x-transformers 1.42.7__py3-none-any.whl → 1.42.8__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- x_transformers/x_transformers.py +20 -10
- {x_transformers-1.42.7.dist-info → x_transformers-1.42.8.dist-info}/METADATA +1 -1
- {x_transformers-1.42.7.dist-info → x_transformers-1.42.8.dist-info}/RECORD +6 -6
- {x_transformers-1.42.7.dist-info → x_transformers-1.42.8.dist-info}/LICENSE +0 -0
- {x_transformers-1.42.7.dist-info → x_transformers-1.42.8.dist-info}/WHEEL +0 -0
- {x_transformers-1.42.7.dist-info → x_transformers-1.42.8.dist-info}/top_level.txt +0 -0
x_transformers/x_transformers.py
CHANGED
@@ -238,6 +238,13 @@ class TokenEmbedding(Module):
|
|
238
238
|
token_emb = self.emb(x.long())
|
239
239
|
return l2norm(token_emb) if self.l2norm_embed else token_emb
|
240
240
|
|
241
|
+
def init_(self):
|
242
|
+
if self.l2norm_embed:
|
243
|
+
nn.init.normal_(self.emb.weight, std=1e-5)
|
244
|
+
return
|
245
|
+
nn.init.kaiming_normal_(self.emb.weight)
|
246
|
+
|
247
|
+
|
241
248
|
# positional embeddings
|
242
249
|
|
243
250
|
class AbsolutePositionalEmbedding(Module):
|
@@ -2261,7 +2268,8 @@ class TransformerWrapper(Module):
|
|
2261
2268
|
token_emb: TokenEmbedding | None = None,
|
2262
2269
|
mixture_of_softmax = False,
|
2263
2270
|
mixture_of_softmax_k = 4,
|
2264
|
-
sigsoftmax_logits = False
|
2271
|
+
sigsoftmax_logits = False,
|
2272
|
+
to_logits: Module | None = None,
|
2265
2273
|
):
|
2266
2274
|
super().__init__()
|
2267
2275
|
|
@@ -2363,11 +2371,12 @@ class TransformerWrapper(Module):
|
|
2363
2371
|
if return_only_embed:
|
2364
2372
|
self.to_logits = None
|
2365
2373
|
elif tie_embedding:
|
2374
|
+
assert isinstance(token_emb, TokenEmbedding), 'can only tie embedding if using `TokenEmbedding`'
|
2366
2375
|
self.to_logits = lambda t: t @ self.token_emb.emb.weight.t()
|
2367
2376
|
elif num_output_heads > 1:
|
2368
2377
|
self.to_logits = ModuleList([LinearNoBias(dim, logits_dim) for _ in range(num_output_heads)])
|
2369
2378
|
else:
|
2370
|
-
self.to_logits = LinearNoBias(dim, logits_dim)
|
2379
|
+
self.to_logits = LinearNoBias(dim, logits_dim) if not exists(to_logits) else to_logits
|
2371
2380
|
|
2372
2381
|
# memory tokens (like [cls]) from Memory Transformers paper
|
2373
2382
|
|
@@ -2388,13 +2397,12 @@ class TransformerWrapper(Module):
|
|
2388
2397
|
self.can_cache_kv_outside_max_seq_len = no_abs_pos_emb
|
2389
2398
|
|
2390
2399
|
def init_(self):
|
2400
|
+
if hasattr(self.token_emb, 'init_'):
|
2401
|
+
self.token_emb.init_()
|
2402
|
+
|
2391
2403
|
if self.l2norm_embed:
|
2392
|
-
nn.init.normal_(self.token_emb.emb.weight, std = 1e-5)
|
2393
2404
|
if not isinstance(self.pos_emb, always):
|
2394
2405
|
nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5)
|
2395
|
-
return
|
2396
|
-
|
2397
|
-
nn.init.kaiming_normal_(self.token_emb.emb.weight)
|
2398
2406
|
|
2399
2407
|
def forward(
|
2400
2408
|
self,
|
@@ -2417,7 +2425,9 @@ class TransformerWrapper(Module):
|
|
2417
2425
|
attn_z_loss_weight = 1e-4,
|
2418
2426
|
seq_start_pos = None,
|
2419
2427
|
cache: LayerIntermediates | None = None,
|
2420
|
-
|
2428
|
+
token_emb_kwargs = dict(),
|
2429
|
+
to_logits_kwargs = dict(),
|
2430
|
+
**kwargs,
|
2421
2431
|
):
|
2422
2432
|
b, n, device, num_mems, has_memory_tokens, emb_frac_gradient, orig_mask = x.shape[0], x.shape[1], x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient, mask
|
2423
2433
|
|
@@ -2428,7 +2438,7 @@ class TransformerWrapper(Module):
|
|
2428
2438
|
|
2429
2439
|
external_pos_emb = exists(pos) and pos.dtype != torch.long
|
2430
2440
|
pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos
|
2431
|
-
x = self.token_emb(x) + pos_emb
|
2441
|
+
x = self.token_emb(x, **token_emb_kwargs) + pos_emb
|
2432
2442
|
|
2433
2443
|
# add additional embeddings
|
2434
2444
|
|
@@ -2583,9 +2593,9 @@ class TransformerWrapper(Module):
|
|
2583
2593
|
|
2584
2594
|
if not return_embeddings:
|
2585
2595
|
if self.has_multiple_heads:
|
2586
|
-
logits = tuple(fn(x) for fn in self.to_logits)
|
2596
|
+
logits = tuple(fn(x, **to_logits_kwargs) for fn in self.to_logits)
|
2587
2597
|
else:
|
2588
|
-
logits = self.to_logits(x)
|
2598
|
+
logits = self.to_logits(x, **to_logits_kwargs)
|
2589
2599
|
|
2590
2600
|
# maybe sig softmax
|
2591
2601
|
|
@@ -6,11 +6,11 @@ x_transformers/dpo.py,sha256=xt4OuOWhU8pN3OKN2LZAaC2NC8iiEnchqqcrPWVqf0o,3521
|
|
6
6
|
x_transformers/multi_input.py,sha256=tCh-fTJDj2ib4SMGtsa-AM8MxKzJAQSwqAXOu3HU2mg,9252
|
7
7
|
x_transformers/neo_mlp.py,sha256=XCNnnop9WLarcxap1kGuYc1x8GHvwkZiDRnXOxSl3Po,3452
|
8
8
|
x_transformers/nonautoregressive_wrapper.py,sha256=2NU58hYMgn-4Jzg3mie-mXb0XH_dCN7fjlzd3K1rLUY,10510
|
9
|
-
x_transformers/x_transformers.py,sha256=
|
9
|
+
x_transformers/x_transformers.py,sha256=275B_yDHePxUvlLcMNgnCUmZ1qZEkwBrpk6IA8n-pnY,93550
|
10
10
|
x_transformers/xl_autoregressive_wrapper.py,sha256=CvZMJ6A6PA-Y_bQAhnORwjJBSl6Vjq2IdW5KTdk8NI8,4195
|
11
11
|
x_transformers/xval.py,sha256=7S00kCuab4tWQa-vf-z-XfzADjVj48MoFIr7VSIvttg,8575
|
12
|
-
x_transformers-1.42.
|
13
|
-
x_transformers-1.42.
|
14
|
-
x_transformers-1.42.
|
15
|
-
x_transformers-1.42.
|
16
|
-
x_transformers-1.42.
|
12
|
+
x_transformers-1.42.8.dist-info/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
|
13
|
+
x_transformers-1.42.8.dist-info/METADATA,sha256=1d2BVA6iHKpT4UzbYxw16ijAFGJT-u29zTnYtV6Lp3w,689
|
14
|
+
x_transformers-1.42.8.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
|
15
|
+
x_transformers-1.42.8.dist-info/top_level.txt,sha256=hO6KGpFuGucRNEtRfme4A_rGcM53AKwGP7RVlRIxS5Q,15
|
16
|
+
x_transformers-1.42.8.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|