x-transformers 2.2.8__py3-none-any.whl → 2.2.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- x_transformers/entropy_based_tokenizer.py +29 -3
- {x_transformers-2.2.8.dist-info → x_transformers-2.2.10.dist-info}/METADATA +1 -1
- {x_transformers-2.2.8.dist-info → x_transformers-2.2.10.dist-info}/RECORD +5 -5
- {x_transformers-2.2.8.dist-info → x_transformers-2.2.10.dist-info}/WHEEL +0 -0
- {x_transformers-2.2.8.dist-info → x_transformers-2.2.10.dist-info}/licenses/LICENSE +0 -0
@@ -1,3 +1,4 @@
|
|
1
|
+
from __future__ import annotations
|
1
2
|
from itertools import zip_longest
|
2
3
|
|
3
4
|
import torch
|
@@ -33,12 +34,15 @@ class EntropyBasedTokenizer(Module):
|
|
33
34
|
def __init__(
|
34
35
|
self,
|
35
36
|
decoder: Module,
|
36
|
-
entropy_threshold: float
|
37
|
+
entropy_threshold: float,
|
38
|
+
max_token_size: int | None = None
|
37
39
|
):
|
38
40
|
super().__init__()
|
39
41
|
self.decoder = decoder
|
40
42
|
self.entropy_threshold = entropy_threshold
|
41
43
|
|
44
|
+
self.max_token_size = max_token_size
|
45
|
+
|
42
46
|
@torch.no_grad()
|
43
47
|
def forward(
|
44
48
|
self,
|
@@ -53,7 +57,7 @@ class EntropyBasedTokenizer(Module):
|
|
53
57
|
self.decoder.eval()
|
54
58
|
|
55
59
|
is_var_length = exists(lens)
|
56
|
-
batch, seq_len, device = *seq.shape, seq.device
|
60
|
+
batch, seq_len, device, max_token_size = *seq.shape, seq.device, self.max_token_size
|
57
61
|
|
58
62
|
arange = torch.arange(seq_len, device = device)
|
59
63
|
|
@@ -94,7 +98,29 @@ class EntropyBasedTokenizer(Module):
|
|
94
98
|
scatter_indices = rearrange(lens - 1, 'b -> b 1')
|
95
99
|
boundaries.scatter_(-1, scatter_indices, True)
|
96
100
|
|
97
|
-
|
101
|
+
# handle max token size - technique has the flaw that repeating subsequences are grouped into one large token
|
102
|
+
|
103
|
+
if exists(max_token_size):
|
104
|
+
token_ids = boundaries.cumsum(dim = -1)
|
105
|
+
token_ids = F.pad(token_ids, (1, -1), value = 0)
|
106
|
+
|
107
|
+
max_num_tokens = boundaries.sum(dim = -1).amax().item()
|
108
|
+
token_ids_seq = torch.arange(max_num_tokens, device = device)
|
109
|
+
|
110
|
+
token_mask = einx.equal('j, b i -> b j i', token_ids_seq, token_ids)
|
111
|
+
|
112
|
+
token_sub_seq_arange = token_mask.cumsum(dim = -1)
|
113
|
+
|
114
|
+
sub_seq_boundaries = (token_sub_seq_arange % max_token_size == 0)
|
115
|
+
sub_seq_boundaries = (sub_seq_boundaries & token_mask).any(dim = 1)
|
116
|
+
|
117
|
+
boundaries = boundaries | sub_seq_boundaries
|
118
|
+
|
119
|
+
# number of tokens
|
120
|
+
|
121
|
+
num_tokens = boundaries.sum(dim = -1)
|
122
|
+
|
123
|
+
# get number of tokens as well as derived indices
|
98
124
|
|
99
125
|
indices = arange_plus_one[boundaries].split(num_tokens.tolist())
|
100
126
|
|
@@ -4,14 +4,14 @@ x_transformers/autoregressive_wrapper.py,sha256=reLCno9Z9pchVU79tBF8OMo21LwSZ67K
|
|
4
4
|
x_transformers/belief_state_wrapper.py,sha256=YLUMk6t2MhFBEw5lHDDHJHcoCxTIkHvxTNY__GGZEKU,13374
|
5
5
|
x_transformers/continuous.py,sha256=p0sCAiH1na236ygwgL1Yyhu36eZBf9cZvoW1JyP_fFE,7073
|
6
6
|
x_transformers/dpo.py,sha256=xt4OuOWhU8pN3OKN2LZAaC2NC8iiEnchqqcrPWVqf0o,3521
|
7
|
-
x_transformers/entropy_based_tokenizer.py,sha256=
|
7
|
+
x_transformers/entropy_based_tokenizer.py,sha256=ZISAQnbLCQMAbOxPXBbkTDkBl5se4Icvr_HrGMJWElA,4941
|
8
8
|
x_transformers/multi_input.py,sha256=tCh-fTJDj2ib4SMGtsa-AM8MxKzJAQSwqAXOu3HU2mg,9252
|
9
9
|
x_transformers/neo_mlp.py,sha256=XCNnnop9WLarcxap1kGuYc1x8GHvwkZiDRnXOxSl3Po,3452
|
10
10
|
x_transformers/nonautoregressive_wrapper.py,sha256=2NU58hYMgn-4Jzg3mie-mXb0XH_dCN7fjlzd3K1rLUY,10510
|
11
11
|
x_transformers/x_transformers.py,sha256=m2xiiTafFZiII-QZLCpPerdWbY8O41I6BAYCaaPdXig,111953
|
12
12
|
x_transformers/xl_autoregressive_wrapper.py,sha256=CvZMJ6A6PA-Y_bQAhnORwjJBSl6Vjq2IdW5KTdk8NI8,4195
|
13
13
|
x_transformers/xval.py,sha256=7S00kCuab4tWQa-vf-z-XfzADjVj48MoFIr7VSIvttg,8575
|
14
|
-
x_transformers-2.2.
|
15
|
-
x_transformers-2.2.
|
16
|
-
x_transformers-2.2.
|
17
|
-
x_transformers-2.2.
|
14
|
+
x_transformers-2.2.10.dist-info/METADATA,sha256=cMSCK4d3F2o_MLRH_w8MYMsAhptWQug7fbm_wBhswuY,88687
|
15
|
+
x_transformers-2.2.10.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
16
|
+
x_transformers-2.2.10.dist-info/licenses/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
|
17
|
+
x_transformers-2.2.10.dist-info/RECORD,,
|
File without changes
|
File without changes
|