x-transformers 2.6.5__py3-none-any.whl → 2.6.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
x_transformers/attend.py CHANGED
@@ -176,7 +176,7 @@ class Attend(Module):
176
176
  softclamp_logits = False,
177
177
  logit_softclamp_value = 50.,
178
178
  add_zero_kv = False,
179
- head_learned_sinks = 0,
179
+ head_learned_sink = False,
180
180
  selective = False,
181
181
  hard = False,
182
182
  cope = None,
@@ -257,10 +257,10 @@ class Attend(Module):
257
257
 
258
258
  # learned sink concatted pre-softmax, working solution from gpt-oss
259
259
 
260
- self.has_head_learned_sinks = head_learned_sinks > 0
261
- assert not (self.has_head_learned_sinks and flash), f'not supported for flash attention yet'
260
+ assert not (head_learned_sink and flash), f'not supported for flash attention yet'
262
261
 
263
- self.head_attn_sinks = Parameter(torch.zeros(heads, head_learned_sinks)) if self.has_head_learned_sinks else None
262
+ self.head_learned_sink = head_learned_sink
263
+ self.head_attn_sink = Parameter(torch.zeros(heads)) if head_learned_sink else None
264
264
 
265
265
  # soft clamp attention logit value
266
266
 
@@ -517,10 +517,9 @@ class Attend(Module):
517
517
  if self.selective:
518
518
  sim = selective_attn(sim)
519
519
 
520
- if self.has_head_learned_sinks:
520
+ if self.head_learned_sink:
521
521
  # add learned attention sink
522
- num_sinks = self.head_attn_sinks.shape[-1]
523
- attn_sink = repeat(self.head_attn_sinks, 'h sinks -> b h i sinks', b = sim.shape[0], i = sim.shape[2])
522
+ attn_sink = repeat(self.head_attn_sink, 'h -> b h i 1', b = sim.shape[0], i = sim.shape[2])
524
523
  sim = cat((attn_sink, sim), dim = -1)
525
524
 
526
525
  pre_softmax_attn = sim
@@ -531,9 +530,9 @@ class Attend(Module):
531
530
 
532
531
  post_softmax_attn = attn
533
532
 
534
- if self.has_head_learned_sinks:
533
+ if self.head_learned_sink:
535
534
  # remove attention sink
536
- attn = attn[..., num_sinks:]
535
+ attn = attn[..., 1:]
537
536
 
538
537
  attn = self.attn_dropout(attn)
539
538
 
@@ -1319,7 +1319,7 @@ class Attention(Module):
1319
1319
  value_dim_head = None,
1320
1320
  dim_out = None,
1321
1321
  add_zero_kv = False, # same as add_zero_attn in pytorch
1322
- head_learned_sinks = 0,
1322
+ head_learned_sink = False,
1323
1323
  rotate_num_heads = None,
1324
1324
  data_dependent_alibi = False,
1325
1325
  data_dependent_alibi_per_row = False,
@@ -1516,7 +1516,7 @@ class Attention(Module):
1516
1516
  selective = selective,
1517
1517
  custom_attn_fn = custom_attn_fn,
1518
1518
  add_zero_kv = add_zero_kv,
1519
- head_learned_sinks = head_learned_sinks,
1519
+ head_learned_sink = head_learned_sink,
1520
1520
  flash = flash,
1521
1521
  softclamp_logits = softclamp_logits,
1522
1522
  logit_softclamp_value = logit_softclamp_value,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: x-transformers
3
- Version: 2.6.5
3
+ Version: 2.6.6
4
4
  Summary: X-Transformers
5
5
  Project-URL: Homepage, https://pypi.org/project/x-transformers/
6
6
  Project-URL: Repository, https://github.com/lucidrains/x-transformers
@@ -1,5 +1,5 @@
1
1
  x_transformers/__init__.py,sha256=aVuhUU0572TJHW88BVc4yA2tla0Zb8l3NH7W4RZ1AEs,1005
2
- x_transformers/attend.py,sha256=DX_qrDkz98Db0eNapbzciJbVp5dsWIFWdpv2LUfebJs,18223
2
+ x_transformers/attend.py,sha256=JJv6ypJbZIFmH1LQ49hFg6hD0Wf9Z7Im1AP2ekm9hVI,18091
3
3
  x_transformers/autoregressive_wrapper.py,sha256=BsGO9xfVYkvynqbU1__tu_S_cxl7gss0YwnkhIa2baY,18401
4
4
  x_transformers/belief_state_wrapper.py,sha256=YLUMk6t2MhFBEw5lHDDHJHcoCxTIkHvxTNY__GGZEKU,13374
5
5
  x_transformers/continuous.py,sha256=hpb1sSbt3k2LNzzjrjSd8F5xOIbKj7IluV9MBEAFLkw,13031
@@ -9,10 +9,10 @@ x_transformers/multi_input.py,sha256=tCh-fTJDj2ib4SMGtsa-AM8MxKzJAQSwqAXOu3HU2mg
9
9
  x_transformers/neo_mlp.py,sha256=XCNnnop9WLarcxap1kGuYc1x8GHvwkZiDRnXOxSl3Po,3452
10
10
  x_transformers/nonautoregressive_wrapper.py,sha256=2NU58hYMgn-4Jzg3mie-mXb0XH_dCN7fjlzd3K1rLUY,10510
11
11
  x_transformers/up_wrapper.py,sha256=YC2LN14_7Xx9Wtiek2rtEJ_qHqdfSmKlh3d7Cgxwd80,7073
12
- x_transformers/x_transformers.py,sha256=F_ZR9jysYmkbqKvsZmzXqOP3VznVeivXVOstAwKIdPU,122185
12
+ x_transformers/x_transformers.py,sha256=vjRMEMA12Js94YwLVeZksYMEoRgK6CSKT6TJViMPp7U,122186
13
13
  x_transformers/xl_autoregressive_wrapper.py,sha256=CvZMJ6A6PA-Y_bQAhnORwjJBSl6Vjq2IdW5KTdk8NI8,4195
14
14
  x_transformers/xval.py,sha256=AwwYUm8yDAtKQyKJDIhYMsiLTJ_skh3scUFMjp5sda8,8597
15
- x_transformers-2.6.5.dist-info/METADATA,sha256=yMl0MlBbo7D9dOu_cBQz38iJQ3a6F8PlaPCo5RQXrSA,90445
16
- x_transformers-2.6.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
17
- x_transformers-2.6.5.dist-info/licenses/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
18
- x_transformers-2.6.5.dist-info/RECORD,,
15
+ x_transformers-2.6.6.dist-info/METADATA,sha256=95CKrJ98X7R0hpb5D8GHSfi372UtxXDSeDaO2qB0Lrs,90445
16
+ x_transformers-2.6.6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
17
+ x_transformers-2.6.6.dist-info/licenses/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
18
+ x_transformers-2.6.6.dist-info/RECORD,,