xbarray 0.0.1a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xbarray might be problematic. Click here for more details.

Files changed (35) hide show
  1. array_api_typing/__init__.py +9 -0
  2. array_api_typing/typing_2024_12/__init__.py +12 -0
  3. array_api_typing/typing_2024_12/_api_constant.py +32 -0
  4. array_api_typing/typing_2024_12/_api_fft_typing.py +717 -0
  5. array_api_typing/typing_2024_12/_api_linalg_typing.py +897 -0
  6. array_api_typing/typing_2024_12/_api_return_typing.py +103 -0
  7. array_api_typing/typing_2024_12/_api_typing.py +5855 -0
  8. array_api_typing/typing_2024_12/_array_typing.py +1265 -0
  9. array_api_typing/typing_compat/__init__.py +12 -0
  10. array_api_typing/typing_compat/_api_typing.py +27 -0
  11. array_api_typing/typing_compat/_array_typing.py +36 -0
  12. array_api_typing/typing_extra/__init__.py +12 -0
  13. array_api_typing/typing_extra/_api_typing.py +651 -0
  14. array_api_typing/typing_extra/_at.py +87 -0
  15. xbarray/__init__.py +1 -0
  16. xbarray/base/__init__.py +1 -0
  17. xbarray/base/base.py +199 -0
  18. xbarray/common/implementations.py +61 -0
  19. xbarray/jax/__init__.py +25 -0
  20. xbarray/jax/_extra.py +98 -0
  21. xbarray/jax/_typing.py +15 -0
  22. xbarray/jax/random.py +116 -0
  23. xbarray/numpy/__init__.py +19 -0
  24. xbarray/numpy/_extra.py +83 -0
  25. xbarray/numpy/_typing.py +14 -0
  26. xbarray/numpy/random.py +106 -0
  27. xbarray/pytorch/__init__.py +20 -0
  28. xbarray/pytorch/_extra.py +109 -0
  29. xbarray/pytorch/_typing.py +13 -0
  30. xbarray/pytorch/random.py +102 -0
  31. xbarray-0.0.1a1.dist-info/METADATA +14 -0
  32. xbarray-0.0.1a1.dist-info/RECORD +35 -0
  33. xbarray-0.0.1a1.dist-info/WHEEL +5 -0
  34. xbarray-0.0.1a1.dist-info/licenses/LICENSE +21 -0
  35. xbarray-0.0.1a1.dist-info/top_level.txt +2 -0
@@ -0,0 +1,83 @@
1
+ from typing import Any, Union, Optional
2
+ import numpy as np
3
+ from ._typing import ARRAY_TYPE, DTYPE_TYPE, DEVICE_TYPE, RNG_TYPE
4
+ from xbarray.base import ComputeBackend, SupportsDLPack
5
+
6
+ __all__ = [
7
+ "default_integer_dtype",
8
+ "default_floating_dtype",
9
+ "default_boolean_dtype",
10
+ "is_backendarray",
11
+ "from_numpy",
12
+ "from_other_backend",
13
+ "to_numpy",
14
+ "to_dlpack",
15
+ "dtype_is_real_integer",
16
+ "dtype_is_real_floating",
17
+ "dtype_is_boolean",
18
+ "abbreviate_array",
19
+ ]
20
+
21
+ default_integer_dtype = int
22
+ default_floating_dtype = float
23
+ default_boolean_dtype = bool
24
+
25
+ def is_backendarray(data : Any) -> bool:
26
+ return isinstance(data, np.ndarray)
27
+
28
+ def from_numpy(
29
+ data : np.ndarray,
30
+ /,
31
+ *,
32
+ dtype : Optional[DTYPE_TYPE] = None,
33
+ device : Optional[DEVICE_TYPE] = None
34
+ ) -> ARRAY_TYPE:
35
+ return data
36
+
37
+ def from_other_backend(
38
+ other_backend: ComputeBackend,
39
+ data: Any,
40
+ /,
41
+ ) -> ARRAY_TYPE:
42
+ return other_backend.to_numpy(data)
43
+
44
+ def to_numpy(
45
+ data : ARRAY_TYPE
46
+ ) -> np.ndarray:
47
+ return data
48
+
49
+ def to_dlpack(
50
+ self,
51
+ data: ARRAY_TYPE,
52
+ /,
53
+ ) -> SupportsDLPack:
54
+ return data
55
+
56
+ def dtype_is_real_integer(
57
+ dtype: DTYPE_TYPE
58
+ ) -> bool:
59
+ return np.issubdtype(dtype, np.integer)
60
+
61
+ def dtype_is_real_floating(
62
+ dtype: DTYPE_TYPE
63
+ ) -> bool:
64
+ return np.issubdtype(dtype, np.floating)
65
+
66
+ def dtype_is_boolean(
67
+ dtype: DTYPE_TYPE
68
+ ) -> bool:
69
+ return dtype == np.bool_ or dtype == bool
70
+
71
+ from xbarray.common.implementations import get_abbreviate_array_function, get_map_fn_over_arrays_function
72
+ from array_api_compat import numpy as compat_module
73
+ abbreviate_array = get_abbreviate_array_function(
74
+ backend=compat_module,
75
+ default_integer_dtype=default_integer_dtype,
76
+ func_dtype_is_real_floating=dtype_is_real_floating,
77
+ func_dtype_is_real_integer=dtype_is_real_integer,
78
+ func_dtype_is_boolean=dtype_is_boolean,
79
+ )
80
+
81
+ map_fn_over_arrays = get_map_fn_over_arrays_function(
82
+ is_backendarray=is_backendarray,
83
+ )
@@ -0,0 +1,14 @@
1
+ from typing import Union, Any, Optional
2
+ import numpy as np
3
+
4
+ __all__ = [
5
+ 'ARRAY_TYPE',
6
+ 'DTYPE_TYPE',
7
+ 'DEVICE_TYPE',
8
+ 'RNG_TYPE',
9
+ ]
10
+
11
+ ARRAY_TYPE = np.ndarray
12
+ DTYPE_TYPE = np.dtype
13
+ DEVICE_TYPE = Any
14
+ RNG_TYPE = np.random.Generator
@@ -0,0 +1,106 @@
1
+ from typing import Union, Optional, Tuple, Any
2
+ from ._typing import ARRAY_TYPE, DTYPE_TYPE, DEVICE_TYPE, RNG_TYPE
3
+ import numpy as np
4
+
5
+ __all__ = [
6
+ "random_number_generator",
7
+ "random_discrete_uniform",
8
+ "random_uniform",
9
+ "random_exponential",
10
+ "random_normal",
11
+ "random_geometric",
12
+ "random_permutation"
13
+ ]
14
+
15
+ def random_number_generator(
16
+ seed : Optional[int] = None,
17
+ *,
18
+ device : Optional[DEVICE_TYPE] = None
19
+ ) -> RNG_TYPE:
20
+ return np.random.default_rng(seed)
21
+
22
+ def random_discrete_uniform(
23
+ shape : Union[int, Tuple[int, ...]],
24
+ from_num : int,
25
+ to_num : int,
26
+ /,
27
+ *,
28
+ rng : RNG_TYPE,
29
+ dtype : Optional[DTYPE_TYPE] = None,
30
+ device : Optional[DEVICE_TYPE] = None
31
+ ) -> Tuple[RNG_TYPE, ARRAY_TYPE]:
32
+ t = rng.integers(int(from_num), int(to_num), size=shape)
33
+ if dtype is not None:
34
+ t = t.astype(dtype)
35
+ return rng, t
36
+
37
+ def random_uniform(
38
+ shape: Union[int, Tuple[int, ...]],
39
+ /,
40
+ *,
41
+ rng : RNG_TYPE,
42
+ low : float = 0.0, high : float = 1.0,
43
+ dtype : Optional[DTYPE_TYPE] = None,
44
+ device : Optional[DEVICE_TYPE] = None
45
+ ) -> Tuple[RNG_TYPE, ARRAY_TYPE]:
46
+ t = rng.uniform(float(low), float(high), size=shape)
47
+ if dtype is not None:
48
+ t = t.astype(dtype)
49
+ return rng, t
50
+
51
+ def random_exponential(
52
+ shape: Union[int, Tuple[int, ...]],
53
+ /,
54
+ *,
55
+ rng : RNG_TYPE,
56
+ lambd : float = 1.0,
57
+ dtype : Optional[DTYPE_TYPE] = None,
58
+ device : Optional[DEVICE_TYPE] = None
59
+ ) -> Tuple[RNG_TYPE, ARRAY_TYPE]:
60
+ t = rng.exponential(1.0 / float(lambd), size=shape)
61
+ if dtype is not None:
62
+ t = t.astype(dtype)
63
+ return rng, t
64
+
65
+ @classmethod
66
+ def random_normal(
67
+ shape: Union[int, Tuple[int, ...]],
68
+ /,
69
+ *,
70
+ rng : RNG_TYPE,
71
+ mean : float = 0.0, std : float = 1.0,
72
+ dtype : Optional[DTYPE_TYPE] = None,
73
+ device : Optional[Any] = None
74
+ ) -> Tuple[RNG_TYPE, ARRAY_TYPE]:
75
+ t = rng.normal(mean, std, size=shape)
76
+ if dtype is not None:
77
+ t = t.astype(dtype)
78
+ return rng, t
79
+
80
+
81
+ def random_geometric(
82
+ shape: Union[int, Tuple[int, ...]],
83
+ /,
84
+ *,
85
+ p: float,
86
+ rng: RNG_TYPE,
87
+ dtype: Optional[DTYPE_TYPE] = None,
88
+ device: Optional[Any] = None
89
+ ) -> Tuple[RNG_TYPE, ARRAY_TYPE]:
90
+ t = rng.geometric(p, size=shape)
91
+ if dtype is not None:
92
+ t = t.astype(dtype)
93
+ return rng, t
94
+
95
+ def random_permutation(
96
+ n : int,
97
+ /,
98
+ *,
99
+ rng: RNG_TYPE,
100
+ dtype: Optional[DTYPE_TYPE] = None,
101
+ device: Optional[DEVICE_TYPE] = None
102
+ ) -> Tuple[RNG_TYPE, ARRAY_TYPE]:
103
+ t = rng.permutation(n)
104
+ if dtype is not None:
105
+ t = t.astype(dtype)
106
+ return rng, t
@@ -0,0 +1,20 @@
1
+ from array_api_compat.torch import *
2
+
3
+ simplified_name = "pytorch"
4
+
5
+ from array_api_compat import torch as compat_module
6
+
7
+ # Import and bind all functions from array_api_extra before exposing them
8
+ import array_api_extra
9
+ from functools import partial
10
+ for api_name in dir(array_api_extra):
11
+ if api_name.startswith('_'):
12
+ continue
13
+ globals()[api_name] = partial(
14
+ getattr(array_api_extra, api_name),
15
+ xp=compat_module
16
+ )
17
+
18
+ from ._typing import *
19
+ from ._extra import *
20
+ __import__(__package__ + ".random")
@@ -0,0 +1,109 @@
1
+ from typing import Any, Union, Optional
2
+ import numpy as np
3
+ import torch
4
+ from ._typing import ARRAY_TYPE, DTYPE_TYPE, DEVICE_TYPE, RNG_TYPE
5
+ from xbarray.base import ComputeBackend, SupportsDLPack
6
+
7
+ PYTORCH_DTYPE_CAST_MAP = {
8
+ torch.uint16: torch.int16,
9
+ torch.uint32: torch.int32,
10
+ torch.uint64: torch.int64,
11
+ torch.float8_e4m3fn: torch.float16,
12
+ torch.float8_e5m2: torch.float16,
13
+ }
14
+
15
+ __all__ = [
16
+ "default_integer_dtype",
17
+ "default_floating_dtype",
18
+ "default_boolean_dtype",
19
+ "is_backendarray",
20
+ "from_numpy",
21
+ "from_other_backend",
22
+ "to_numpy",
23
+ "to_dlpack",
24
+ "dtype_is_real_integer",
25
+ "dtype_is_real_floating",
26
+ "dtype_is_boolean",
27
+ "abbreviate_array",
28
+ ]
29
+
30
+ default_integer_dtype = torch.int32
31
+ default_floating_dtype = torch.float32
32
+ default_boolean_dtype = torch.bool
33
+
34
+ def is_backendarray(data : Any) -> bool:
35
+ return isinstance(data, torch.Tensor)
36
+
37
+ def from_numpy(
38
+ data : np.ndarray,
39
+ /,
40
+ *,
41
+ dtype : Optional[DTYPE_TYPE] = None,
42
+ device : Optional[DEVICE_TYPE] = None
43
+ ) -> ARRAY_TYPE:
44
+ t = torch.from_numpy(data)
45
+ target_dtype = dtype if dtype is not None else PYTORCH_DTYPE_CAST_MAP.get(t.dtype, t.dtype)
46
+ if target_dtype is not None or device is not None:
47
+ t = t.to(device=device, dtype=target_dtype)
48
+ return t
49
+
50
+ def from_other_backend(
51
+ other_backend: ComputeBackend,
52
+ data: Any,
53
+ /,
54
+ ) -> ARRAY_TYPE:
55
+ dat_dlpack = other_backend.to_dlpack(data)
56
+ return torch.from_dlpack(dat_dlpack)
57
+
58
+ def to_numpy(
59
+ data : ARRAY_TYPE
60
+ ) -> np.ndarray:
61
+ # Torch bfloat16 is not supported by numpy
62
+ if data.dtype == torch.bfloat16:
63
+ data = data.to(torch.float32)
64
+ return data.cpu().numpy()
65
+
66
+ def to_dlpack(
67
+ self,
68
+ data: ARRAY_TYPE,
69
+ /,
70
+ ) -> SupportsDLPack:
71
+ return data
72
+
73
+ def dtype_is_real_integer(
74
+ dtype: DTYPE_TYPE
75
+ ) -> bool:
76
+ # https://pytorch.org/docs/stable/tensors.html#id12
77
+ return dtype in [
78
+ torch.int8, torch.int16, torch.int32, torch.int64,
79
+ torch.uint8,
80
+ torch.int,
81
+ torch.long
82
+ ]
83
+
84
+ def dtype_is_real_floating(
85
+ dtype: DTYPE_TYPE
86
+ ) -> bool:
87
+ return dtype in [
88
+ torch.float16, torch.float32, torch.float64,
89
+ torch.float, torch.double,
90
+ torch.bfloat16
91
+ ]
92
+
93
+ def dtype_is_boolean(
94
+ dtype: DTYPE_TYPE
95
+ ) -> bool:
96
+ return dtype == torch.bool
97
+
98
+ from xbarray.common.implementations import get_abbreviate_array_function, get_map_fn_over_arrays_function
99
+ from array_api_compat import torch as compat_module
100
+ abbreviate_array = get_abbreviate_array_function(
101
+ compat_module,
102
+ default_integer_dtype=default_integer_dtype,
103
+ func_dtype_is_real_floating=dtype_is_real_floating,
104
+ func_dtype_is_real_integer=dtype_is_real_integer,
105
+ func_dtype_is_boolean=dtype_is_boolean
106
+ )
107
+ map_fn_over_arrays = get_map_fn_over_arrays_function(
108
+ is_backendarray=is_backendarray,
109
+ )
@@ -0,0 +1,13 @@
1
+ import torch
2
+
3
+ __all__ = [
4
+ 'ARRAY_TYPE',
5
+ 'DTYPE_TYPE',
6
+ 'DEVICE_TYPE',
7
+ 'RNG_TYPE',
8
+ ]
9
+
10
+ ARRAY_TYPE = torch.Tensor
11
+ DTYPE_TYPE = torch.dtype
12
+ DEVICE_TYPE = torch.device
13
+ RNG_TYPE = torch.Generator
@@ -0,0 +1,102 @@
1
+ from typing import Union, Optional, Tuple, Any
2
+ from ._typing import ARRAY_TYPE, DTYPE_TYPE, DEVICE_TYPE, RNG_TYPE
3
+ import torch
4
+
5
+ __all__ = [
6
+ "random_number_generator",
7
+ "random_discrete_uniform",
8
+ "random_uniform",
9
+ "random_exponential",
10
+ "random_normal",
11
+ "random_geometric",
12
+ "random_permutation"
13
+ ]
14
+
15
+ def random_number_generator(
16
+ seed : Optional[int] = None,
17
+ *,
18
+ device : Optional[DEVICE_TYPE] = None
19
+ ) -> RNG_TYPE:
20
+ rng = torch.Generator(
21
+ device=device
22
+ )
23
+ if seed is not None:
24
+ rng = rng.manual_seed(seed)
25
+ return rng
26
+
27
+
28
+ def random_discrete_uniform(
29
+ shape : Union[int, Tuple[int, ...]],
30
+ from_num : int,
31
+ to_num : int,
32
+ /,
33
+ *,
34
+ rng : RNG_TYPE,
35
+ dtype : Optional[DTYPE_TYPE] = None,
36
+ device : Optional[DEVICE_TYPE] = None
37
+ ) -> Tuple[RNG_TYPE, ARRAY_TYPE]:
38
+ t = torch.randint(int(from_num), int(to_num), shape, generator=rng, dtype=dtype, device=device)
39
+ return rng, t
40
+
41
+ def random_uniform(
42
+ shape: Union[int, Tuple[int, ...]],
43
+ /,
44
+ *,
45
+ rng : RNG_TYPE,
46
+ low : float = 0.0, high : float = 1.0,
47
+ dtype : Optional[DTYPE_TYPE] = None,
48
+ device : Optional[DEVICE_TYPE] = None
49
+ ) -> Tuple[RNG_TYPE, ARRAY_TYPE]:
50
+ t = torch.rand(shape, generator=rng, dtype=dtype, device=device)
51
+ t = t * (high - low) + low
52
+ return rng, t
53
+
54
+ def random_exponential(
55
+ shape: Union[int, Tuple[int, ...]],
56
+ /,
57
+ *,
58
+ rng : RNG_TYPE,
59
+ lambd : float = 1.0,
60
+ dtype : Optional[DTYPE_TYPE] = None,
61
+ device : Optional[DEVICE_TYPE] = None
62
+ ) -> Tuple[RNG_TYPE, ARRAY_TYPE]:
63
+ t = torch.empty(shape, dtype=dtype, device=device)
64
+ t = t.exponential_(lambd, generator=rng)
65
+ return rng, t
66
+
67
+ @classmethod
68
+ def random_normal(
69
+ shape: Union[int, Tuple[int, ...]],
70
+ /,
71
+ *,
72
+ rng : RNG_TYPE,
73
+ mean : float = 0.0, std : float = 1.0,
74
+ dtype : Optional[DTYPE_TYPE] = None,
75
+ device : Optional[Any] = None
76
+ ) -> Tuple[RNG_TYPE, ARRAY_TYPE]:
77
+ t = torch.normal(mean, std, shape, generator=rng, dtype=dtype, device=device)
78
+ return rng, t
79
+
80
+ def random_geometric(
81
+ shape: Union[int, Tuple[int, ...]],
82
+ /,
83
+ *,
84
+ p: float,
85
+ rng: RNG_TYPE,
86
+ dtype: Optional[DTYPE_TYPE] = None,
87
+ device: Optional[Any] = None
88
+ ) -> Tuple[RNG_TYPE, ARRAY_TYPE]:
89
+ t = torch.empty(shape, dtype=dtype, device=device)
90
+ t = t.geometric_(p, generator=rng)
91
+ return rng, t
92
+
93
+ def random_permutation(
94
+ n : int,
95
+ /,
96
+ *,
97
+ rng: RNG_TYPE,
98
+ dtype: Optional[DTYPE_TYPE] = None,
99
+ device: Optional[DEVICE_TYPE] = None
100
+ ) -> Tuple[RNG_TYPE, ARRAY_TYPE]:
101
+ t = torch.randperm(n, generator=rng, dtype=dtype, device=device)
102
+ return rng, t
@@ -0,0 +1,14 @@
1
+ Metadata-Version: 2.4
2
+ Name: xbarray
3
+ Version: 0.0.1a1
4
+ Requires-Python: >=3.10
5
+ License-File: LICENSE
6
+ Requires-Dist: typing_extensions>=4.5
7
+ Requires-Dist: array_api_compat
8
+ Requires-Dist: array_api_extra
9
+ Requires-Dist: numpy
10
+ Provides-Extra: torch
11
+ Requires-Dist: torch; extra == "torch"
12
+ Provides-Extra: jax
13
+ Requires-Dist: jax; extra == "jax"
14
+ Dynamic: license-file
@@ -0,0 +1,35 @@
1
+ array_api_typing/__init__.py,sha256=5vcE63PsZ_utc7j2VmLK5evUhar-942p95HyjTiLOc0,179
2
+ array_api_typing/typing_2024_12/__init__.py,sha256=JuD2yojHl3eQI74U75tFhSX5rSy32TR5nKyi714ZfX4,347
3
+ array_api_typing/typing_2024_12/_api_constant.py,sha256=tahdzdi7vAZ3UnM8oDcUqvx2FFsMTAyUbuwgarU6K9U,676
4
+ array_api_typing/typing_2024_12/_api_fft_typing.py,sha256=i48S-9trw3s72xiCJmeCNGlJLwwOVq0kJC4lD9se_co,38641
5
+ array_api_typing/typing_2024_12/_api_linalg_typing.py,sha256=Dt5fDTwYb-GAmP7duajwPqH3zaJmwvxDEOOzdl5X0LE,48950
6
+ array_api_typing/typing_2024_12/_api_return_typing.py,sha256=7TxSBRv0H0uQ9VnixbyuEXJQnl1uESo102RsAloI9SA,2302
7
+ array_api_typing/typing_2024_12/_api_typing.py,sha256=rFuF7E6b2RrijzQBrZx6_dYEn9Yslq8FqI31L1Ccrf4,294255
8
+ array_api_typing/typing_2024_12/_array_typing.py,sha256=GMqs5LgshujRIh7i0mGtZy4Vt56FSXqBmNlBGidFRnc,57403
9
+ array_api_typing/typing_compat/__init__.py,sha256=JuD2yojHl3eQI74U75tFhSX5rSy32TR5nKyi714ZfX4,347
10
+ array_api_typing/typing_compat/_api_typing.py,sha256=RnGZFD8AEIqOCurcI68xyw7y9W9hm4yWUGf7NlJkNk0,930
11
+ array_api_typing/typing_compat/_array_typing.py,sha256=CVv91wDjjG-8kSofkqgA85qpM-3x34Zh_SNuBFegW9o,1182
12
+ array_api_typing/typing_extra/__init__.py,sha256=YfdhD-Sfk3SCfI9lHmA-PbVLzms1OFF5x0ekzI3aafk,323
13
+ array_api_typing/typing_extra/_api_typing.py,sha256=Jj_E61r35EgecWmBvAzpASV4qub5aQI_O4aL-ngEvQ8,23028
14
+ array_api_typing/typing_extra/_at.py,sha256=S7_YjOwR3a8olZWgwpLDFEfnekRufRqrtfiMLwrWjgo,2202
15
+ xbarray/__init__.py,sha256=GLdMGsm5_CnATyh19At20Hmb1MsXZvPxNvg70bHYChk,19
16
+ xbarray/base/__init__.py,sha256=ERmmOxz_9mUkIuccNbzUa5Y6gVLLVDdyc4cCxbCCUbY,20
17
+ xbarray/base/base.py,sha256=hqlizpZOJua9xJfPfc-RR6IAadp-OLPVnBO5cbVVHKQ,5929
18
+ xbarray/common/implementations.py,sha256=FyZaQZcVdSnH6CUA1LVbUJAK-EAlkz2fDfOOuVyku6Y,2655
19
+ xbarray/jax/__init__.py,sha256=J7yN6ytn1fm2qKHZVm9OTt30ItcKMnKnuTxbZgnGKaE,662
20
+ xbarray/jax/_extra.py,sha256=JHZBaGZUXPLCRFdaDBXUjwGD-D4DlLYI0NsxAlGs3FE,2504
21
+ xbarray/jax/_typing.py,sha256=U9BUxHNEjFB0LHF1KMrFLbh6E5kVvpAF8bZUbLNf25E,278
22
+ xbarray/jax/random.py,sha256=owIxqs67MOMXaMN8uwmCu9aLd1Yss24sl9rib4R5Qec,3325
23
+ xbarray/numpy/__init__.py,sha256=trZhNZYIHe0QkQYRB1ZJW-OlteYf_9RVUR3yks6S2iI,523
24
+ xbarray/numpy/_extra.py,sha256=wbzpcVL4UV5TVQlmO73sUwWcBgMiVXFvfCLlCuiB0Uk,1982
25
+ xbarray/numpy/_typing.py,sha256=pgjLLAipwFsIk0QdgrAA4PEvjF_ugHbzfSTbLpA__6o,241
26
+ xbarray/numpy/random.py,sha256=8BaxX_cpzvF7iG0yR0ws3IbG14OJPsX60Gv-1AStplA,2643
27
+ xbarray/pytorch/__init__.py,sha256=wfUkSyrJpDlO2Zggza7HM5SCdYKUBfySO3K71itOHkA,526
28
+ xbarray/pytorch/_extra.py,sha256=VawcjDe0dxiIzvTjIncGxwPPoTw7hWZAPOlZSdDSKl0,2867
29
+ xbarray/pytorch/_typing.py,sha256=qSnNZD3IpgSoOTl3TBRBv2ifSAHOw0aR9uyzfV5KYVw,204
30
+ xbarray/pytorch/random.py,sha256=OJ-YvS2owX5LWdsIzXW-N2YqPhN84Rroco7O5qIMmrg,2670
31
+ xbarray-0.0.1a1.dist-info/licenses/LICENSE,sha256=6P0HCOancSfch0dNycuDIe8_qwS0Id97Ih_8hjJ2PFI,1067
32
+ xbarray-0.0.1a1.dist-info/METADATA,sha256=u2-YoX051dU1Po1mFspLSuIEMmlPdhlWOlNwvbp-8PE,359
33
+ xbarray-0.0.1a1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
34
+ xbarray-0.0.1a1.dist-info/top_level.txt,sha256=VriXuFyU48Du4HQMzROSArhwqB6EZYY0n0mipgUqB9A,25
35
+ xbarray-0.0.1a1.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.9.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Yunhao Cao
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,2 @@
1
+ array_api_typing
2
+ xbarray