
|
|
125
|
+
metric_value = metric_dict[metric_name].item()
|
|
126
|
+
log.info(f"Retrieved metric value! <{metric_name}={metric_value}>")
|
|
127
|
+
|
|
128
|
+
return metric_value
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
def intersperse(lst, item):
|
|
132
|
+
# Adds blank symbol
|
|
133
|
+
result = [item] * (len(lst) * 2 + 1)
|
|
134
|
+
result[1::2] = lst
|
|
135
|
+
return result
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def save_figure_to_numpy(fig):
|
|
139
|
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
140
|
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
141
|
+
return data
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
def plot_tensor(tensor):
|
|
145
|
+
plt.style.use("default")
|
|
146
|
+
fig, ax = plt.subplots(figsize=(12, 3))
|
|
147
|
+
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
|
|
148
|
+
plt.colorbar(im, ax=ax)
|
|
149
|
+
plt.tight_layout()
|
|
150
|
+
fig.canvas.draw()
|
|
151
|
+
data = save_figure_to_numpy(fig)
|
|
152
|
+
plt.close()
|
|
153
|
+
return data
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
def save_plot(tensor, savepath):
|
|
157
|
+
plt.style.use("default")
|
|
158
|
+
fig, ax = plt.subplots(figsize=(12, 3))
|
|
159
|
+
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
|
|
160
|
+
plt.colorbar(im, ax=ax)
|
|
161
|
+
plt.tight_layout()
|
|
162
|
+
fig.canvas.draw()
|
|
163
|
+
plt.savefig(savepath)
|
|
164
|
+
plt.close()
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
def to_numpy(tensor):
|
|
168
|
+
if isinstance(tensor, np.ndarray):
|
|
169
|
+
return tensor
|
|
170
|
+
elif isinstance(tensor, torch.Tensor):
|
|
171
|
+
return tensor.detach().cpu().numpy()
|
|
172
|
+
elif isinstance(tensor, list):
|
|
173
|
+
return np.array(tensor)
|
|
174
|
+
else:
|
|
175
|
+
raise TypeError("Unsupported type for conversion to numpy array")
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
def get_user_data_dir(appname="matcha_tts"):
|
|
179
|
+
"""
|
|
180
|
+
Args:
|
|
181
|
+
appname (str): Name of application
|
|
182
|
+
|
|
183
|
+
Returns:
|
|
184
|
+
Path: path to user data directory
|
|
185
|
+
"""
|
|
186
|
+
|
|
187
|
+
MATCHA_HOME = os.environ.get("MATCHA_HOME")
|
|
188
|
+
if MATCHA_HOME is not None:
|
|
189
|
+
ans = Path(MATCHA_HOME).expanduser().resolve(strict=False)
|
|
190
|
+
elif sys.platform == "win32":
|
|
191
|
+
import winreg # pylint: disable=import-outside-toplevel
|
|
192
|
+
|
|
193
|
+
key = winreg.OpenKey(
|
|
194
|
+
winreg.HKEY_CURRENT_USER,
|
|
195
|
+
r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders",
|
|
196
|
+
)
|
|
197
|
+
dir_, _ = winreg.QueryValueEx(key, "Local AppData")
|
|
198
|
+
ans = Path(dir_).resolve(strict=False)
|
|
199
|
+
elif sys.platform == "darwin":
|
|
200
|
+
ans = Path("~/Library/Application Support/").expanduser()
|
|
201
|
+
else:
|
|
202
|
+
ans = Path.home().joinpath(".local/share")
|
|
203
|
+
|
|
204
|
+
final_path = ans.joinpath(appname)
|
|
205
|
+
final_path.mkdir(parents=True, exist_ok=True)
|
|
206
|
+
return final_path
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
def assert_model_downloaded(checkpoint_path, url, use_wget=True):
|
|
210
|
+
if Path(checkpoint_path).exists():
|
|
211
|
+
log.debug(f"[+] Model already present at {checkpoint_path}!")
|
|
212
|
+
print(f"[+] Model already present at {checkpoint_path}!")
|
|
213
|
+
return
|
|
214
|
+
log.info(f"[-] Model not found at {checkpoint_path}! Will download it")
|
|
215
|
+
print(f"[-] Model not found at {checkpoint_path}! Will download it")
|
|
216
|
+
checkpoint_path = str(checkpoint_path)
|
|
217
|
+
if not use_wget:
|
|
218
|
+
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
|
|
219
|
+
else:
|
|
220
|
+
wget.download(url=url, out=checkpoint_path)
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
def get_phoneme_durations(durations, phones):
|
|
224
|
+
prev = durations[0]
|
|
225
|
+
merged_durations = []
|
|
226
|
+
# Convolve with stride 2
|
|
227
|
+
for i in range(1, len(durations), 2):
|
|
228
|
+
if i == len(durations) - 2:
|
|
229
|
+
# if it is last take full value
|
|
230
|
+
next_half = durations[i + 1]
|
|
231
|
+
else:
|
|
232
|
+
next_half = ceil(durations[i + 1] / 2)
|
|
233
|
+
|
|
234
|
+
curr = prev + durations[i] + next_half
|
|
235
|
+
prev = durations[i + 1] - next_half
|
|
236
|
+
merged_durations.append(curr)
|
|
237
|
+
|
|
238
|
+
assert len(phones) == len(merged_durations)
|
|
239
|
+
assert len(merged_durations) == (len(durations) - 1) // 2
|
|
240
|
+
|
|
241
|
+
merged_durations = torch.cumsum(torch.tensor(merged_durations), 0, dtype=torch.long)
|
|
242
|
+
start = torch.tensor(0)
|
|
243
|
+
duration_json = []
|
|
244
|
+
for i, duration in enumerate(merged_durations):
|
|
245
|
+
duration_json.append(
|
|
246
|
+
{
|
|
247
|
+
phones[i]: {
|
|
248
|
+
"starttime": start.item(),
|
|
249
|
+
"endtime": duration.item(),
|
|
250
|
+
"duration": duration.item() - start.item(),
|
|
251
|
+
}
|
|
252
|
+
}
|
|
253
|
+
)
|
|
254
|
+
start = duration
|
|
255
|
+
|
|
256
|
+
assert list(duration_json[-1].values())[0]["endtime"] == sum(
|
|
257
|
+
durations
|
|
258
|
+
), f"{list(duration_json[-1].values())[0]['endtime'], sum(durations)}"
|
|
259
|
+
return duration_json
|
|
@@ -1,14 +1,14 @@
|
|
|
1
1
|
{
|
|
2
2
|
"files": {
|
|
3
3
|
"main.css": "./static/css/main.4bafd904.css",
|
|
4
|
-
"main.js": "./static/js/main.
|
|
4
|
+
"main.js": "./static/js/main.661c7b0a.js",
|
|
5
5
|
"static/media/icon.webp": "./static/media/icon.4603d52c63041e5dfbfd.webp",
|
|
6
6
|
"index.html": "./index.html",
|
|
7
7
|
"main.4bafd904.css.map": "./static/css/main.4bafd904.css.map",
|
|
8
|
-
"main.
|
|
8
|
+
"main.661c7b0a.js.map": "./static/js/main.661c7b0a.js.map"
|
|
9
9
|
},
|
|
10
10
|
"entrypoints": [
|
|
11
11
|
"static/css/main.4bafd904.css",
|
|
12
|
-
"static/js/main.
|
|
12
|
+
"static/js/main.661c7b0a.js"
|
|
13
13
|
]
|
|
14
14
|
}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
<!doctype html><html lang="en"><head><meta charset="utf-8"/><link rel="icon" href="./favicon.svg"/><meta name="viewport" content="width=device-width,initial-scale=1"/><meta name="theme-color" content="#000000"/><meta name="description" content="Web site created using create-react-app"/><link rel="apple-touch-icon" href="./logo192.png"/><link rel="manifest" href="./manifest.json"/><title>Xinference</title><script defer="defer" src="./static/js/main.
|
|
1
|
+
<!doctype html><html lang="en"><head><meta charset="utf-8"/><link rel="icon" href="./favicon.svg"/><meta name="viewport" content="width=device-width,initial-scale=1"/><meta name="theme-color" content="#000000"/><meta name="description" content="Web site created using create-react-app"/><link rel="apple-touch-icon" href="./logo192.png"/><link rel="manifest" href="./manifest.json"/><title>Xinference</title><script defer="defer" src="./static/js/main.661c7b0a.js"></script><link href="./static/css/main.4bafd904.css" rel="stylesheet"></head><body><noscript>You need to enable JavaScript to run this app.</noscript><div id="root"></div></body></html>
|