xinference 0.13.0__py3-none-any.whl → 0.13.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (70) hide show
  1. xinference/_version.py +3 -3
  2. xinference/api/restful_api.py +123 -3
  3. xinference/client/restful/restful_client.py +131 -2
  4. xinference/core/model.py +93 -24
  5. xinference/core/supervisor.py +132 -15
  6. xinference/core/worker.py +165 -8
  7. xinference/deploy/cmdline.py +5 -0
  8. xinference/model/audio/chattts.py +46 -14
  9. xinference/model/audio/core.py +23 -15
  10. xinference/model/core.py +12 -3
  11. xinference/model/embedding/core.py +25 -16
  12. xinference/model/flexible/__init__.py +40 -0
  13. xinference/model/flexible/core.py +228 -0
  14. xinference/model/flexible/launchers/__init__.py +15 -0
  15. xinference/model/flexible/launchers/transformers_launcher.py +63 -0
  16. xinference/model/flexible/utils.py +33 -0
  17. xinference/model/image/core.py +21 -14
  18. xinference/model/image/custom.py +1 -1
  19. xinference/model/image/model_spec.json +14 -0
  20. xinference/model/image/stable_diffusion/core.py +43 -6
  21. xinference/model/llm/__init__.py +0 -2
  22. xinference/model/llm/core.py +3 -2
  23. xinference/model/llm/ggml/llamacpp.py +1 -10
  24. xinference/model/llm/llm_family.json +292 -36
  25. xinference/model/llm/llm_family.py +97 -52
  26. xinference/model/llm/llm_family_modelscope.json +220 -27
  27. xinference/model/llm/pytorch/core.py +0 -80
  28. xinference/model/llm/sglang/core.py +7 -2
  29. xinference/model/llm/utils.py +4 -2
  30. xinference/model/llm/vllm/core.py +3 -0
  31. xinference/model/rerank/core.py +24 -25
  32. xinference/types.py +0 -1
  33. xinference/web/ui/build/asset-manifest.json +3 -3
  34. xinference/web/ui/build/index.html +1 -1
  35. xinference/web/ui/build/static/js/{main.0fb6f3ab.js → main.95c1d652.js} +3 -3
  36. xinference/web/ui/build/static/js/main.95c1d652.js.map +1 -0
  37. xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +1 -0
  38. xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +1 -0
  39. xinference/web/ui/node_modules/.cache/babel-loader/5262556baf9207738bf6a8ba141ec6599d0a636345c245d61fdf88d3171998cb.json +1 -0
  40. xinference/web/ui/node_modules/.cache/babel-loader/709711edada3f1596b309d571285fd31f1c364d66f4425bc28723d0088cc351a.json +1 -0
  41. xinference/web/ui/node_modules/.cache/babel-loader/70fa8c07463a5fe57c68bf92502910105a8f647371836fe8c3a7408246ca7ba0.json +1 -0
  42. xinference/web/ui/node_modules/.cache/babel-loader/f3e02274cb1964e99b1fe69cbb6db233d3d8d7dd05d50ebcdb8e66d50b224b7b.json +1 -0
  43. {xinference-0.13.0.dist-info → xinference-0.13.2.dist-info}/METADATA +9 -11
  44. {xinference-0.13.0.dist-info → xinference-0.13.2.dist-info}/RECORD +49 -58
  45. xinference/model/llm/ggml/chatglm.py +0 -457
  46. xinference/thirdparty/ChatTTS/__init__.py +0 -1
  47. xinference/thirdparty/ChatTTS/core.py +0 -200
  48. xinference/thirdparty/ChatTTS/experimental/__init__.py +0 -0
  49. xinference/thirdparty/ChatTTS/experimental/llm.py +0 -40
  50. xinference/thirdparty/ChatTTS/infer/__init__.py +0 -0
  51. xinference/thirdparty/ChatTTS/infer/api.py +0 -125
  52. xinference/thirdparty/ChatTTS/model/__init__.py +0 -0
  53. xinference/thirdparty/ChatTTS/model/dvae.py +0 -155
  54. xinference/thirdparty/ChatTTS/model/gpt.py +0 -265
  55. xinference/thirdparty/ChatTTS/utils/__init__.py +0 -0
  56. xinference/thirdparty/ChatTTS/utils/gpu_utils.py +0 -23
  57. xinference/thirdparty/ChatTTS/utils/infer_utils.py +0 -141
  58. xinference/thirdparty/ChatTTS/utils/io_utils.py +0 -14
  59. xinference/web/ui/build/static/js/main.0fb6f3ab.js.map +0 -1
  60. xinference/web/ui/node_modules/.cache/babel-loader/0f6b391abec76271137faad13a3793fe7acc1024e8cd2269c147b653ecd3a73b.json +0 -1
  61. xinference/web/ui/node_modules/.cache/babel-loader/30a0c79d8025d6441eb75b2df5bc2750a14f30119c869ef02570d294dff65c2f.json +0 -1
  62. xinference/web/ui/node_modules/.cache/babel-loader/40486e655c3c5801f087e2cf206c0b5511aaa0dfdba78046b7181bf9c17e54c5.json +0 -1
  63. xinference/web/ui/node_modules/.cache/babel-loader/b5507cd57f16a3a230aa0128e39fe103e928de139ea29e2679e4c64dcbba3b3a.json +0 -1
  64. xinference/web/ui/node_modules/.cache/babel-loader/d779b915f83f9c7b5a72515b6932fdd114f1822cef90ae01cc0d12bca59abc2d.json +0 -1
  65. xinference/web/ui/node_modules/.cache/babel-loader/d87824cb266194447a9c0c69ebab2d507bfc3e3148976173760d18c035e9dd26.json +0 -1
  66. /xinference/web/ui/build/static/js/{main.0fb6f3ab.js.LICENSE.txt → main.95c1d652.js.LICENSE.txt} +0 -0
  67. {xinference-0.13.0.dist-info → xinference-0.13.2.dist-info}/LICENSE +0 -0
  68. {xinference-0.13.0.dist-info → xinference-0.13.2.dist-info}/WHEEL +0 -0
  69. {xinference-0.13.0.dist-info → xinference-0.13.2.dist-info}/entry_points.txt +0 -0
  70. {xinference-0.13.0.dist-info → xinference-0.13.2.dist-info}/top_level.txt +0 -0
@@ -92,5 +92,19 @@
92
92
  "model_revision": "62134b9d8e703b5d6f74f1534457287a8bba77ef"
93
93
  }
94
94
  ]
95
+ },
96
+ {
97
+ "model_name": "stable-diffusion-inpainting",
98
+ "model_family": "stable_diffusion",
99
+ "model_id": "runwayml/stable-diffusion-inpainting",
100
+ "model_revision": "51388a731f57604945fddd703ecb5c50e8e7b49d",
101
+ "ability": "inpainting"
102
+ },
103
+ {
104
+ "model_name": "stable-diffusion-2-inpainting",
105
+ "model_family": "stable_diffusion",
106
+ "model_id": "stabilityai/stable-diffusion-2-inpainting",
107
+ "model_revision": "81a84f49b15956b60b4272a405ad3daef3da4590",
108
+ "ability": "inpainting"
95
109
  }
96
110
  ]
@@ -16,6 +16,7 @@ import base64
16
16
  import logging
17
17
  import os
18
18
  import re
19
+ import sys
19
20
  import time
20
21
  import uuid
21
22
  from concurrent.futures import ThreadPoolExecutor
@@ -39,6 +40,7 @@ class DiffusionModel:
39
40
  lora_model: Optional[List[LoRA]] = None,
40
41
  lora_load_kwargs: Optional[Dict] = None,
41
42
  lora_fuse_kwargs: Optional[Dict] = None,
43
+ ability: Optional[str] = None,
42
44
  **kwargs,
43
45
  ):
44
46
  self._model_uid = model_uid
@@ -48,6 +50,7 @@ class DiffusionModel:
48
50
  self._lora_model = lora_model
49
51
  self._lora_load_kwargs = lora_load_kwargs or {}
50
52
  self._lora_fuse_kwargs = lora_fuse_kwargs or {}
53
+ self._ability = ability
51
54
  self._kwargs = kwargs
52
55
 
53
56
  def _apply_lora(self):
@@ -64,8 +67,14 @@ class DiffusionModel:
64
67
  logger.info(f"Successfully loaded the LoRA for model {self._model_uid}.")
65
68
 
66
69
  def load(self):
67
- # import torch
68
- from diffusers import AutoPipelineForText2Image
70
+ import torch
71
+
72
+ if self._ability in [None, "text2image", "image2image"]:
73
+ from diffusers import AutoPipelineForText2Image as AutoPipelineModel
74
+ elif self._ability == "inpainting":
75
+ from diffusers import AutoPipelineForInpainting as AutoPipelineModel
76
+ else:
77
+ raise ValueError(f"Unknown ability: {self._ability}")
69
78
 
70
79
  controlnet = self._kwargs.get("controlnet")
71
80
  if controlnet is not None:
@@ -74,12 +83,16 @@ class DiffusionModel:
74
83
  logger.debug("Loading controlnet %s", controlnet)
75
84
  self._kwargs["controlnet"] = ControlNetModel.from_pretrained(controlnet)
76
85
 
77
- self._model = AutoPipelineForText2Image.from_pretrained(
86
+ torch_dtype = self._kwargs.get("torch_dtype")
87
+ if sys.platform != "darwin" and torch_dtype is None:
88
+ # The following params crashes on Mac M2
89
+ self._kwargs["torch_dtype"] = torch.float16
90
+ self._kwargs["use_safetensors"] = True
91
+
92
+ logger.debug("Loading model %s", AutoPipelineModel)
93
+ self._model = AutoPipelineModel.from_pretrained(
78
94
  self._model_path,
79
95
  **self._kwargs,
80
- # The following params crashes on Mac M2
81
- # torch_dtype=torch.float16,
82
- # use_safetensors=True,
83
96
  )
84
97
  self._model = move_model_to_available_device(self._model)
85
98
  # Recommended if your computer has < 64 GB of RAM
@@ -174,3 +187,27 @@ class DiffusionModel:
174
187
  response_format=response_format,
175
188
  **kwargs,
176
189
  )
190
+
191
+ def inpainting(
192
+ self,
193
+ image: bytes,
194
+ mask_image: bytes,
195
+ prompt: Optional[Union[str, List[str]]] = None,
196
+ negative_prompt: Optional[Union[str, List[str]]] = None,
197
+ n: int = 1,
198
+ size: str = "1024*1024",
199
+ response_format: str = "url",
200
+ **kwargs,
201
+ ):
202
+ width, height = map(int, re.split(r"[^\d]+", size))
203
+ return self._call_model(
204
+ image=image,
205
+ mask_image=mask_image,
206
+ prompt=prompt,
207
+ negative_prompt=negative_prompt,
208
+ height=height,
209
+ width=width,
210
+ num_images_per_prompt=n,
211
+ response_format=response_format,
212
+ **kwargs,
213
+ )
@@ -112,7 +112,6 @@ def generate_engine_config_by_model_family(model_family):
112
112
 
113
113
 
114
114
  def _install():
115
- from .ggml.chatglm import ChatglmCppChatModel
116
115
  from .ggml.llamacpp import LlamaCppChatModel, LlamaCppModel
117
116
  from .mlx.core import MLXChatModel, MLXModel
118
117
  from .pytorch.baichuan import BaichuanPytorchChatModel
@@ -143,7 +142,6 @@ def _install():
143
142
  # register llm classes.
144
143
  LLAMA_CLASSES.extend(
145
144
  [
146
- ChatglmCppChatModel,
147
145
  LlamaCppChatModel,
148
146
  LlamaCppModel,
149
147
  ]
@@ -20,7 +20,7 @@ import platform
20
20
  from abc import abstractmethod
21
21
  from collections import defaultdict
22
22
  from functools import lru_cache
23
- from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
23
+ from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple, Union
24
24
 
25
25
  from ...core.utils import parse_replica_model_uid
26
26
  from ...types import PeftModelConfig
@@ -193,6 +193,7 @@ def create_llm_model_instance(
193
193
  model_size_in_billions: Optional[Union[int, str]] = None,
194
194
  quantization: Optional[str] = None,
195
195
  peft_model_config: Optional[PeftModelConfig] = None,
196
+ download_hub: Optional[Literal["huggingface", "modelscope", "csghub"]] = None,
196
197
  **kwargs,
197
198
  ) -> Tuple[LLM, LLMDescription]:
198
199
  from .llm_family import cache, check_engine_by_spec_parameters, match_llm
@@ -200,7 +201,7 @@ def create_llm_model_instance(
200
201
  if model_engine is None:
201
202
  raise ValueError("model_engine is required for LLM model")
202
203
  match_result = match_llm(
203
- model_name, model_format, model_size_in_billions, quantization
204
+ model_name, model_format, model_size_in_billions, quantization, download_hub
204
205
  )
205
206
 
206
207
  if not match_result:
@@ -25,7 +25,6 @@ from ....types import (
25
25
  CompletionChunk,
26
26
  CompletionUsage,
27
27
  CreateCompletionLlamaCpp,
28
- Embedding,
29
28
  LlamaCppGenerateConfig,
30
29
  LlamaCppModelConfig,
31
30
  )
@@ -65,7 +64,6 @@ class LlamaCppModel(LLM):
65
64
 
66
65
  if self.model_family.context_length:
67
66
  llamacpp_model_config.setdefault("n_ctx", self.model_family.context_length)
68
- llamacpp_model_config.setdefault("embedding", True)
69
67
  llamacpp_model_config.setdefault("use_mmap", False)
70
68
  llamacpp_model_config.setdefault("use_mlock", True)
71
69
 
@@ -185,7 +183,7 @@ class LlamaCppModel(LLM):
185
183
  ) -> bool:
186
184
  if llm_spec.model_format not in ["ggmlv3", "ggufv2"]:
187
185
  return False
188
- if "chatglm" in llm_family.model_name or "qwen" in llm_family.model_name:
186
+ if "qwen" in llm_family.model_name:
189
187
  return False
190
188
  if "generate" not in llm_family.model_ability:
191
189
  return False
@@ -261,11 +259,6 @@ class LlamaCppModel(LLM):
261
259
  else:
262
260
  return generator_wrapper(prompt, generate_config)
263
261
 
264
- def create_embedding(self, input: Union[str, List[str]]) -> Embedding:
265
- assert self._llm is not None
266
- embedding = self._llm.create_embedding(input)
267
- return embedding
268
-
269
262
 
270
263
  class LlamaCppChatModel(LlamaCppModel, ChatModelMixin):
271
264
  def __init__(
@@ -292,8 +285,6 @@ class LlamaCppChatModel(LlamaCppModel, ChatModelMixin):
292
285
  ) -> bool:
293
286
  if llm_spec.model_format not in ["ggmlv3", "ggufv2"]:
294
287
  return False
295
- if "chatglm" in llm_family.model_name:
296
- return False
297
288
  if "chat" not in llm_family.model_ability:
298
289
  return False
299
290
  return True
@@ -574,19 +574,6 @@
574
574
  ],
575
575
  "model_description": "ChatGLM is an open-source General Language Model (GLM) based LLM trained on both Chinese and English data.",
576
576
  "model_specs": [
577
- {
578
- "model_format": "ggmlv3",
579
- "model_size_in_billions": 6,
580
- "quantizations": [
581
- "q4_0",
582
- "q4_1",
583
- "q5_0",
584
- "q5_1",
585
- "q8_0"
586
- ],
587
- "model_id": "Xorbits/chatglm-6B-GGML",
588
- "model_file_name_template": "chatglm-ggml-{quantization}.bin"
589
- },
590
577
  {
591
578
  "model_format": "pytorch",
592
579
  "model_size_in_billions": 6,
@@ -622,19 +609,6 @@
622
609
  ],
623
610
  "model_description": "ChatGLM2 is the second generation of ChatGLM, still open-source and trained on Chinese and English data.",
624
611
  "model_specs": [
625
- {
626
- "model_format": "ggmlv3",
627
- "model_size_in_billions": 6,
628
- "quantizations": [
629
- "q4_0",
630
- "q4_1",
631
- "q5_0",
632
- "q5_1",
633
- "q8_0"
634
- ],
635
- "model_id": "Xorbits/chatglm2-6B-GGML",
636
- "model_file_name_template": "chatglm2-ggml-{quantization}.bin"
637
- },
638
612
  {
639
613
  "model_format": "pytorch",
640
614
  "model_size_in_billions": 6,
@@ -706,15 +680,6 @@
706
680
  ],
707
681
  "model_description": "ChatGLM3 is the third generation of ChatGLM, still open-source and trained on Chinese and English data.",
708
682
  "model_specs": [
709
- {
710
- "model_format": "ggmlv3",
711
- "model_size_in_billions": 6,
712
- "quantizations": [
713
- "q4_0"
714
- ],
715
- "model_id": "Xorbits/chatglm3-6B-GGML",
716
- "model_file_name_template": "chatglm3-ggml-{quantization}.bin"
717
- },
718
683
  {
719
684
  "model_format": "pytorch",
720
685
  "model_size_in_billions": 6,
@@ -855,6 +820,32 @@
855
820
  ],
856
821
  "model_id": "THUDM/glm-4-9b-chat",
857
822
  "model_revision": "b84dc74294ccd507a3d78bde8aebf628221af9bd"
823
+ },
824
+ {
825
+ "model_format": "ggufv2",
826
+ "model_size_in_billions": 9,
827
+ "quantizations": [
828
+ "Q2_K",
829
+ "IQ3_XS",
830
+ "IQ3_S",
831
+ "IQ3_M",
832
+ "Q3_K_S",
833
+ "Q3_K_L",
834
+ "Q3_K",
835
+ "IQ4_XS",
836
+ "IQ4_NL",
837
+ "Q4_K_S",
838
+ "Q4_K",
839
+ "Q5_K_S",
840
+ "Q5_K",
841
+ "Q6_K",
842
+ "Q8_0",
843
+ "BF16",
844
+ "FP16"
845
+ ],
846
+ "model_file_name_template": "glm-4-9b-chat.{quantization}.gguf",
847
+ "model_id": "legraphista/glm-4-9b-chat-GGUF",
848
+ "model_revision": "0155a14edf0176863e9a003cdd78ce599e4d62c0"
858
849
  }
859
850
  ],
860
851
  "prompt_style": {
@@ -900,6 +891,32 @@
900
891
  ],
901
892
  "model_id": "THUDM/glm-4-9b-chat-1m",
902
893
  "model_revision": "715ddbe91082f976ff6a4ca06d59e5bbff6c3642"
894
+ },
895
+ {
896
+ "model_format": "ggufv2",
897
+ "model_size_in_billions": 9,
898
+ "quantizations": [
899
+ "Q2_K",
900
+ "IQ3_XS",
901
+ "IQ3_S",
902
+ "IQ3_M",
903
+ "Q3_K_S",
904
+ "Q3_K_L",
905
+ "Q3_K",
906
+ "IQ4_XS",
907
+ "IQ4_NL",
908
+ "Q4_K_S",
909
+ "Q4_K",
910
+ "Q5_K_S",
911
+ "Q5_K",
912
+ "Q6_K",
913
+ "Q8_0",
914
+ "BF16",
915
+ "FP16"
916
+ ],
917
+ "model_file_name_template": "glm-4-9b-chat-1m.{quantization}.gguf",
918
+ "model_id": "legraphista/glm-4-9b-chat-1m-GGUF",
919
+ "model_revision": "782e28bd5eee3c514c07108da15e0b5e06dcf776"
903
920
  }
904
921
  ],
905
922
  "prompt_style": {
@@ -966,6 +983,65 @@
966
983
  ]
967
984
  }
968
985
  },
986
+ {
987
+ "version": 1,
988
+ "context_length": 131072,
989
+ "model_name": "codegeex4",
990
+ "model_lang": [
991
+ "en",
992
+ "zh"
993
+ ],
994
+ "model_ability": [
995
+ "chat"
996
+ ],
997
+ "model_description": "the open-source version of the latest CodeGeeX4 model series",
998
+ "model_specs": [
999
+ {
1000
+ "model_format": "pytorch",
1001
+ "model_size_in_billions": 9,
1002
+ "quantizations": [
1003
+ "4-bit",
1004
+ "8-bit",
1005
+ "none"
1006
+ ],
1007
+ "model_id": "THUDM/codegeex4-all-9b",
1008
+ "model_revision": "8c4ec1d2f2888412640825a7aa23355939a8f4c6"
1009
+ },
1010
+ {
1011
+ "model_format": "ggufv2",
1012
+ "model_size_in_billions": 9,
1013
+ "quantizations": [
1014
+ "IQ2_M",
1015
+ "IQ3_M",
1016
+ "Q4_K_M",
1017
+ "Q5_K_M",
1018
+ "Q6_K_L",
1019
+ "Q8_0"
1020
+ ],
1021
+ "model_file_name_template": "codegeex4-all-9b-{quantization}.gguf",
1022
+ "model_id": "THUDM/codegeex4-all-9b-GGUF",
1023
+ "model_revision": "6a04071c54c943949826d4815ee00717ed8cf153"
1024
+ }
1025
+ ],
1026
+ "prompt_style": {
1027
+ "style_name": "CHATGLM3",
1028
+ "system_prompt": "",
1029
+ "roles": [
1030
+ "user",
1031
+ "assistant"
1032
+ ],
1033
+ "stop_token_ids": [
1034
+ 151329,
1035
+ 151336,
1036
+ 151338
1037
+ ],
1038
+ "stop": [
1039
+ "<|endoftext|>",
1040
+ "<|user|>",
1041
+ "<|observation|>"
1042
+ ]
1043
+ }
1044
+ },
969
1045
  {
970
1046
  "version": 1,
971
1047
  "context_length": 2048,
@@ -5774,7 +5850,7 @@
5774
5850
  },
5775
5851
  {
5776
5852
  "version": 1,
5777
- "context_length": 204800,
5853
+ "context_length": 32768,
5778
5854
  "model_name": "internlm2-chat",
5779
5855
  "model_lang": [
5780
5856
  "en",
@@ -5822,6 +5898,140 @@
5822
5898
  ]
5823
5899
  }
5824
5900
  },
5901
+ {
5902
+ "version": 1,
5903
+ "context_length": 32768,
5904
+ "model_name": "internlm2.5-chat",
5905
+ "model_lang": [
5906
+ "en",
5907
+ "zh"
5908
+ ],
5909
+ "model_ability": [
5910
+ "chat"
5911
+ ],
5912
+ "model_description": "InternLM2.5 series of the InternLM model.",
5913
+ "model_specs": [
5914
+ {
5915
+ "model_format": "pytorch",
5916
+ "model_size_in_billions": 7,
5917
+ "quantizations": [
5918
+ "none"
5919
+ ],
5920
+ "model_id": "internlm/internlm2_5-7b-chat",
5921
+ "model_revision": "9dc8536a922ab4954726aad1b37fa199004a291a"
5922
+ },
5923
+ {
5924
+ "model_format": "gptq",
5925
+ "model_size_in_billions": 7,
5926
+ "quantizations": [
5927
+ "Int4"
5928
+ ],
5929
+ "model_id": "ModelCloud/internlm-2.5-7b-chat-gptq-4bit",
5930
+ "model_revision": "2e2dda735c326544921a4035bbeb6c6e316a8254"
5931
+ },
5932
+ {
5933
+ "model_format": "ggufv2",
5934
+ "model_size_in_billions": 7,
5935
+ "quantizations": [
5936
+ "q2_k",
5937
+ "q3_k_m",
5938
+ "q4_0",
5939
+ "q4_k_m",
5940
+ "q5_0",
5941
+ "q5_k_m",
5942
+ "q6_k",
5943
+ "q8_0",
5944
+ "fp16"
5945
+ ],
5946
+ "model_id": "internlm/internlm2_5-7b-chat-gguf",
5947
+ "model_file_name_template": "internlm2_5-7b-chat-{quantization}.gguf"
5948
+ }
5949
+ ],
5950
+ "prompt_style": {
5951
+ "style_name": "INTERNLM2",
5952
+ "system_prompt": "You are InternLM (书生·浦语), a helpful, honest, and harmless AI assistant developed by Shanghai AI Laboratory (上海人工智能实验室).",
5953
+ "roles": [
5954
+ "<|im_start|>user",
5955
+ "<|im_start|>assistant"
5956
+ ],
5957
+ "intra_message_sep": "<|im_end|>",
5958
+ "stop_token_ids": [
5959
+ 2,
5960
+ 92542
5961
+ ],
5962
+ "stop": [
5963
+ "</s>",
5964
+ "<|im_end|>"
5965
+ ]
5966
+ }
5967
+ },
5968
+ {
5969
+ "version": 1,
5970
+ "context_length": 262144,
5971
+ "model_name": "internlm2.5-chat-1m",
5972
+ "model_lang": [
5973
+ "en",
5974
+ "zh"
5975
+ ],
5976
+ "model_ability": [
5977
+ "chat"
5978
+ ],
5979
+ "model_description": "InternLM2.5 series of the InternLM model supports 1M long-context",
5980
+ "model_specs": [
5981
+ {
5982
+ "model_format": "pytorch",
5983
+ "model_size_in_billions": 7,
5984
+ "quantizations": [
5985
+ "none"
5986
+ ],
5987
+ "model_id": "internlm/internlm2_5-7b-chat-1m",
5988
+ "model_revision": "8d1a709a04d71440ef3df6ebbe204672f411c8b6"
5989
+ },
5990
+ {
5991
+ "model_format": "gptq",
5992
+ "model_size_in_billions": 7,
5993
+ "quantizations": [
5994
+ "Int4"
5995
+ ],
5996
+ "model_id": "ModelCloud/internlm-2.5-7b-chat-1m-gptq-4bit",
5997
+ "model_revision": "022e59cb30f03b271d56178478acb038b2b9b58c"
5998
+ },
5999
+ {
6000
+ "model_format": "ggufv2",
6001
+ "model_size_in_billions": 7,
6002
+ "quantizations": [
6003
+ "q2_k",
6004
+ "q3_k_m",
6005
+ "q4_0",
6006
+ "q4_k_m",
6007
+ "q5_0",
6008
+ "q5_k_m",
6009
+ "q6_k",
6010
+ "q8_0",
6011
+ "fp16"
6012
+ ],
6013
+ "model_id": "internlm/internlm2_5-7b-chat-1m-gguf",
6014
+ "model_file_name_template": "internlm2_5-7b-chat-1m-{quantization}.gguf"
6015
+ }
6016
+ ],
6017
+ "prompt_style": {
6018
+ "style_name": "INTERNLM2",
6019
+ "system_prompt": "You are InternLM (书生·浦语), a helpful, honest, and harmless AI assistant developed by Shanghai AI Laboratory (上海人工智能实验室).",
6020
+ "roles": [
6021
+ "<|im_start|>user",
6022
+ "<|im_start|>assistant"
6023
+ ],
6024
+ "intra_message_sep": "<|im_end|>",
6025
+ "stop_token_ids": [
6026
+ 2,
6027
+ 92542
6028
+ ],
6029
+ "stop": [
6030
+ "</s>",
6031
+ "<|im_end|>"
6032
+ ]
6033
+ }
6034
+ },
5825
6035
  {
5826
6036
  "version":1,
5827
6037
  "context_length":2048,
@@ -6175,6 +6385,52 @@
6175
6385
  ],
6176
6386
  "model_id": "google/gemma-2-27b-it"
6177
6387
  },
6388
+ {
6389
+ "model_format": "ggufv2",
6390
+ "model_size_in_billions": 9,
6391
+ "quantizations": [
6392
+ "Q2_K",
6393
+ "Q2_K_L",
6394
+ "Q3_K_L",
6395
+ "Q3_K_M",
6396
+ "Q3_K_S",
6397
+ "Q4_K_L",
6398
+ "Q4_K_M",
6399
+ "Q4_K_S",
6400
+ "Q5_K_L",
6401
+ "Q5_K_M",
6402
+ "Q5_K_S",
6403
+ "Q6_K",
6404
+ "Q6_K_L",
6405
+ "Q8_0",
6406
+ "f32"
6407
+ ],
6408
+ "model_id": "bartowski/gemma-2-9b-it-GGUF",
6409
+ "model_file_name_template": "gemma-2-9b-it-{quantization}.gguf"
6410
+ },
6411
+ {
6412
+ "model_format": "ggufv2",
6413
+ "model_size_in_billions": 27,
6414
+ "quantizations": [
6415
+ "Q2_K",
6416
+ "Q2_K_L",
6417
+ "Q3_K_L",
6418
+ "Q3_K_M",
6419
+ "Q3_K_S",
6420
+ "Q4_K_L",
6421
+ "Q4_K_M",
6422
+ "Q4_K_S",
6423
+ "Q5_K_L",
6424
+ "Q5_K_M",
6425
+ "Q5_K_S",
6426
+ "Q6_K",
6427
+ "Q6_K_L",
6428
+ "Q8_0",
6429
+ "f32"
6430
+ ],
6431
+ "model_id": "bartowski/gemma-2-27b-it-GGUF",
6432
+ "model_file_name_template": "gemma-2-27b-it-{quantization}.gguf"
6433
+ },
6178
6434
  {
6179
6435
  "model_format": "mlx",
6180
6436
  "model_size_in_billions": 9,