x-transformers 1.42.7__py3-none-any.whl → 1.42.9__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -238,6 +238,13 @@ class TokenEmbedding(Module):
238
238
  token_emb = self.emb(x.long())
239
239
  return l2norm(token_emb) if self.l2norm_embed else token_emb
240
240
 
241
+ def init_(self):
242
+ if self.l2norm_embed:
243
+ nn.init.normal_(self.emb.weight, std=1e-5)
244
+ return
245
+ nn.init.kaiming_normal_(self.emb.weight)
246
+
247
+
241
248
  # positional embeddings
242
249
 
243
250
  class AbsolutePositionalEmbedding(Module):
@@ -445,13 +452,20 @@ class DynamicPositionBias(Module):
445
452
  return bias
446
453
 
447
454
  class AlibiPositionalBias(Module):
448
- def __init__(self, heads, total_heads = None, **kwargs):
455
+ def __init__(
456
+ self,
457
+ heads,
458
+ total_heads = None,
459
+ slopes: list[int] | None = None,
460
+ **kwargs
461
+ ):
449
462
  super().__init__()
450
463
  self.heads = heads
451
464
  self.total_heads = default(total_heads, heads)
452
465
 
453
- slopes = Tensor(self._get_slopes(heads))
466
+ slopes = Tensor(default(slopes, self._get_slopes(heads)))
454
467
  slopes = rearrange(slopes, 'h -> h 1 1')
468
+
455
469
  self.register_buffer('slopes', slopes, persistent = False)
456
470
  self.register_buffer('bias', None, persistent = False)
457
471
 
@@ -480,7 +494,10 @@ class AlibiPositionalBias(Module):
480
494
  h, device = self.total_heads, self.device
481
495
 
482
496
  pos_j = default(pos_j, pos_i)
483
- bias = -einx.subtract('... j, ... i -> ... 1 i j', pos_j, pos_i).abs()
497
+ bias = -einx.subtract('... j, ... i -> ... i j', pos_j, pos_i).abs()
498
+
499
+ if bias.ndim == 3:
500
+ bias = rearrange(bias, 'b i j -> b 1 i j')
484
501
 
485
502
  bias = bias * self.slopes
486
503
  num_heads_unalibied = h - bias.shape[-3]
@@ -1524,8 +1541,9 @@ class AttentionLayers(Module):
1524
1541
  use_layerscale = False,
1525
1542
  layerscale_init_value = 0.,
1526
1543
  unet_skips = False,
1527
- reinject_input = False, # seen first in DEQ paper https://arxiv.org/abs/1909.01377, but later used in a number of papers trying to achieve depthwise generalization https://arxiv.org/abs/2410.03020v1
1528
- add_value_residual = False, # resformer from Zhou et al - https://arxiv.org/abs/2410.17897v1
1544
+ reinject_input = False, # seen first in DEQ paper https://arxiv.org/abs/1909.01377, but later used in a number of papers trying to achieve depthwise generalization https://arxiv.org/abs/2410.03020v1
1545
+ add_value_residual = False, # resformer from Zhou et al - https://arxiv.org/abs/2410.17897v1
1546
+ rel_pos_kwargs: dict = dict(),
1529
1547
  **kwargs
1530
1548
  ):
1531
1549
  super().__init__()
@@ -1566,14 +1584,14 @@ class AttentionLayers(Module):
1566
1584
 
1567
1585
  if rel_pos_bias:
1568
1586
  assert not flash_attn, 'flash attention not compatible with t5 relative positional bias'
1569
- self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance)
1587
+ self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance, **rel_pos_kwargs)
1570
1588
  elif dynamic_pos_bias:
1571
1589
  assert not flash_attn, 'flash attention not compatible with dynamic positional bias'
1572
- self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm)
1590
+ self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm, **rel_pos_kwargs)
1573
1591
  elif alibi_pos_bias:
1574
1592
  alibi_num_heads = default(alibi_num_heads, heads)
1575
1593
  assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
1576
- self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads)
1594
+ self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads, **rel_pos_kwargs)
1577
1595
 
1578
1596
  assert at_most_one_of(sandwich_norm, resi_dual), 'either sandwich norm or resiDual is selected, but not both'
1579
1597
  assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'
@@ -2261,7 +2279,8 @@ class TransformerWrapper(Module):
2261
2279
  token_emb: TokenEmbedding | None = None,
2262
2280
  mixture_of_softmax = False,
2263
2281
  mixture_of_softmax_k = 4,
2264
- sigsoftmax_logits = False
2282
+ sigsoftmax_logits = False,
2283
+ to_logits: Module | None = None,
2265
2284
  ):
2266
2285
  super().__init__()
2267
2286
 
@@ -2363,11 +2382,12 @@ class TransformerWrapper(Module):
2363
2382
  if return_only_embed:
2364
2383
  self.to_logits = None
2365
2384
  elif tie_embedding:
2385
+ assert isinstance(token_emb, TokenEmbedding), 'can only tie embedding if using `TokenEmbedding`'
2366
2386
  self.to_logits = lambda t: t @ self.token_emb.emb.weight.t()
2367
2387
  elif num_output_heads > 1:
2368
2388
  self.to_logits = ModuleList([LinearNoBias(dim, logits_dim) for _ in range(num_output_heads)])
2369
2389
  else:
2370
- self.to_logits = LinearNoBias(dim, logits_dim)
2390
+ self.to_logits = LinearNoBias(dim, logits_dim) if not exists(to_logits) else to_logits
2371
2391
 
2372
2392
  # memory tokens (like [cls]) from Memory Transformers paper
2373
2393
 
@@ -2388,13 +2408,12 @@ class TransformerWrapper(Module):
2388
2408
  self.can_cache_kv_outside_max_seq_len = no_abs_pos_emb
2389
2409
 
2390
2410
  def init_(self):
2411
+ if hasattr(self.token_emb, 'init_'):
2412
+ self.token_emb.init_()
2413
+
2391
2414
  if self.l2norm_embed:
2392
- nn.init.normal_(self.token_emb.emb.weight, std = 1e-5)
2393
2415
  if not isinstance(self.pos_emb, always):
2394
2416
  nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5)
2395
- return
2396
-
2397
- nn.init.kaiming_normal_(self.token_emb.emb.weight)
2398
2417
 
2399
2418
  def forward(
2400
2419
  self,
@@ -2417,7 +2436,9 @@ class TransformerWrapper(Module):
2417
2436
  attn_z_loss_weight = 1e-4,
2418
2437
  seq_start_pos = None,
2419
2438
  cache: LayerIntermediates | None = None,
2420
- **kwargs
2439
+ token_emb_kwargs = dict(),
2440
+ to_logits_kwargs = dict(),
2441
+ **kwargs,
2421
2442
  ):
2422
2443
  b, n, device, num_mems, has_memory_tokens, emb_frac_gradient, orig_mask = x.shape[0], x.shape[1], x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient, mask
2423
2444
 
@@ -2428,7 +2449,7 @@ class TransformerWrapper(Module):
2428
2449
 
2429
2450
  external_pos_emb = exists(pos) and pos.dtype != torch.long
2430
2451
  pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos
2431
- x = self.token_emb(x) + pos_emb
2452
+ x = self.token_emb(x, **token_emb_kwargs) + pos_emb
2432
2453
 
2433
2454
  # add additional embeddings
2434
2455
 
@@ -2583,9 +2604,9 @@ class TransformerWrapper(Module):
2583
2604
 
2584
2605
  if not return_embeddings:
2585
2606
  if self.has_multiple_heads:
2586
- logits = tuple(fn(x) for fn in self.to_logits)
2607
+ logits = tuple(fn(x, **to_logits_kwargs) for fn in self.to_logits)
2587
2608
  else:
2588
- logits = self.to_logits(x)
2609
+ logits = self.to_logits(x, **to_logits_kwargs)
2589
2610
 
2590
2611
  # maybe sig softmax
2591
2612
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: x-transformers
3
- Version: 1.42.7
3
+ Version: 1.42.9
4
4
  Summary: X-Transformers - Pytorch
5
5
  Home-page: https://github.com/lucidrains/x-transformers
6
6
  Author: Phil Wang
@@ -6,11 +6,11 @@ x_transformers/dpo.py,sha256=xt4OuOWhU8pN3OKN2LZAaC2NC8iiEnchqqcrPWVqf0o,3521
6
6
  x_transformers/multi_input.py,sha256=tCh-fTJDj2ib4SMGtsa-AM8MxKzJAQSwqAXOu3HU2mg,9252
7
7
  x_transformers/neo_mlp.py,sha256=XCNnnop9WLarcxap1kGuYc1x8GHvwkZiDRnXOxSl3Po,3452
8
8
  x_transformers/nonautoregressive_wrapper.py,sha256=2NU58hYMgn-4Jzg3mie-mXb0XH_dCN7fjlzd3K1rLUY,10510
9
- x_transformers/x_transformers.py,sha256=6jXSMHViCU64gLMbxRJ6C8bgcLrPFbT-m-fhtusqq3g,93117
9
+ x_transformers/x_transformers.py,sha256=VxdA44EYQhVH1Rp7wreJ83I2e0Ea7VN_bFRE-iDXOI8,93833
10
10
  x_transformers/xl_autoregressive_wrapper.py,sha256=CvZMJ6A6PA-Y_bQAhnORwjJBSl6Vjq2IdW5KTdk8NI8,4195
11
11
  x_transformers/xval.py,sha256=7S00kCuab4tWQa-vf-z-XfzADjVj48MoFIr7VSIvttg,8575
12
- x_transformers-1.42.7.dist-info/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
13
- x_transformers-1.42.7.dist-info/METADATA,sha256=tM7s2gIMFH8hy_YZY84BhZ-yUoH6PTyjusK0dMOpTN8,689
14
- x_transformers-1.42.7.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
15
- x_transformers-1.42.7.dist-info/top_level.txt,sha256=hO6KGpFuGucRNEtRfme4A_rGcM53AKwGP7RVlRIxS5Q,15
16
- x_transformers-1.42.7.dist-info/RECORD,,
12
+ x_transformers-1.42.9.dist-info/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
13
+ x_transformers-1.42.9.dist-info/METADATA,sha256=k9r-D0b0xnf8gwE-SwwgybnfQpoRwiY0wthOn66xc6Y,689
14
+ x_transformers-1.42.9.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
15
+ x_transformers-1.42.9.dist-info/top_level.txt,sha256=hO6KGpFuGucRNEtRfme4A_rGcM53AKwGP7RVlRIxS5Q,15
16
+ x_transformers-1.42.9.dist-info/RECORD,,