x-transformers 2.6.0__py3-none-any.whl → 2.6.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- x_transformers/x_transformers.py +14 -5
- {x_transformers-2.6.0.dist-info → x_transformers-2.6.1.dist-info}/METADATA +1 -1
- {x_transformers-2.6.0.dist-info → x_transformers-2.6.1.dist-info}/RECORD +5 -5
- {x_transformers-2.6.0.dist-info → x_transformers-2.6.1.dist-info}/WHEEL +0 -0
- {x_transformers-2.6.0.dist-info → x_transformers-2.6.1.dist-info}/licenses/LICENSE +0 -0
x_transformers/x_transformers.py
CHANGED
@@ -1618,7 +1618,8 @@ class Attention(Module):
|
|
1618
1618
|
return_intermediates = False,
|
1619
1619
|
cache: Intermediates | None = None,
|
1620
1620
|
value_residual = None,
|
1621
|
-
additional_key_values: tuple[Tensor, Tensor] | None = None
|
1621
|
+
additional_key_values: tuple[Tensor, Tensor] | None = None,
|
1622
|
+
additional_key_value_mask = None,
|
1622
1623
|
):
|
1623
1624
|
b, n, h, kv_h, head_scale, num_mem_kv, device, has_context, qkv_receive_diff_residuals, is_multi_latent_attn = x.shape[0], x.shape[1], self.heads, self.kv_heads, self.head_scale, self.num_mem_kv, x.device, exists(context), self.qkv_receive_diff_residuals, self.use_latent_kv
|
1624
1625
|
|
@@ -1791,15 +1792,22 @@ class Attention(Module):
|
|
1791
1792
|
# maybe append additional key / values
|
1792
1793
|
|
1793
1794
|
if exists(additional_key_values):
|
1795
|
+
seq_len = k.shape[-2]
|
1794
1796
|
|
1795
1797
|
added_k, added_v = additional_key_values
|
1796
|
-
added_kv_len = added_k.shape[-2]
|
1797
1798
|
|
1798
1799
|
k = cat((added_k, k), dim = -2)
|
1799
1800
|
v = cat((added_v, v), dim = -2)
|
1800
1801
|
|
1801
|
-
if exists(input_mask):
|
1802
|
-
|
1802
|
+
if (exists(input_mask) or exists(additional_key_value_mask)):
|
1803
|
+
|
1804
|
+
if not exists(additional_key_value_mask):
|
1805
|
+
added_kv_len = added_k.shape[-2]
|
1806
|
+
input_mask = pad_at_dim(input_mask, (added_kv_len, 0), dim = -1, value = True)
|
1807
|
+
elif not exists(input_mask):
|
1808
|
+
input_mask = pad_at_dim(additional_key_value_mask, (0, seq_len), dim = -1, value = True)
|
1809
|
+
else:
|
1810
|
+
input_mask = cat((additional_key_value_mask, input_mask), dim = -1)
|
1803
1811
|
|
1804
1812
|
# determine masking
|
1805
1813
|
|
@@ -2426,6 +2434,7 @@ class AttentionLayers(Module):
|
|
2426
2434
|
attn_bias = None,
|
2427
2435
|
deep_embeds_and_ids: tuple[nn.Parameter, Tensor] | None = None,
|
2428
2436
|
self_attn_additional_kv: list[tuple[Tensor, Tensor]] | None = None,
|
2437
|
+
additional_kv_mask = None,
|
2429
2438
|
condition = None,
|
2430
2439
|
in_attn_cond = None, # https://arxiv.org/abs/2105.04090
|
2431
2440
|
layers_execute_order: tuple[int, ...] | None = None
|
@@ -2666,7 +2675,7 @@ class AttentionLayers(Module):
|
|
2666
2675
|
# forward depending on layer type
|
2667
2676
|
|
2668
2677
|
if layer_type == 'a':
|
2669
|
-
out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, pos = pos, rotary_pos_emb = rotary_pos_emb, additional_key_values = next(iter_self_attn_kv, None), prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, mem_mask = layer_mem_mask, attn_bias = attn_bias, value_residual = maybe_self_attn_value_residual, return_intermediates = True)
|
2678
|
+
out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, pos = pos, rotary_pos_emb = rotary_pos_emb, additional_key_values = next(iter_self_attn_kv, None), additional_key_value_mask = additional_kv_mask, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, mem_mask = layer_mem_mask, attn_bias = attn_bias, value_residual = maybe_self_attn_value_residual, return_intermediates = True)
|
2670
2679
|
elif layer_type == 'c':
|
2671
2680
|
out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), value_residual = maybe_cross_attn_value_residual, **cross_attn_rotary_pos_emb, return_intermediates = True)
|
2672
2681
|
elif layer_type == 'f':
|
@@ -9,10 +9,10 @@ x_transformers/multi_input.py,sha256=tCh-fTJDj2ib4SMGtsa-AM8MxKzJAQSwqAXOu3HU2mg
|
|
9
9
|
x_transformers/neo_mlp.py,sha256=XCNnnop9WLarcxap1kGuYc1x8GHvwkZiDRnXOxSl3Po,3452
|
10
10
|
x_transformers/nonautoregressive_wrapper.py,sha256=2NU58hYMgn-4Jzg3mie-mXb0XH_dCN7fjlzd3K1rLUY,10510
|
11
11
|
x_transformers/up_wrapper.py,sha256=YC2LN14_7Xx9Wtiek2rtEJ_qHqdfSmKlh3d7Cgxwd80,7073
|
12
|
-
x_transformers/x_transformers.py,sha256=
|
12
|
+
x_transformers/x_transformers.py,sha256=O8Z4j7wDrj47-lZxmpvToHbHpoFqLy2pk199tQ4v4hI,121281
|
13
13
|
x_transformers/xl_autoregressive_wrapper.py,sha256=CvZMJ6A6PA-Y_bQAhnORwjJBSl6Vjq2IdW5KTdk8NI8,4195
|
14
14
|
x_transformers/xval.py,sha256=AwwYUm8yDAtKQyKJDIhYMsiLTJ_skh3scUFMjp5sda8,8597
|
15
|
-
x_transformers-2.6.
|
16
|
-
x_transformers-2.6.
|
17
|
-
x_transformers-2.6.
|
18
|
-
x_transformers-2.6.
|
15
|
+
x_transformers-2.6.1.dist-info/METADATA,sha256=VVzitcHytmh6tNmtjSMyDWjFxfjpQu6PhR4sTFkxjpk,90223
|
16
|
+
x_transformers-2.6.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
17
|
+
x_transformers-2.6.1.dist-info/licenses/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
|
18
|
+
x_transformers-2.6.1.dist-info/RECORD,,
|
File without changes
|
File without changes
|