x-transformers 2.6.5__py3-none-any.whl → 2.6.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
x_transformers/attend.py CHANGED
@@ -23,7 +23,7 @@ class Intermediates:
23
23
  pre_softmax_attn: Tensor | None = None
24
24
  post_softmax_attn: Tensor | None = None
25
25
  values: Tensor | None = None
26
- cached_kv: Tuple[Tensor, Tensor] | None = None
26
+ cached_kv: tuple[Tensor, Tensor] | None = None
27
27
  layer_type: str | None = None
28
28
  hybrid_hidden: Tensor | None = None
29
29
 
@@ -176,7 +176,7 @@ class Attend(Module):
176
176
  softclamp_logits = False,
177
177
  logit_softclamp_value = 50.,
178
178
  add_zero_kv = False,
179
- head_learned_sinks = 0,
179
+ head_learned_sink = False,
180
180
  selective = False,
181
181
  hard = False,
182
182
  cope = None,
@@ -257,10 +257,10 @@ class Attend(Module):
257
257
 
258
258
  # learned sink concatted pre-softmax, working solution from gpt-oss
259
259
 
260
- self.has_head_learned_sinks = head_learned_sinks > 0
261
- assert not (self.has_head_learned_sinks and flash), f'not supported for flash attention yet'
260
+ assert not (head_learned_sink and flash), f'not supported for flash attention yet'
262
261
 
263
- self.head_attn_sinks = Parameter(torch.zeros(heads, head_learned_sinks)) if self.has_head_learned_sinks else None
262
+ self.head_learned_sink = head_learned_sink
263
+ self.head_attn_sink = Parameter(torch.zeros(heads)) if head_learned_sink else None
264
264
 
265
265
  # soft clamp attention logit value
266
266
 
@@ -517,10 +517,9 @@ class Attend(Module):
517
517
  if self.selective:
518
518
  sim = selective_attn(sim)
519
519
 
520
- if self.has_head_learned_sinks:
520
+ if self.head_learned_sink:
521
521
  # add learned attention sink
522
- num_sinks = self.head_attn_sinks.shape[-1]
523
- attn_sink = repeat(self.head_attn_sinks, 'h sinks -> b h i sinks', b = sim.shape[0], i = sim.shape[2])
522
+ attn_sink = repeat(self.head_attn_sink, 'h -> b h i 1', b = sim.shape[0], i = sim.shape[2])
524
523
  sim = cat((attn_sink, sim), dim = -1)
525
524
 
526
525
  pre_softmax_attn = sim
@@ -531,9 +530,9 @@ class Attend(Module):
531
530
 
532
531
  post_softmax_attn = attn
533
532
 
534
- if self.has_head_learned_sinks:
533
+ if self.head_learned_sink:
535
534
  # remove attention sink
536
- attn = attn[..., num_sinks:]
535
+ attn = attn[..., 1:]
537
536
 
538
537
  attn = self.attn_dropout(attn)
539
538
 
@@ -10,7 +10,7 @@ import torch
10
10
  from torch.amp import autocast
11
11
  import torch.nn.functional as F
12
12
  from torch import nn, einsum, tensor, Tensor, cat, stack, arange, is_tensor
13
- from torch.utils._pytree import tree_flatten, tree_unflatten
13
+ from torch.utils._pytree import tree_flatten, tree_unflatten, tree_map
14
14
  from torch.nn import Module, ModuleList, ModuleDict
15
15
 
16
16
  from functools import partial, wraps
@@ -81,6 +81,9 @@ def cast_tuple(val, depth = 1):
81
81
  def divisible_by(num, den):
82
82
  return (num % den) == 0
83
83
 
84
+ def detach_all(obj):
85
+ return tree_map(lambda t: t.detach() if is_tensor(t) and t.requires_grad else t, obj)
86
+
84
87
  def maybe(fn = None):
85
88
  if not exists(fn):
86
89
  fn = identity
@@ -157,6 +160,19 @@ def or_reduce(masks):
157
160
  head = head | rest
158
161
  return head
159
162
 
163
+ # cache helpers
164
+
165
+ def get_cached_kvs(
166
+ cache: LayerIntermediates
167
+ ) -> list[tuple[Tensor, Tensor]]:
168
+
169
+ cached_kvs = []
170
+
171
+ for attn_intermediate in cache.attn_intermediates:
172
+ cached_kvs.append(attn_intermediate.cached_kv)
173
+
174
+ return cached_kvs
175
+
160
176
  # entropy
161
177
 
162
178
  def calc_entropy(
@@ -1319,7 +1335,7 @@ class Attention(Module):
1319
1335
  value_dim_head = None,
1320
1336
  dim_out = None,
1321
1337
  add_zero_kv = False, # same as add_zero_attn in pytorch
1322
- head_learned_sinks = 0,
1338
+ head_learned_sink = False,
1323
1339
  rotate_num_heads = None,
1324
1340
  data_dependent_alibi = False,
1325
1341
  data_dependent_alibi_per_row = False,
@@ -1516,7 +1532,7 @@ class Attention(Module):
1516
1532
  selective = selective,
1517
1533
  custom_attn_fn = custom_attn_fn,
1518
1534
  add_zero_kv = add_zero_kv,
1519
- head_learned_sinks = head_learned_sinks,
1535
+ head_learned_sink = head_learned_sink,
1520
1536
  flash = flash,
1521
1537
  softclamp_logits = softclamp_logits,
1522
1538
  logit_softclamp_value = logit_softclamp_value,
@@ -2441,8 +2457,13 @@ class AttentionLayers(Module):
2441
2457
  context_pos = None,
2442
2458
  attn_bias = None,
2443
2459
  deep_embeds_and_ids: tuple[nn.Parameter, Tensor] | None = None,
2444
- self_attn_additional_kv: list[tuple[Tensor, Tensor]] | None = None,
2460
+ self_attn_additional_kv: (
2461
+ LayerIntermediates |
2462
+ list[tuple[Tensor, Tensor]]
2463
+ | None
2464
+ ) = None,
2445
2465
  additional_kv_mask = None,
2466
+ detach_additional_kv = False,
2446
2467
  route_additional_kv_to_top = True,
2447
2468
  condition = None,
2448
2469
  in_attn_cond = None, # https://arxiv.org/abs/2105.04090
@@ -2590,6 +2611,13 @@ class AttentionLayers(Module):
2590
2611
  # additional self attn key / values - say coming from vlm
2591
2612
 
2592
2613
  if exists(self_attn_additional_kv) and route_additional_kv_to_top:
2614
+
2615
+ if isinstance(self_attn_additional_kv, LayerIntermediates):
2616
+ self_attn_additional_kv = get_cached_kvs(self_attn_additional_kv)
2617
+
2618
+ if detach_additional_kv:
2619
+ self_attn_additional_kv = detach_all(self_attn_additional_kv)
2620
+
2593
2621
  num_self_attns = sum([layer_type == 'a' for layer_type in first(layer_variables)])
2594
2622
 
2595
2623
  self_attn_additional_kv = self_attn_additional_kv[-num_self_attns:]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: x-transformers
3
- Version: 2.6.5
3
+ Version: 2.6.7
4
4
  Summary: X-Transformers
5
5
  Project-URL: Homepage, https://pypi.org/project/x-transformers/
6
6
  Project-URL: Repository, https://github.com/lucidrains/x-transformers
@@ -1,5 +1,5 @@
1
1
  x_transformers/__init__.py,sha256=aVuhUU0572TJHW88BVc4yA2tla0Zb8l3NH7W4RZ1AEs,1005
2
- x_transformers/attend.py,sha256=DX_qrDkz98Db0eNapbzciJbVp5dsWIFWdpv2LUfebJs,18223
2
+ x_transformers/attend.py,sha256=jzOwrtCIdAt1dRQBO68htDsgtjdTx6TAQQVB2xflS1w,18091
3
3
  x_transformers/autoregressive_wrapper.py,sha256=BsGO9xfVYkvynqbU1__tu_S_cxl7gss0YwnkhIa2baY,18401
4
4
  x_transformers/belief_state_wrapper.py,sha256=YLUMk6t2MhFBEw5lHDDHJHcoCxTIkHvxTNY__GGZEKU,13374
5
5
  x_transformers/continuous.py,sha256=hpb1sSbt3k2LNzzjrjSd8F5xOIbKj7IluV9MBEAFLkw,13031
@@ -9,10 +9,10 @@ x_transformers/multi_input.py,sha256=tCh-fTJDj2ib4SMGtsa-AM8MxKzJAQSwqAXOu3HU2mg
9
9
  x_transformers/neo_mlp.py,sha256=XCNnnop9WLarcxap1kGuYc1x8GHvwkZiDRnXOxSl3Po,3452
10
10
  x_transformers/nonautoregressive_wrapper.py,sha256=2NU58hYMgn-4Jzg3mie-mXb0XH_dCN7fjlzd3K1rLUY,10510
11
11
  x_transformers/up_wrapper.py,sha256=YC2LN14_7Xx9Wtiek2rtEJ_qHqdfSmKlh3d7Cgxwd80,7073
12
- x_transformers/x_transformers.py,sha256=F_ZR9jysYmkbqKvsZmzXqOP3VznVeivXVOstAwKIdPU,122185
12
+ x_transformers/x_transformers.py,sha256=txdFN5266Tu-lQVMgyICMWt8azslAkxG5YL4n9tOUIo,122944
13
13
  x_transformers/xl_autoregressive_wrapper.py,sha256=CvZMJ6A6PA-Y_bQAhnORwjJBSl6Vjq2IdW5KTdk8NI8,4195
14
14
  x_transformers/xval.py,sha256=AwwYUm8yDAtKQyKJDIhYMsiLTJ_skh3scUFMjp5sda8,8597
15
- x_transformers-2.6.5.dist-info/METADATA,sha256=yMl0MlBbo7D9dOu_cBQz38iJQ3a6F8PlaPCo5RQXrSA,90445
16
- x_transformers-2.6.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
17
- x_transformers-2.6.5.dist-info/licenses/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
18
- x_transformers-2.6.5.dist-info/RECORD,,
15
+ x_transformers-2.6.7.dist-info/METADATA,sha256=adIYBcB5RIeokjb0rpWAhB_glm28q91ka7AIxddBMPk,90445
16
+ x_transformers-2.6.7.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
17
+ x_transformers-2.6.7.dist-info/licenses/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
18
+ x_transformers-2.6.7.dist-info/RECORD,,