x-transformers 1.42.6__py3-none-any.whl → 1.42.8__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -238,6 +238,13 @@ class TokenEmbedding(Module):
238
238
  token_emb = self.emb(x.long())
239
239
  return l2norm(token_emb) if self.l2norm_embed else token_emb
240
240
 
241
+ def init_(self):
242
+ if self.l2norm_embed:
243
+ nn.init.normal_(self.emb.weight, std=1e-5)
244
+ return
245
+ nn.init.kaiming_normal_(self.emb.weight)
246
+
247
+
241
248
  # positional embeddings
242
249
 
243
250
  class AbsolutePositionalEmbedding(Module):
@@ -1246,6 +1253,7 @@ class Attention(Module):
1246
1253
  rel_pos = None,
1247
1254
  attn_bias = None,
1248
1255
  rotary_pos_emb = None,
1256
+ pos = None, # for custom alibi positions
1249
1257
  prev_attn = None,
1250
1258
  mem = None,
1251
1259
  mem_mask = None,
@@ -1392,7 +1400,14 @@ class Attention(Module):
1392
1400
 
1393
1401
  if exists(rel_pos):
1394
1402
  assert not exists(attn_bias)
1395
- attn_bias = rel_pos(i, j)
1403
+
1404
+ if exists(pos):
1405
+ assert isinstance(rel_pos, AlibiPositionalBias), 'only alibi allowed for custom positions at the moment'
1406
+ # allow for custom positions to be passed in
1407
+ attn_bias = rel_pos.forward_custom_pos(pos)
1408
+ else:
1409
+ attn_bias = rel_pos(i, j)
1410
+
1396
1411
  attn_bias = pad_at_dim(attn_bias, (num_mem_kv, 0), value = 0.) # handle memory key / values
1397
1412
 
1398
1413
  # prepare data dependent alibi from forgetting transformers paper, if needed
@@ -1843,6 +1858,7 @@ class AttentionLayers(Module):
1843
1858
  cache_age = 1,
1844
1859
  return_hiddens = False,
1845
1860
  rotary_pos_emb = None,
1861
+ pos = None,
1846
1862
  attn_bias = None,
1847
1863
  condition = None,
1848
1864
  in_attn_cond = None, # https://arxiv.org/abs/2105.04090
@@ -1906,7 +1922,9 @@ class AttentionLayers(Module):
1906
1922
  maybe_mem = mems[0] # todo - handle edge case where different layers get different memory lengths. don't think this will ever come up but who knows
1907
1923
  mem_len = maybe_mem.shape[1] if exists(maybe_mem) else 0
1908
1924
 
1909
- pos = torch.arange(x.shape[1] + mem_len, device = x.device) - mem_len
1925
+ if not exists(pos):
1926
+ pos = torch.arange(x.shape[1] + mem_len, device = x.device) - mem_len
1927
+
1910
1928
  rotary_pos_emb = self.rotary_pos_emb(pos)
1911
1929
 
1912
1930
  # assume cached key / values
@@ -2030,7 +2048,7 @@ class AttentionLayers(Module):
2030
2048
  # forward depending on layer type
2031
2049
 
2032
2050
  if layer_type == 'a':
2033
- out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, mem_mask = layer_mem_mask, attn_bias = attn_bias, value_residual = maybe_self_attn_value_residual, return_intermediates = True)
2051
+ out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, pos = pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, mem_mask = layer_mem_mask, attn_bias = attn_bias, value_residual = maybe_self_attn_value_residual, return_intermediates = True)
2034
2052
  elif layer_type == 'c':
2035
2053
  out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), value_residual = maybe_cross_attn_value_residual, return_intermediates = True)
2036
2054
  elif layer_type == 'f':
@@ -2250,7 +2268,8 @@ class TransformerWrapper(Module):
2250
2268
  token_emb: TokenEmbedding | None = None,
2251
2269
  mixture_of_softmax = False,
2252
2270
  mixture_of_softmax_k = 4,
2253
- sigsoftmax_logits = False
2271
+ sigsoftmax_logits = False,
2272
+ to_logits: Module | None = None,
2254
2273
  ):
2255
2274
  super().__init__()
2256
2275
 
@@ -2352,11 +2371,12 @@ class TransformerWrapper(Module):
2352
2371
  if return_only_embed:
2353
2372
  self.to_logits = None
2354
2373
  elif tie_embedding:
2374
+ assert isinstance(token_emb, TokenEmbedding), 'can only tie embedding if using `TokenEmbedding`'
2355
2375
  self.to_logits = lambda t: t @ self.token_emb.emb.weight.t()
2356
2376
  elif num_output_heads > 1:
2357
2377
  self.to_logits = ModuleList([LinearNoBias(dim, logits_dim) for _ in range(num_output_heads)])
2358
2378
  else:
2359
- self.to_logits = LinearNoBias(dim, logits_dim)
2379
+ self.to_logits = LinearNoBias(dim, logits_dim) if not exists(to_logits) else to_logits
2360
2380
 
2361
2381
  # memory tokens (like [cls]) from Memory Transformers paper
2362
2382
 
@@ -2377,13 +2397,12 @@ class TransformerWrapper(Module):
2377
2397
  self.can_cache_kv_outside_max_seq_len = no_abs_pos_emb
2378
2398
 
2379
2399
  def init_(self):
2400
+ if hasattr(self.token_emb, 'init_'):
2401
+ self.token_emb.init_()
2402
+
2380
2403
  if self.l2norm_embed:
2381
- nn.init.normal_(self.token_emb.emb.weight, std = 1e-5)
2382
2404
  if not isinstance(self.pos_emb, always):
2383
2405
  nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5)
2384
- return
2385
-
2386
- nn.init.kaiming_normal_(self.token_emb.emb.weight)
2387
2406
 
2388
2407
  def forward(
2389
2408
  self,
@@ -2406,7 +2425,9 @@ class TransformerWrapper(Module):
2406
2425
  attn_z_loss_weight = 1e-4,
2407
2426
  seq_start_pos = None,
2408
2427
  cache: LayerIntermediates | None = None,
2409
- **kwargs
2428
+ token_emb_kwargs = dict(),
2429
+ to_logits_kwargs = dict(),
2430
+ **kwargs,
2410
2431
  ):
2411
2432
  b, n, device, num_mems, has_memory_tokens, emb_frac_gradient, orig_mask = x.shape[0], x.shape[1], x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient, mask
2412
2433
 
@@ -2417,7 +2438,7 @@ class TransformerWrapper(Module):
2417
2438
 
2418
2439
  external_pos_emb = exists(pos) and pos.dtype != torch.long
2419
2440
  pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos
2420
- x = self.token_emb(x) + pos_emb
2441
+ x = self.token_emb(x, **token_emb_kwargs) + pos_emb
2421
2442
 
2422
2443
  # add additional embeddings
2423
2444
 
@@ -2572,9 +2593,9 @@ class TransformerWrapper(Module):
2572
2593
 
2573
2594
  if not return_embeddings:
2574
2595
  if self.has_multiple_heads:
2575
- logits = tuple(fn(x) for fn in self.to_logits)
2596
+ logits = tuple(fn(x, **to_logits_kwargs) for fn in self.to_logits)
2576
2597
  else:
2577
- logits = self.to_logits(x)
2598
+ logits = self.to_logits(x, **to_logits_kwargs)
2578
2599
 
2579
2600
  # maybe sig softmax
2580
2601
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: x-transformers
3
- Version: 1.42.6
3
+ Version: 1.42.8
4
4
  Summary: X-Transformers - Pytorch
5
5
  Home-page: https://github.com/lucidrains/x-transformers
6
6
  Author: Phil Wang
@@ -6,11 +6,11 @@ x_transformers/dpo.py,sha256=xt4OuOWhU8pN3OKN2LZAaC2NC8iiEnchqqcrPWVqf0o,3521
6
6
  x_transformers/multi_input.py,sha256=tCh-fTJDj2ib4SMGtsa-AM8MxKzJAQSwqAXOu3HU2mg,9252
7
7
  x_transformers/neo_mlp.py,sha256=XCNnnop9WLarcxap1kGuYc1x8GHvwkZiDRnXOxSl3Po,3452
8
8
  x_transformers/nonautoregressive_wrapper.py,sha256=2NU58hYMgn-4Jzg3mie-mXb0XH_dCN7fjlzd3K1rLUY,10510
9
- x_transformers/x_transformers.py,sha256=cPsSl1s14_c9fMdn9cZwe6Eg3aDbcRyCTsoXUJusWUg,92706
9
+ x_transformers/x_transformers.py,sha256=275B_yDHePxUvlLcMNgnCUmZ1qZEkwBrpk6IA8n-pnY,93550
10
10
  x_transformers/xl_autoregressive_wrapper.py,sha256=CvZMJ6A6PA-Y_bQAhnORwjJBSl6Vjq2IdW5KTdk8NI8,4195
11
11
  x_transformers/xval.py,sha256=7S00kCuab4tWQa-vf-z-XfzADjVj48MoFIr7VSIvttg,8575
12
- x_transformers-1.42.6.dist-info/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
13
- x_transformers-1.42.6.dist-info/METADATA,sha256=OANeMK9I504gC7iErAdYMTGBUEl6FOcEwm97o4OyC1k,689
14
- x_transformers-1.42.6.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
15
- x_transformers-1.42.6.dist-info/top_level.txt,sha256=hO6KGpFuGucRNEtRfme4A_rGcM53AKwGP7RVlRIxS5Q,15
16
- x_transformers-1.42.6.dist-info/RECORD,,
12
+ x_transformers-1.42.8.dist-info/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
13
+ x_transformers-1.42.8.dist-info/METADATA,sha256=1d2BVA6iHKpT4UzbYxw16ijAFGJT-u29zTnYtV6Lp3w,689
14
+ x_transformers-1.42.8.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
15
+ x_transformers-1.42.8.dist-info/top_level.txt,sha256=hO6KGpFuGucRNEtRfme4A_rGcM53AKwGP7RVlRIxS5Q,15
16
+ x_transformers-1.42.8.dist-info/RECORD,,