xinference 0.11.1__py3-none-any.whl → 0.11.2.post1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (31) hide show
  1. xinference/_version.py +3 -3
  2. xinference/api/restful_api.py +30 -0
  3. xinference/client/restful/restful_client.py +29 -0
  4. xinference/core/cache_tracker.py +12 -1
  5. xinference/core/supervisor.py +30 -2
  6. xinference/core/utils.py +12 -0
  7. xinference/core/worker.py +4 -1
  8. xinference/deploy/cmdline.py +126 -0
  9. xinference/deploy/test/test_cmdline.py +24 -0
  10. xinference/model/llm/__init__.py +2 -0
  11. xinference/model/llm/llm_family.json +501 -6
  12. xinference/model/llm/llm_family.py +84 -10
  13. xinference/model/llm/llm_family_modelscope.json +198 -7
  14. xinference/model/llm/memory.py +332 -0
  15. xinference/model/llm/pytorch/core.py +2 -0
  16. xinference/model/llm/pytorch/intern_vl.py +347 -0
  17. xinference/model/llm/utils.py +13 -0
  18. xinference/model/llm/vllm/core.py +5 -2
  19. xinference/model/rerank/core.py +23 -1
  20. xinference/model/utils.py +17 -7
  21. xinference/thirdparty/deepseek_vl/models/processing_vlm.py +1 -1
  22. xinference/thirdparty/deepseek_vl/models/siglip_vit.py +2 -2
  23. xinference/thirdparty/llava/mm_utils.py +3 -2
  24. xinference/thirdparty/llava/model/llava_arch.py +1 -1
  25. xinference/thirdparty/omnilmm/chat.py +6 -5
  26. {xinference-0.11.1.dist-info → xinference-0.11.2.post1.dist-info}/METADATA +8 -7
  27. {xinference-0.11.1.dist-info → xinference-0.11.2.post1.dist-info}/RECORD +31 -29
  28. {xinference-0.11.1.dist-info → xinference-0.11.2.post1.dist-info}/LICENSE +0 -0
  29. {xinference-0.11.1.dist-info → xinference-0.11.2.post1.dist-info}/WHEEL +0 -0
  30. {xinference-0.11.1.dist-info → xinference-0.11.2.post1.dist-info}/entry_points.txt +0 -0
  31. {xinference-0.11.1.dist-info → xinference-0.11.2.post1.dist-info}/top_level.txt +0 -0
@@ -97,6 +97,8 @@ VLLM_SUPPORTED_MODELS = [
97
97
  "Yi-1.5",
98
98
  "code-llama",
99
99
  "code-llama-python",
100
+ "deepseek",
101
+ "deepseek-coder",
100
102
  ]
101
103
  VLLM_SUPPORTED_CHAT_MODELS = [
102
104
  "llama-2-chat",
@@ -125,6 +127,7 @@ VLLM_SUPPORTED_CHAT_MODELS = [
125
127
  ]
126
128
  if VLLM_INSTALLED and vllm.__version__ >= "0.3.0":
127
129
  VLLM_SUPPORTED_CHAT_MODELS.append("qwen1.5-chat")
130
+ VLLM_SUPPORTED_MODELS.append("codeqwen1.5")
128
131
  VLLM_SUPPORTED_CHAT_MODELS.append("codeqwen1.5-chat")
129
132
 
130
133
  if VLLM_INSTALLED and vllm.__version__ >= "0.3.2":
@@ -136,8 +139,8 @@ if VLLM_INSTALLED and vllm.__version__ >= "0.3.3":
136
139
 
137
140
  if VLLM_INSTALLED and vllm.__version__ >= "0.4.0":
138
141
  VLLM_SUPPORTED_CHAT_MODELS.append("qwen1.5-moe-chat")
139
- VLLM_SUPPORTED_MODELS.append("c4ai-command-r-v01")
140
- VLLM_SUPPORTED_MODELS.append("c4ai-command-r-v01-4bit")
142
+ VLLM_SUPPORTED_CHAT_MODELS.append("c4ai-command-r-v01")
143
+ VLLM_SUPPORTED_CHAT_MODELS.append("c4ai-command-r-v01-4bit")
141
144
 
142
145
 
143
146
  class VLLMModel(LLM):
@@ -46,7 +46,7 @@ def get_rerank_model_descriptions():
46
46
  class RerankModelSpec(CacheableModelSpec):
47
47
  model_name: str
48
48
  language: List[str]
49
- type: Optional[str] = "normal"
49
+ type: Optional[str] = "unknown"
50
50
  model_id: str
51
51
  model_revision: Optional[str]
52
52
  model_hub: str = "huggingface"
@@ -118,6 +118,28 @@ class RerankModel:
118
118
  self._use_fp16 = use_fp16
119
119
  self._model = None
120
120
  self._counter = 0
121
+ if model_spec.type == "unknown":
122
+ model_spec.type = self._auto_detect_type(model_path)
123
+
124
+ @staticmethod
125
+ def _auto_detect_type(model_path):
126
+ """This method may not be stable due to the fact that the tokenizer name may be changed.
127
+ Therefore, we only use this method for unknown model types."""
128
+ from transformers import AutoTokenizer
129
+
130
+ type_mapper = {
131
+ "LlamaTokenizerFast": "LLM-based layerwise",
132
+ "GemmaTokenizerFast": "LLM-based",
133
+ "XLMRobertaTokenizerFast": "normal",
134
+ }
135
+
136
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
137
+ rerank_type = type_mapper.get(type(tokenizer).__name__)
138
+ if rerank_type is None:
139
+ raise Exception(
140
+ f"Can't determine the rerank type based on the tokenizer {tokenizer}"
141
+ )
142
+ return rerank_type
121
143
 
122
144
  def load(self):
123
145
  if self._model_spec.type == "normal":
xinference/model/utils.py CHANGED
@@ -19,6 +19,7 @@ from json import JSONDecodeError
19
19
  from pathlib import Path
20
20
  from typing import Any, Callable, Dict, Optional, Tuple, Union
21
21
 
22
+ import huggingface_hub
22
23
  from fsspec import AbstractFileSystem
23
24
 
24
25
  from ..constants import XINFERENCE_CACHE_DIR, XINFERENCE_ENV_MODEL_SRC
@@ -27,6 +28,7 @@ from .core import CacheableModelSpec
27
28
 
28
29
  logger = logging.getLogger(__name__)
29
30
  MAX_ATTEMPTS = 3
31
+ IS_NEW_HUGGINGFACE_HUB: bool = huggingface_hub.__version__ >= "0.23.0"
30
32
 
31
33
 
32
34
  def is_locale_chinese_simplified() -> bool:
@@ -76,6 +78,13 @@ def symlink_local_file(path: str, local_dir: str, relpath: str) -> str:
76
78
  return local_dir_filepath
77
79
 
78
80
 
81
+ def create_symlink(download_dir: str, cache_dir: str):
82
+ for subdir, dirs, files in os.walk(download_dir):
83
+ for file in files:
84
+ relpath = os.path.relpath(os.path.join(subdir, file), download_dir)
85
+ symlink_local_file(os.path.join(subdir, file), cache_dir, relpath)
86
+
87
+
79
88
  def retry_download(
80
89
  download_func: Callable,
81
90
  model_name: str,
@@ -306,22 +315,23 @@ def cache(model_spec: CacheableModelSpec, model_description_type: type):
306
315
  model_spec.model_id,
307
316
  revision=model_spec.model_revision,
308
317
  )
309
- for subdir, dirs, files in os.walk(download_dir):
310
- for file in files:
311
- relpath = os.path.relpath(os.path.join(subdir, file), download_dir)
312
- symlink_local_file(os.path.join(subdir, file), cache_dir, relpath)
318
+ create_symlink(download_dir, cache_dir)
313
319
  else:
314
320
  from huggingface_hub import snapshot_download as hf_download
315
321
 
316
- retry_download(
322
+ use_symlinks = {}
323
+ if not IS_NEW_HUGGINGFACE_HUB:
324
+ use_symlinks = {"local_dir_use_symlinks": True, "local_dir": cache_dir}
325
+ download_dir = retry_download(
317
326
  hf_download,
318
327
  model_spec.model_name,
319
328
  None,
320
329
  model_spec.model_id,
321
330
  revision=model_spec.model_revision,
322
- local_dir=cache_dir,
323
- local_dir_use_symlinks=True,
331
+ **use_symlinks,
324
332
  )
333
+ if IS_NEW_HUGGINGFACE_HUB:
334
+ create_symlink(download_dir, cache_dir)
325
335
  with open(meta_path, "w") as f:
326
336
  import json
327
337
 
@@ -25,8 +25,8 @@ from PIL.Image import Image
25
25
  from transformers import LlamaTokenizerFast
26
26
  from transformers.processing_utils import ProcessorMixin
27
27
 
28
- from .image_processing_vlm import VLMImageProcessor
29
28
  from ..utils.conversation import get_conv_template
29
+ from .image_processing_vlm import VLMImageProcessor
30
30
 
31
31
 
32
32
  class DictOutput(object):
@@ -92,7 +92,7 @@ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
92
92
  def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
93
93
  # type: (torch.Tensor, float, float, float, float) -> torch.Tensor
94
94
  r"""The original timm.models.layers.weight_init.trunc_normal_ can not handle bfloat16 yet, here we first
95
- convert the tensor to float32, apply the trunc_normal_() in float32, and then convert it back to its orignal dtype.
95
+ convert the tensor to float32, apply the trunc_normal_() in float32, and then convert it back to its original dtype.
96
96
  Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn
97
97
  from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
98
98
  with values outside :math:`[a, b]` redrawn until they are within
@@ -305,7 +305,7 @@ class VisionTransformer(nn.Module):
305
305
  img_size: Input image size.
306
306
  patch_size: Patch size.
307
307
  in_chans: Number of image input channels.
308
- num_classes: Mumber of classes for classification head.
308
+ num_classes: Number of classes for classification head.
309
309
  global_pool: Type of global pooling for final sequence (default: 'token').
310
310
  embed_dim: Transformer embedding dimension.
311
311
  depth: Depth of transformer.
@@ -2,11 +2,12 @@ import base64
2
2
  from io import BytesIO
3
3
 
4
4
  import torch
5
- from .model import LlavaLlamaForCausalLM
6
- from .model.constants import IMAGE_TOKEN_INDEX
7
5
  from PIL import Image
8
6
  from transformers import AutoTokenizer, StoppingCriteria
9
7
 
8
+ from .model import LlavaLlamaForCausalLM
9
+ from .model.constants import IMAGE_TOKEN_INDEX
10
+
10
11
 
11
12
  def load_image_from_base64(image):
12
13
  return Image.open(BytesIO(base64.b64decode(image)))
@@ -17,9 +17,9 @@ import os
17
17
  from abc import ABC, abstractmethod
18
18
 
19
19
  import torch
20
- from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, key_info
21
20
 
22
21
  from .clip_encoder.builder import build_vision_tower
22
+ from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, key_info
23
23
  from .multimodal_projector.builder import build_vision_projector
24
24
 
25
25
 
@@ -7,11 +7,6 @@ import torch
7
7
  from PIL import Image
8
8
  from transformers import AutoModel, AutoTokenizer
9
9
 
10
- from .model.omnilmm import OmniLMMForCausalLM
11
- from .model.utils import build_transform
12
- from .train.train_utils import omni_preprocess
13
- from .utils import disable_torch_init
14
-
15
10
  DEFAULT_IMAGE_TOKEN = "<image>"
16
11
  DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
17
12
  DEFAULT_IM_START_TOKEN = "<im_start>"
@@ -21,6 +16,10 @@ DEFAULT_IM_END_TOKEN = "<im_end>"
21
16
  def init_omni_lmm(model_path, device_map):
22
17
  from accelerate import init_empty_weights, load_checkpoint_and_dispatch
23
18
 
19
+ from .model.omnilmm import OmniLMMForCausalLM
20
+ from .model.utils import build_transform
21
+ from .utils import disable_torch_init
22
+
24
23
  torch.backends.cuda.matmul.allow_tf32 = True
25
24
  disable_torch_init()
26
25
  model_name = os.path.expanduser(model_path)
@@ -98,6 +97,8 @@ def expand_question_into_multimodal(
98
97
 
99
98
 
100
99
  def wrap_question_for_omni_lmm(question, image_token_len, tokenizer):
100
+ from .train.train_utils import omni_preprocess
101
+
101
102
  question = expand_question_into_multimodal(
102
103
  question,
103
104
  image_token_len,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: xinference
3
- Version: 0.11.1
3
+ Version: 0.11.2.post1
4
4
  Summary: Model Serving Made Easy
5
5
  Home-page: https://github.com/xorbitsai/inference
6
6
  Author: Qin Xuye
@@ -20,7 +20,7 @@ Classifier: Topic :: Software Development :: Libraries
20
20
  Description-Content-Type: text/markdown
21
21
  License-File: LICENSE
22
22
  Requires-Dist: xoscar >=0.3.0
23
- Requires-Dist: torch <2.3.0
23
+ Requires-Dist: torch
24
24
  Requires-Dist: gradio >=3.39.0
25
25
  Requires-Dist: typer[all] <0.12.0
26
26
  Requires-Dist: pillow
@@ -31,7 +31,7 @@ Requires-Dist: requests
31
31
  Requires-Dist: pydantic
32
32
  Requires-Dist: fastapi
33
33
  Requires-Dist: uvicorn
34
- Requires-Dist: huggingface-hub <0.23.0,>=0.19.4
34
+ Requires-Dist: huggingface-hub >=0.19.4
35
35
  Requires-Dist: typing-extensions
36
36
  Requires-Dist: fsspec <=2023.10.0,>=2023.1.0
37
37
  Requires-Dist: s3fs
@@ -50,7 +50,7 @@ Provides-Extra: all
50
50
  Requires-Dist: chatglm-cpp >=0.3.0 ; extra == 'all'
51
51
  Requires-Dist: llama-cpp-python !=0.2.58,>=0.2.25 ; extra == 'all'
52
52
  Requires-Dist: transformers >=4.34.1 ; extra == 'all'
53
- Requires-Dist: torch <2.3.0 ; extra == 'all'
53
+ Requires-Dist: torch ; extra == 'all'
54
54
  Requires-Dist: accelerate >=0.27.2 ; extra == 'all'
55
55
  Requires-Dist: sentencepiece ; extra == 'all'
56
56
  Requires-Dist: transformers-stream-generator ; extra == 'all'
@@ -70,7 +70,7 @@ Requires-Dist: torchvision ; extra == 'all'
70
70
  Requires-Dist: FlagEmbedding ; extra == 'all'
71
71
  Requires-Dist: auto-gptq ; (sys_platform != "darwin") and extra == 'all'
72
72
  Requires-Dist: autoawq ; (sys_platform != "darwin") and extra == 'all'
73
- Requires-Dist: vllm <0.4.2,>=0.2.6 ; (sys_platform == "linux") and extra == 'all'
73
+ Requires-Dist: vllm >=0.2.6 ; (sys_platform == "linux") and extra == 'all'
74
74
  Requires-Dist: sglang[all] ; (sys_platform == "linux") and extra == 'all'
75
75
  Provides-Extra: benchmark
76
76
  Requires-Dist: psutil ; extra == 'benchmark'
@@ -92,6 +92,7 @@ Requires-Dist: black ; extra == 'dev'
92
92
  Requires-Dist: openai >1 ; extra == 'dev'
93
93
  Requires-Dist: opencv-contrib-python ; extra == 'dev'
94
94
  Requires-Dist: langchain ; extra == 'dev'
95
+ Requires-Dist: langchain-community ; extra == 'dev'
95
96
  Requires-Dist: orjson ; extra == 'dev'
96
97
  Requires-Dist: sphinx-tabs ; extra == 'dev'
97
98
  Requires-Dist: sphinx-design ; extra == 'dev'
@@ -122,7 +123,7 @@ Provides-Extra: sglang
122
123
  Requires-Dist: sglang[all] ; extra == 'sglang'
123
124
  Provides-Extra: transformers
124
125
  Requires-Dist: transformers >=4.34.1 ; extra == 'transformers'
125
- Requires-Dist: torch <2.3.0 ; extra == 'transformers'
126
+ Requires-Dist: torch ; extra == 'transformers'
126
127
  Requires-Dist: accelerate >=0.27.2 ; extra == 'transformers'
127
128
  Requires-Dist: sentencepiece ; extra == 'transformers'
128
129
  Requires-Dist: transformers-stream-generator ; extra == 'transformers'
@@ -138,7 +139,7 @@ Requires-Dist: peft ; extra == 'transformers'
138
139
  Requires-Dist: auto-gptq ; (sys_platform != "darwin") and extra == 'transformers'
139
140
  Requires-Dist: autoawq ; (sys_platform != "darwin") and extra == 'transformers'
140
141
  Provides-Extra: vllm
141
- Requires-Dist: vllm <0.4.2,>=0.2.6 ; extra == 'vllm'
142
+ Requires-Dist: vllm >=0.2.6 ; extra == 'vllm'
142
143
 
143
144
  <div align="center">
144
145
  <img src="./assets/xorbits-logo.png" width="180px" alt="xorbits" />
@@ -1,6 +1,6 @@
1
1
  xinference/__init__.py,sha256=0LgIveLP6CXxoIaSrxhlFyOh0lOqPgJBVcBe0tkWJjc,987
2
2
  xinference/_compat.py,sha256=SQAjZMGxtBIce45qtW7ob7RWzA0zhv2yB3AxT0rb0uU,1778
3
- xinference/_version.py,sha256=Kr4n850ATJdQwIPIw0zSvWb9kh32gnRz1MJkkJRrTPA,498
3
+ xinference/_version.py,sha256=mDJV0U5DkMVMiU2azZlEJ4w5LINeGsZFYONO9K3d4d0,504
4
4
  xinference/conftest.py,sha256=Qus4KWCeaKS7c5UgNCTpPNucD2bjV8P7u1_qRosgGno,9743
5
5
  xinference/constants.py,sha256=Bu_fOJUGAvvqF_6FY5OzOHl7fQ1Nomek3LY17xr9oz4,2882
6
6
  xinference/device_utils.py,sha256=zswJiws3VyTIaNO8z-MOcsJH_UiPoePPiKK5zoNrjTA,3285
@@ -9,7 +9,7 @@ xinference/isolation.py,sha256=NstVRcO3dG4umHExICXAHlzVKwH8ch8MBwKwE-KFkE0,1826
9
9
  xinference/types.py,sha256=BFKUGHb0jKkAA1dczSf8pPlFutRE7-JtRp6C3oVSJ7Q,13626
10
10
  xinference/utils.py,sha256=VSOJMFd9H7kce98OtJZbcDjjpfzRpHAFs8WU0xXPBM8,717
11
11
  xinference/api/__init__.py,sha256=h_JgzSqV5lP6vQ6XX_17kE4IY4BRnvKta_7VLQAL1ms,581
12
- xinference/api/restful_api.py,sha256=8x0bQDE17GwQ631vDSjAgEemFZ85l93qPc4t_qUD_kc,59403
12
+ xinference/api/restful_api.py,sha256=Wj1LWFTQiwH7FEheaG1pA4wpVOCtWHnbTdRHUa6Qcek,60530
13
13
  xinference/api/oauth2/__init__.py,sha256=h_JgzSqV5lP6vQ6XX_17kE4IY4BRnvKta_7VLQAL1ms,581
14
14
  xinference/api/oauth2/auth_service.py,sha256=74JzB42fbbmBu4Q1dW3A9Fp_N7167KgRGB42Z0NHjAM,6119
15
15
  xinference/api/oauth2/types.py,sha256=K923sv_XySIUtM2Eozl9IG082IJcDOS5SFLrPZ5ELBg,996
@@ -18,9 +18,9 @@ xinference/client/__init__.py,sha256=Gc4HOzAy_1cic5kXlso7hahYgw89CKvZSJDicEU461k
18
18
  xinference/client/common.py,sha256=iciZRs5YjM2gYsXnwACPMaiBZp4_XpawWwfym0Iyu40,1617
19
19
  xinference/client/handlers.py,sha256=3gd9C7u4URbcVdR6Eyv8cpEZ175Ll4q_jGL07CnEIpg,648
20
20
  xinference/client/restful/__init__.py,sha256=h_JgzSqV5lP6vQ6XX_17kE4IY4BRnvKta_7VLQAL1ms,581
21
- xinference/client/restful/restful_client.py,sha256=qM0lPYhyUG7vK1OzBAmkfC3CGf6GimnPhe0kFPedzDE,42798
21
+ xinference/client/restful/restful_client.py,sha256=zqfZHliUeiDHvKKo1SrXH3rAvyxp0o_TaMwuCjV2pjQ,43589
22
22
  xinference/core/__init__.py,sha256=Fe5tYCHDbYJ7PhxJhQ68VbfgKgOsAuslNPr4wPhFMJM,612
23
- xinference/core/cache_tracker.py,sha256=41utiulASohGLlBqMMSmrAiH7ieGXgahEyyT9xOVh6w,4277
23
+ xinference/core/cache_tracker.py,sha256=OMY_0HZkb-R5EhHHWppIGqPhC3v9Iwdjp9oema_6eFc,4798
24
24
  xinference/core/chat_interface.py,sha256=B-qG7RF7HOquhKaPAJSnHA3Dqov5QZQA2yO-txt1IPs,17380
25
25
  xinference/core/event.py,sha256=dTXv-zg-sAqlY1rFLvyor9D8WEXZvnUH7NigegpziO8,1648
26
26
  xinference/core/image_interface.py,sha256=G2iK24auEN4MrLkPlu1CAA_gf-BQrGQTjazi_FYqIxE,8825
@@ -28,23 +28,23 @@ xinference/core/metrics.py,sha256=ScmTG15Uq3h_ob72ybZSMWdnk8P4sUZFcm60f4ikSXc,26
28
28
  xinference/core/model.py,sha256=KAD9a2fYY97MfByNRnmia2oZR-UK7B-zW8gWl_tUJgs,18121
29
29
  xinference/core/resource.py,sha256=FQ0aRt3T4ZQo0P6CZZf5QUKHiCsr5llBvKb1f7wfnxg,1611
30
30
  xinference/core/status_guard.py,sha256=fF5hisvfn6es9DV6Z6RRD6V_S_uLcb8lHM6PArGgb04,2820
31
- xinference/core/supervisor.py,sha256=-NaMfDEQMfb0Xlj-_67aOunoxrmIEKM9pqbQ6YCoiiw,40663
32
- xinference/core/utils.py,sha256=tUpUJUQv1zkE9i7fw1pAFfFdcB3PC6DvKJn4Bmmq75E,6008
33
- xinference/core/worker.py,sha256=kx1ukLOdFM7kyD-E2EtGkmUe7ln7h-IffjinyKOdaLc,32629
31
+ xinference/core/supervisor.py,sha256=bREFDEeO6rF9hyWOuf9mA6IHo6Ur2BDGgPmnuysaN9o,41969
32
+ xinference/core/utils.py,sha256=LqPrez5dGELRQDSwOD5EP8XHb-aUKAdyszS-QpNouuw,6401
33
+ xinference/core/worker.py,sha256=oGsqHQ5yJ4Ry-tAL06x6jkLxkQKbj0LxWtvvOy-SRdM,32780
34
34
  xinference/deploy/__init__.py,sha256=h_JgzSqV5lP6vQ6XX_17kE4IY4BRnvKta_7VLQAL1ms,581
35
- xinference/deploy/cmdline.py,sha256=pd4j9lf376B_v1jdJY5E3TVcK51CslC4w2UV8u8H-T4,41042
35
+ xinference/deploy/cmdline.py,sha256=J1NSfnQ-iJ87OPb_kNOfONgMZNqCow1Klm91uLS4_Lk,44582
36
36
  xinference/deploy/local.py,sha256=vlAvhcl8utP1DjW4MJpBgD4JLHQV-1Xebmdd8j9M8IM,3946
37
37
  xinference/deploy/supervisor.py,sha256=fMHeEGigQ72PD9JEFmZ5Xudn25Uj4DhD2OVIlAu_YpA,2978
38
38
  xinference/deploy/utils.py,sha256=PYdxLRARG-oZoQZtC-1t2Xve6ehjfuEITwAuDglDMIA,5377
39
39
  xinference/deploy/worker.py,sha256=Av3qU1b0tdxfkds3Mc2Qiqy9c_xSD0Tp3cToWoXqTpo,2966
40
40
  xinference/deploy/test/__init__.py,sha256=h_JgzSqV5lP6vQ6XX_17kE4IY4BRnvKta_7VLQAL1ms,581
41
- xinference/deploy/test/test_cmdline.py,sha256=SMQwrzcxSHDjEldrv9dmC2e_4_ofT14TJLjWMTsho4M,6804
41
+ xinference/deploy/test/test_cmdline.py,sha256=W83eR1nQGE7-DaRItEoFU0JkVH1sz_bc8TnSpc07zHc,7436
42
42
  xinference/locale/__init__.py,sha256=h_JgzSqV5lP6vQ6XX_17kE4IY4BRnvKta_7VLQAL1ms,581
43
43
  xinference/locale/utils.py,sha256=w-G1DAJGw1UUQVVtq6khOZn7ZjobUmTw6qwHMm2eWIs,1312
44
44
  xinference/locale/zh_CN.json,sha256=YA55G9s1p05Bt5RBoDo5SV12dd-CMJI0ABap6RpCp4M,1097
45
45
  xinference/model/__init__.py,sha256=IRC3ojiqYkVLIK_xsIxYeKypEeeTTdrovnVzK_4L4eg,663
46
46
  xinference/model/core.py,sha256=nENyctnKtEBMakd_BpTbgCtLUeci3ak7QIwEk-pq4IM,3546
47
- xinference/model/utils.py,sha256=qqCaje-dJvSarVzeGgmwKnq85e82JCLPVq2yCfAFZlo,14586
47
+ xinference/model/utils.py,sha256=L-pGH8HwIPwrJyRdnLk1OVPoDNdSlAyKp0eEY47J_fw,14974
48
48
  xinference/model/audio/__init__.py,sha256=0EVzX6b4pcOO63NAcNpYWTVYVa7w7yG5cPpGxOY9MXw,2347
49
49
  xinference/model/audio/core.py,sha256=ypbIvbueTFKeulYt7aJX7FfU4y3Hn3DzxkhhjKO6Dxw,4373
50
50
  xinference/model/audio/custom.py,sha256=Li6VpTmpZ17YXk_bwN2-tUKRAJwNcW-O4OwrJefzC2o,4966
@@ -65,12 +65,13 @@ xinference/model/image/model_spec_modelscope.json,sha256=KMI-2YOJoLUtN93LZiqqETW
65
65
  xinference/model/image/utils.py,sha256=gxg8jJ2nYaDknzCcSC53WCy1slbB5aWU14AbJbfm6Z4,906
66
66
  xinference/model/image/stable_diffusion/__init__.py,sha256=h_JgzSqV5lP6vQ6XX_17kE4IY4BRnvKta_7VLQAL1ms,581
67
67
  xinference/model/image/stable_diffusion/core.py,sha256=ib_ZeSg7hzynmRqSnhjtrVuhoLOgZPrR1ZH2LjBmH2E,6063
68
- xinference/model/llm/__init__.py,sha256=Za1yBXmoKlvBPmqQhBV8b9xyIjRjRwfp-Hgb-ttUrck,9790
68
+ xinference/model/llm/__init__.py,sha256=kl2z63rNpgkoFQcg536SUt4TKub2wuDB8c7weYKeeoU,9874
69
69
  xinference/model/llm/core.py,sha256=CZJrbW3HaV8vJj5mxSnBD8ssABALG_xyXyPS0hHVBPY,7982
70
- xinference/model/llm/llm_family.json,sha256=xOA3G-z1hsso46QaM5wL0tgZKyb28aqJ1oXcIPjossU,138441
71
- xinference/model/llm/llm_family.py,sha256=IGaVV1hbJfdnalBCKHtYYxb_whJUYgMgt6HBdFcdOcQ,34918
72
- xinference/model/llm/llm_family_modelscope.json,sha256=naDSqUlOBXkF1tYw7OrM2UuHfIRnpNJ4KrUE11wIvCI,85921
73
- xinference/model/llm/utils.py,sha256=JxvhC1u4Ku3tQxXrINmSWLhCoKPlywSzkKi-wMWKmFk,31079
70
+ xinference/model/llm/llm_family.json,sha256=otMgqAExkRqPC0yV_si0yc6sNhPEIxQjDrSg31Er9F8,152586
71
+ xinference/model/llm/llm_family.py,sha256=aQZPE2gj5YfII2mhgbaSs1MfllKnUXd8xbflKr_YdFs,37357
72
+ xinference/model/llm/llm_family_modelscope.json,sha256=5cyM-y0HtG_fBfC289IU97iasfjZZgUefn5UmVmg7TY,91282
73
+ xinference/model/llm/memory.py,sha256=PTD8m6TCZVU1zrwc9wepX9cUjCqAXBENj6X7tjua0to,10207
74
+ xinference/model/llm/utils.py,sha256=0SindpTW6dUWn17E-Ne9scnSfPOovb53sIuc9zxIFfo,31653
74
75
  xinference/model/llm/ggml/__init__.py,sha256=h_JgzSqV5lP6vQ6XX_17kE4IY4BRnvKta_7VLQAL1ms,581
75
76
  xinference/model/llm/ggml/chatglm.py,sha256=qqCxVvPp4CZq0z6MuwTcVUMEkQJDjjXm6naJ6WfGOl0,16208
76
77
  xinference/model/llm/ggml/llamacpp.py,sha256=7Fvt2h7AJ8P6xVRztcw0aJgteagjCeOZJ7RniN6VYqs,13345
@@ -81,9 +82,10 @@ xinference/model/llm/pytorch/__init__.py,sha256=h_JgzSqV5lP6vQ6XX_17kE4IY4BRnvKt
81
82
  xinference/model/llm/pytorch/baichuan.py,sha256=JBHldfdjUlSV44HB_td6402CwryDm61rlzw4D_flKHI,2820
82
83
  xinference/model/llm/pytorch/chatglm.py,sha256=meFb4P1MXw63IhoDQwmFGczTXa3vEpv1L1Eo9XIifG8,9624
83
84
  xinference/model/llm/pytorch/compression.py,sha256=U0vMJ-JaBt4oC2LffgWg6HbPj1CeUi_YdwVbjDd0mRA,8112
84
- xinference/model/llm/pytorch/core.py,sha256=kWBtqxtKH7n-Cy6YbD9DuQJNVEqGgCrIQiNvC_m9bAI,19937
85
+ xinference/model/llm/pytorch/core.py,sha256=VGJfZ92e3SftQXrOwxiYMUSF1YnWSUU8Z8WHr6yzpJ8,19984
85
86
  xinference/model/llm/pytorch/deepseek_vl.py,sha256=T9DKP4cULvRaHSiU08lOWd_j6mt8b3ZIBByneZ0jY8U,11498
86
87
  xinference/model/llm/pytorch/falcon.py,sha256=POSP7vzRJaM5PjvX8dh60jNDXgnCwktwSmeZ7kypQU0,4499
88
+ xinference/model/llm/pytorch/intern_vl.py,sha256=MlP7vcp0qu7ehSg3Z7_qe18aiepi3KKjN9N9P-qVTwM,13166
87
89
  xinference/model/llm/pytorch/internlm2.py,sha256=vjspoc2VHbuD1JaUtjt0sOq9MwvRr2OD3_tKQhBVUPc,7244
88
90
  xinference/model/llm/pytorch/llama_2.py,sha256=HMhUmn4oYW2maeSMIr1yY7jlAOMD0OVAxnF0dnRWmio,3710
89
91
  xinference/model/llm/pytorch/omnilmm.py,sha256=4r6pipch1LU1FPA80sOCE7Z0k3TO_J8CIT7pmVmWKEM,5664
@@ -94,9 +96,9 @@ xinference/model/llm/pytorch/yi_vl.py,sha256=MljT7tpgFIhL6n5rdoS3hmq_u0rtHRE6cxX
94
96
  xinference/model/llm/sglang/__init__.py,sha256=-sjSIQ4K6w-TEzx49kVaWeWC443fnZqODU91GCQ_JNo,581
95
97
  xinference/model/llm/sglang/core.py,sha256=RGHy6t9n0c4zL6Uha8P7t-qPvisPyulFVHw-8Aq8CJ0,14046
96
98
  xinference/model/llm/vllm/__init__.py,sha256=h_JgzSqV5lP6vQ6XX_17kE4IY4BRnvKta_7VLQAL1ms,581
97
- xinference/model/llm/vllm/core.py,sha256=XJpp9pPzYJwoFtTiFsETYRhf_Yemzux9_hvS3om0aDo,21543
99
+ xinference/model/llm/vllm/core.py,sha256=_cM-NEnDtpGVHMgHxr-uxV0sA-xXUjDsL5i__cpHQEU,21639
98
100
  xinference/model/rerank/__init__.py,sha256=BXIL1uu3ZpZHX9bODhW9lxKUXudZE7-OkXFmmM5rpMU,2817
99
- xinference/model/rerank/core.py,sha256=UVfue73hHE9UL5c-X7OajZfTR_mLTv673RLFWZAfWV4,9665
101
+ xinference/model/rerank/core.py,sha256=BLIIStjxUFghSFoxCimet88ghqGwmVaskOYdVRxKdpI,10572
100
102
  xinference/model/rerank/custom.py,sha256=NKk7jA7p4xkuwS5WoOs2SY2wdnoAVpyCjBTvv317bBw,3917
101
103
  xinference/model/rerank/model_spec.json,sha256=LCiiCdNz4NYt9vKVnHffk3ZpwvgzzHxe4zsaxOqxL18,1367
102
104
  xinference/model/rerank/model_spec_modelscope.json,sha256=vSSC0aWy_DHnNDzzBcMWr2pqdISDmPS95FtD_YfMmn4,1275
@@ -107,19 +109,19 @@ xinference/thirdparty/deepseek_vl/models/__init__.py,sha256=gVJoBKpRfny6w_QpTrTh
107
109
  xinference/thirdparty/deepseek_vl/models/clip_encoder.py,sha256=tn-uTCAcb63WOX6cB0rl2ynOsum23xy1tAvBqPbIHHo,8197
108
110
  xinference/thirdparty/deepseek_vl/models/image_processing_vlm.py,sha256=Nk3rK0eCwl-hoYeOrv1iiG7Zv3KlZFF2AAzVXN2wRT0,6796
109
111
  xinference/thirdparty/deepseek_vl/models/modeling_vlm.py,sha256=guGUqPuN_sjanlyP9D7N58tZwTw8CTy9AN-54_uEM9E,5705
110
- xinference/thirdparty/deepseek_vl/models/processing_vlm.py,sha256=CpyiwwJL0vvClTwM5mdbrgZeKc7UOS7qeRVRcAurhwc,13076
112
+ xinference/thirdparty/deepseek_vl/models/processing_vlm.py,sha256=xytEqLoEKoKis-RBHjdQKHvhsSmT9YuSbaVX6F3CBUg,13076
111
113
  xinference/thirdparty/deepseek_vl/models/projector.py,sha256=BXPx4jj4jIDdZYZJ_mo3SmzgaTAVC7BxQMuU1wEzdIA,3625
112
114
  xinference/thirdparty/deepseek_vl/models/sam.py,sha256=pHdqAwPSurRyRuwmMQmriThz8eyPFiaofaLGGwpLDuU,20344
113
- xinference/thirdparty/deepseek_vl/models/siglip_vit.py,sha256=k5ac1YZK4an46m0AHhydlI6169GXNpUjMmrYr2vQ-Bc,24087
115
+ xinference/thirdparty/deepseek_vl/models/siglip_vit.py,sha256=G0NdFVBvU4FxLu5I20rw--Ypjlx_2TvjRPW3Dhany7I,24088
114
116
  xinference/thirdparty/deepseek_vl/utils/__init__.py,sha256=u8C--egJMT_DDm0JG3frXGSQNNv6cfIAumPhghzkxhk,1091
115
117
  xinference/thirdparty/deepseek_vl/utils/conversation.py,sha256=7oITA8TsIuOfumVZ8hcoDpA6dm1jz7n8-VXPe_7-4YA,11702
116
118
  xinference/thirdparty/deepseek_vl/utils/io.py,sha256=HQqLoONZF4nl1E9oMrm7_2LwU8ZSh1C9htm7vLN4YfI,2751
117
119
  xinference/thirdparty/llava/__init__.py,sha256=UlCNtyBVX645CB6S6LfyYkTfQVO18_a8e9SmR7cHExA,41
118
120
  xinference/thirdparty/llava/conversation.py,sha256=_OKwx8mkikwfsuTVR3BtvolqNcwY1X3DP7X9TlmR31g,7758
119
- xinference/thirdparty/llava/mm_utils.py,sha256=QRMsFAeOV5sLoWdx-XDsfuoLcv8_rNgDLpkfNby_p0M,3882
121
+ xinference/thirdparty/llava/mm_utils.py,sha256=f0JFOhbdFyLjA8W6VRDsGn5Xwnz4fWjY4Gyt3Apzk7k,3883
120
122
  xinference/thirdparty/llava/model/__init__.py,sha256=KlZDBvQbrUBrHix1PQTmAmq5dJHCipCKOlcpLZUJZso,60
121
123
  xinference/thirdparty/llava/model/constants.py,sha256=fFKjeLBhxYo3UGBhA6DbS0LGApXmxJqeQ0iMPaPh480,140
122
- xinference/thirdparty/llava/model/llava_arch.py,sha256=la9YRdFHh9bCki7m7UXZFvXdlPki096gHdewRYWXo3A,17198
124
+ xinference/thirdparty/llava/model/llava_arch.py,sha256=I2SkH4mTNdCsXgaXGAOKsABTfJzSXj9KC2IYOOjOw08,17198
123
125
  xinference/thirdparty/llava/model/llava_llama.py,sha256=cXGSrL2bcy2FIAxSCQ25BhSbk6JYOs0uvPD7_zH7ZBI,5678
124
126
  xinference/thirdparty/llava/model/clip_encoder/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
125
127
  xinference/thirdparty/llava/model/clip_encoder/builder.py,sha256=D1d2_hW2V1kT4jn_-spbYH3CRysyqZGPKsvb6Aai3QY,315
@@ -127,7 +129,7 @@ xinference/thirdparty/llava/model/clip_encoder/clip_encoder.py,sha256=ieNXVeV1UF
127
129
  xinference/thirdparty/llava/model/multimodal_projector/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
128
130
  xinference/thirdparty/llava/model/multimodal_projector/builder.py,sha256=URP051uhGLWqC6ERsqjn2MiQDNYzOoQ6EJEcB-Z0RzM,1933
129
131
  xinference/thirdparty/omnilmm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
130
- xinference/thirdparty/omnilmm/chat.py,sha256=z7mDC5ZsTIZDVq5lM3S6pI_Oa4Hnw1bDE8LHAki0OuI,6767
132
+ xinference/thirdparty/omnilmm/chat.py,sha256=oi0I-yVkvvnW_Vqj-iQzKaPUbGJ__EBn1we9AHlaGn4,6784
131
133
  xinference/thirdparty/omnilmm/constants.py,sha256=bq6C4oIANqwTtt5G7sjJUdRlLyTa-_urOHMJN7VBmU4,84
132
134
  xinference/thirdparty/omnilmm/conversation.py,sha256=m0lzft61Sw1Z4RxEpucweeQvV0PZEyrvh0mXL7Psh8I,13276
133
135
  xinference/thirdparty/omnilmm/utils.py,sha256=VUMXIgq1tx3qwDmS2VewsXra6XqCUArQB0ik0_qk7x0,3989
@@ -15421,9 +15423,9 @@ xinference/web/ui/node_modules/yargs-parser/package.json,sha256=BSwbOzgetKXMK4u0
15421
15423
  xinference/web/ui/node_modules/yocto-queue/package.json,sha256=6U1XHQPGXJTqsiFvT953ORihUtXTblZy4fXBWP9qxC0,725
15422
15424
  xinference/web/ui/node_modules/yup/package.json,sha256=xRFSROB9NKxqSWHEVFvSTsPs9Ll074uo8OS1zEw0qhA,1206
15423
15425
  xinference/web/ui/node_modules/yup/node_modules/type-fest/package.json,sha256=JTv2zTTVgxQ2H82m1-6qEpdMv08lHjFx4Puf_MsbB_Q,1134
15424
- xinference-0.11.1.dist-info/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
15425
- xinference-0.11.1.dist-info/METADATA,sha256=hBtPsJXz35UCfyMXv7FPwPVxQYV-WdSKX0Mf5Ze9p-8,15533
15426
- xinference-0.11.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
15427
- xinference-0.11.1.dist-info/entry_points.txt,sha256=-lDyyzqWMFQF0Rgm7VxBNz0V-bMBMQLRR3pvQ-Y8XTY,226
15428
- xinference-0.11.1.dist-info/top_level.txt,sha256=L1rQt7pl6m8tmKXpWVHzP-GtmzAxp663rXxGE7qnK00,11
15429
- xinference-0.11.1.dist-info/RECORD,,
15426
+ xinference-0.11.2.post1.dist-info/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
15427
+ xinference-0.11.2.post1.dist-info/METADATA,sha256=gwgZIL72lulJsk-4NasdYTQc5vxs5ibTFRjrf9TMgJc,15548
15428
+ xinference-0.11.2.post1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
15429
+ xinference-0.11.2.post1.dist-info/entry_points.txt,sha256=-lDyyzqWMFQF0Rgm7VxBNz0V-bMBMQLRR3pvQ-Y8XTY,226
15430
+ xinference-0.11.2.post1.dist-info/top_level.txt,sha256=L1rQt7pl6m8tmKXpWVHzP-GtmzAxp663rXxGE7qnK00,11
15431
+ xinference-0.11.2.post1.dist-info/RECORD,,