x-transformers 2.3.11__py3-none-any.whl → 2.3.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- x_transformers/x_transformers.py +2 -1
- {x_transformers-2.3.11.dist-info → x_transformers-2.3.12.dist-info}/METADATA +1 -1
- {x_transformers-2.3.11.dist-info → x_transformers-2.3.12.dist-info}/RECORD +5 -5
- {x_transformers-2.3.11.dist-info → x_transformers-2.3.12.dist-info}/WHEEL +0 -0
- {x_transformers-2.3.11.dist-info → x_transformers-2.3.12.dist-info}/licenses/LICENSE +0 -0
x_transformers/x_transformers.py
CHANGED
@@ -1981,6 +1981,7 @@ class AttentionLayers(Module):
|
|
1981
1981
|
learned_value_residual_mix = True, # seeing big improvements when the value residual mix value is learned per token - credit goes to @faresobeid for taking the first step with learned scalar mix, then @Blinkdl for taking it a step further with data dependent. here we will use per token learned
|
1982
1982
|
rel_pos_kwargs: dict = dict(),
|
1983
1983
|
residual_fn_kwargs: dict = dict(),
|
1984
|
+
verbose = True,
|
1984
1985
|
**kwargs
|
1985
1986
|
):
|
1986
1987
|
super().__init__()
|
@@ -2032,7 +2033,7 @@ class AttentionLayers(Module):
|
|
2032
2033
|
|
2033
2034
|
assert rotary_emb_dim <= dim_head, f'rotary emb dim {rotary_emb_dim} must be less than or equal to attention head dimension {dim_head}'
|
2034
2035
|
|
2035
|
-
if rotary_emb_dim < 32:
|
2036
|
+
if verbose and rotary_emb_dim < 32:
|
2036
2037
|
logger.warning('when training language model, rotary embedding dimension should be at least 32')
|
2037
2038
|
|
2038
2039
|
assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention'
|
@@ -8,10 +8,10 @@ x_transformers/entropy_based_tokenizer.py,sha256=F2lO8-v3aLIcVDVNhu7RR-UtRdlmaaY
|
|
8
8
|
x_transformers/multi_input.py,sha256=tCh-fTJDj2ib4SMGtsa-AM8MxKzJAQSwqAXOu3HU2mg,9252
|
9
9
|
x_transformers/neo_mlp.py,sha256=XCNnnop9WLarcxap1kGuYc1x8GHvwkZiDRnXOxSl3Po,3452
|
10
10
|
x_transformers/nonautoregressive_wrapper.py,sha256=2NU58hYMgn-4Jzg3mie-mXb0XH_dCN7fjlzd3K1rLUY,10510
|
11
|
-
x_transformers/x_transformers.py,sha256=
|
11
|
+
x_transformers/x_transformers.py,sha256=ZfOXrZSiy2jlZ8wVmDdMTLW4hAY_qfmPQHW9t2ABxbo,114097
|
12
12
|
x_transformers/xl_autoregressive_wrapper.py,sha256=CvZMJ6A6PA-Y_bQAhnORwjJBSl6Vjq2IdW5KTdk8NI8,4195
|
13
13
|
x_transformers/xval.py,sha256=7S00kCuab4tWQa-vf-z-XfzADjVj48MoFIr7VSIvttg,8575
|
14
|
-
x_transformers-2.3.
|
15
|
-
x_transformers-2.3.
|
16
|
-
x_transformers-2.3.
|
17
|
-
x_transformers-2.3.
|
14
|
+
x_transformers-2.3.12.dist-info/METADATA,sha256=ADkMqVrlqcYcMk8U_9oxqOHc4XRD1NbSfVJsGhy5R8s,89022
|
15
|
+
x_transformers-2.3.12.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
16
|
+
x_transformers-2.3.12.dist-info/licenses/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
|
17
|
+
x_transformers-2.3.12.dist-info/RECORD,,
|
File without changes
|
File without changes
|