x-transformers 2.1.11__py3-none-any.whl → 2.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -132,10 +132,7 @@ class BeliefStateWrapper(Module):
132
132
 
133
133
  # get the encoded suffix token once
134
134
 
135
- if not exists(suffix):
136
- suffix = out[:, 0:0]
137
-
138
- if suffix.ndim == 1:
135
+ if exists(suffix) and suffix.ndim == 1:
139
136
  suffix = repeat(suffix, 'n -> b n', b = batch)
140
137
 
141
138
  suffix_sos_tokens = rearrange(self.suffix_token, 'd -> 1 1 d')
@@ -2898,6 +2898,15 @@ class TransformerWrapper(Module):
2898
2898
  to_logits_kwargs = dict(),
2899
2899
  **kwargs,
2900
2900
  ):
2901
+
2902
+ # if sequence is None, auto create an empty one if `prepend_embeds` was supplied
2903
+
2904
+ if not exists(x):
2905
+ assert exists(prepend_embeds)
2906
+ x = prepend_embeds.new_empty((prepend_embeds.shape[0], 0), dtype = torch.long)
2907
+
2908
+ # shapes and variables
2909
+
2901
2910
  b, n, device, num_mems, has_memory_tokens, emb_frac_gradient, orig_mask = x.shape[0], x.shape[1], x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient, mask
2902
2911
 
2903
2912
  return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: x-transformers
3
- Version: 2.1.11
3
+ Version: 2.1.12
4
4
  Summary: X-Transformers
5
5
  Project-URL: Homepage, https://pypi.org/project/x-transformers/
6
6
  Project-URL: Repository, https://github.com/lucidrains/x-transformers
@@ -1,16 +1,16 @@
1
1
  x_transformers/__init__.py,sha256=NDoiBivau559WQ0FvXG4ssU3Il9aoHmTIUFN_1juz0s,911
2
2
  x_transformers/attend.py,sha256=-5BWWhFsp7tvZTdN91Ay5SqOjyj9uOs-122vFvoO6b4,17253
3
3
  x_transformers/autoregressive_wrapper.py,sha256=reLCno9Z9pchVU79tBF8OMo21LwSZ67KAeB83jqkyAc,10505
4
- x_transformers/belief_state_wrapper.py,sha256=mpfTNZb8gadbtlpG2TxyfIMWkMVM4vigFDqCJ_mjxSU,8711
4
+ x_transformers/belief_state_wrapper.py,sha256=aMmekjRNHem-4MKXTK8z_u0497EThUhvKLISwaKbqQw,8665
5
5
  x_transformers/continuous.py,sha256=p0sCAiH1na236ygwgL1Yyhu36eZBf9cZvoW1JyP_fFE,7073
6
6
  x_transformers/dpo.py,sha256=xt4OuOWhU8pN3OKN2LZAaC2NC8iiEnchqqcrPWVqf0o,3521
7
7
  x_transformers/multi_input.py,sha256=tCh-fTJDj2ib4SMGtsa-AM8MxKzJAQSwqAXOu3HU2mg,9252
8
8
  x_transformers/neo_mlp.py,sha256=XCNnnop9WLarcxap1kGuYc1x8GHvwkZiDRnXOxSl3Po,3452
9
9
  x_transformers/nonautoregressive_wrapper.py,sha256=2NU58hYMgn-4Jzg3mie-mXb0XH_dCN7fjlzd3K1rLUY,10510
10
- x_transformers/x_transformers.py,sha256=-80N4sqUr3sR51Ms4wCfc4jhxnPwf0ApNR4xfIsasfQ,110142
10
+ x_transformers/x_transformers.py,sha256=fqgtIs6__JpLWMnJa8AY5OW3AJ2GR1B5p-9TsWdiOIU,110425
11
11
  x_transformers/xl_autoregressive_wrapper.py,sha256=CvZMJ6A6PA-Y_bQAhnORwjJBSl6Vjq2IdW5KTdk8NI8,4195
12
12
  x_transformers/xval.py,sha256=7S00kCuab4tWQa-vf-z-XfzADjVj48MoFIr7VSIvttg,8575
13
- x_transformers-2.1.11.dist-info/METADATA,sha256=miwxNJVS0ZNJlw3qeJaGaxunTRxLgmz9WITWi_jnXcc,87571
14
- x_transformers-2.1.11.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
15
- x_transformers-2.1.11.dist-info/licenses/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
16
- x_transformers-2.1.11.dist-info/RECORD,,
13
+ x_transformers-2.1.12.dist-info/METADATA,sha256=JXQYWgfNcv43jVmFY_FAiIhD5EYvX88BA4zJXeRMxa0,87571
14
+ x_transformers-2.1.12.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
15
+ x_transformers-2.1.12.dist-info/licenses/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
16
+ x_transformers-2.1.12.dist-info/RECORD,,